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§1. INTRODUCTION.
We are concerned with Mori’s Langevin equation for a
model of a quantum harmonic oscillator coupled to infi-

nitely many scalar bosons whose Hamiltonian H 1is given

formally by

} H =H, + H

o "M
o = Hg * Hy
(1.1) | Hg = fwyaa C (0<ay)
Hy = Sp_ fab by (0<0y Saye, 1 keN)

' Hp = 3p_(Tpa'b + Tibra) (T eC.kel)

Here ¢ and a+ (resp. bk and+bk) denote annihilation and
creation operators of a quantum harmonic oscillator (resp.
bosdn),réspectively, which act in the symmetric Boson Fock
space ?S(Ceﬂz(ﬂ)) over Ceﬂz(m). Operators HS and HB denote
a Hamiltonian of a quantum harmonic oscillator and the one

of infinitely many scalar bosons,respectively.The operator
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HI which represents the interaction between the quantum
harmonic oscillator and infinitely many scalar bosons is
said to be the coupling»HamiltOnian for the rotéting wave
approximation (abbr.RWA)-oscillator . We shall simply call
the operator H the Hamiltonian for the RWA-oscillator .

The behavior of the Heisenberg picture eltH/ﬁae_ltH/Tl =

89

a(t)'has been studied in H.Haken([9]).,K.Lindenberg and B.J.

West([11]) . and E.Braun([4]). They considered their own
equations of Langevin type for g(t) whose form are depen-

dent on their consideration . In particular , K.Lindenberg

and B.J.West rewrite the total Hamiltonian H given by (1.1)

into
_ g (m) (m)
f H = HS + HB + HI
(m) _ ., +
‘ Ho'' = filw, A)a a
(1.2) Hy + H%“‘) = 5 _ R BB,
. I
OB = bt oy
2
w Tkl
where A = Ek:1—§~——— .
e

By solving a simultaneous system of differential equations

for g(t) and Bk(t)
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Fat) = oIH.a(t)]

(1.3)
d T
1B (t) = FIHB(O)]

they derived an equation of Langevin type for qg(t).However,
the physical ﬁeaning of the quantities wy~A and A are not
clear in [11]. While,in his theory of generaliZed Brownian
motion in statistical physics,H.Mori derived the so-called
Mori’s Langevin equation which consists of the Mori’s fre-
quency , Mori’s memory function and Mori noise ([12],[13]).
Mathematicaly, Mori’s Langevin equation can be derived if
a Mori-Okabe (abbr. an MO)-structure is given. Here an MO-
structure consists of the triplet of a Hilbert space X, a
self-adjoint operator L- on X apd, a non-zero AO in the
domain of L ([15],[161,[17])

The purpose is to show that the Hamiltonian H in (1.1)
has an MO-structure and investigate Mori’s Langevin'equa—
tion for the Heisenberg picture g(t) in detail . In order
to carry out it , we shall construct a Hilbert space XC(H)
of unbounded operators on ?S(Ceﬂz(N)) containing the anni-
hilation and creatioh operators,where the inner product of
XC(H) is introduced from Bogoliubov scalar product (Kubo-

_3_



Mori scalar product,or the canonical correlation) (see [5.
p96],[13]). Furtheremore,we shall construct a self-adjoint
operator L. (Liouville operator) on XC(H) in such a way

that the Heisenberg picture of g by the operator H coinci-

des with the time evolution of g by the operator L . Since

the triplet (XC(H).L.a) satisfies an MO-structure , we can
develop Mori’s theory of generalized Brownian motion on

XC(H). The main point is to express the Mori’s frequency ,

the complex mobility of the Mori’s memory function and the’

canonical correlation fﬁnction of @g(t) 1in terms of the
parameters in the Hamiltonian H in (1.1), by obtaining the
Bogoliubov transformation of H .Furthermore, we shall give
a physical meaning of two constants wy~A and A in (1.2) ,
and show that the canonical correlation function is almost
periodic , and does not converges as the time tends to

infinity

§2. MO-STRUCTURES.

By an MO-structure,we mean a triplet(X.L,AO) such that X
is a Hilbert space with an inner product ( ., )X‘ L a self-
adjoint operator on X with domain D(L), and AO a non-zZero
element in D(L) , where the inner product ( . )X is linear
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in the right vector . For any MO-structure ., we consider a
stationary curve A={A(t);teR} defined by
itL

(2.1) A(t) := e AO (t € R)

and the correlation function RA of A is given by
(2.2) RA(t) 1= (A(O),A(t))X .

Let X, be the closed subspace generated by Ao,and P0 and
Xl the orthogonal projection operator on X0 and the com-

plementary subspace of XO in X,respectively.Then we define

a linear operator L1 on the Hilbert space X1 by
D(Ll) 1= X1 ~ D(L)
(2.3)
Lix := (1 - PLx  (x e D(L,))
Lemma 2.7. ([12],.[15]1,[16]) L, is self-adjoint on the

1

Hilbert space X1

We define a real number m=m(AO) , a stationary curve IM=
{IM(t);tER} in X, and a non-negative definite functién b
on R by |
(2.4) o= o(By) = (A(D),LA(0))4-(A(D).ACO)) "

(2.5)  Iy(t) := i-e'"U1.(1 - B LA, .
(2.6)  $(t) := (Iy(0). T, (£))y-(A(0).ACO))y" .
Concerning the correlation function RA , we have
Theorem 2.2.([7,86.2]1,[12]1.[15]1,[16])  (a) For ail teR .
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R
E%RA(t)'= io-R, (t) —jgs $(t - IR (s) .

(b) For all zeC := {zeC: Imz > 0} .

o itz _ ,
jgt e "R,y (t) = R, (0)-

1

iew - iz + fdt e1tZ4(t)
0

Furtheremore, the equation of motion describing the time
evolution of stationary curve A={A(t);teR} 1is given in the
following

ZZeorem'2%&[([7,§6.2].[12],[15].[16]) For all teR .
d t
(2.7)  FA(t) = ie-A(t) —jgs $(t -~ S)A(s) + Iy(t)

The quantities w=m(A0). é and IM are called the Mori’s
frequency, Mori’s memory function and Mori ndise , respec-
tively .

The equation (2.7) is said to be the Mori’s Langevin

equation associated with the MO-structure (X.L.AO)

§3.CONSTRUCTION OF A HILBERT SPACE ASSOCIATED WITH A CLASS
OF CLOSABLE OPERATORS. | |
Let ¥ be a separable Hilbert space with an inner product

( , ),which is linear in the right vector. Let H be a non-
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negative self-adjoint operator acting in § with the
following properties (H.1) and (H.2)
(H.1) There exists a cémplete orthonormal basis {¢h;nem*=
{0}UN) in D(H) such that Hp -7 ¢ with OSA <A, (neN ).
(H.2) e_’cH € yl for all ze(0,A] ,where B8>0 is the inverse
temperature and ﬂl denotes the family of all trace
class operators on ¥ .

Let

*
(3.1) D :i= {3)_ e ineN .0 €C.k=0,1,~,n)

Obviously D is dense in ¥ . We denote by {(D,%) the space

of bounded linear operators from D into ¥ . Every element

A in £(D,¥) has a unique exfension to an elemeﬁt in £(F)

the space of Bounded linear operators on ¢ . We denote the

extension of A by A or A . |

Let $(D,H) be the set of linear operators A acting'in F

with the following properties (§.1) - ($.3) :

(§.1) D c D(A) » D@

($.2) For all xeD , Ax and A*x are in D .

($.3)  For all ze(0.8], e TA (resp.Ae ©) is in £(D.F)
and (e_zHA)— (resp. (Ae—IH)_ ) is in §2 ,  where &2
‘denotes the family of all Hilbert-Schmidt operators
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with the Hilbert-Schmidt norm | H2 .

In this section, we shall construct a Hilbert space XC(H)
and a Liouville operator L associated with the Hamiltonian
H and show that the triplet (XC(H).L,AO) satisfie§ an MO-
structure for any non-Zero AO e D(L)

If two operators A and B in $(D.H) satisfy Ax=Bx for all
xeD, then we write as A~B , which gives an equivalence re-
lation in $(D,H) . We denote by [A] thg equivalence class
of Ae$(D,H) and by $(D.H)/~ the set of all the equivalence
classes .

We can introduce in $(D,H)/~ the operation of addition ,
scalar multiplication and involution * as follows :

(3.2) [A]+[B] := [A+B]
(3.3) alA]l := [@ad] (ae Q)
(3.4)  [A1" := [A7]

We can define é correlation ; Bogoliubov scalar product

(Kubo-Mori scalar product , or the canonical correlation)

< >H on $(D,H)/~ as follows: For any [A],[B] € $(D,H)/~ .,

A .
-( 8- -2H ,
JSA En(Ae (ﬁ AH o, +€ A B¢n)

1
(3.5) <[A]:[Bl>, := = -
H A tr(e ﬁH)

35
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It can be easily seen to prove that < ; >H is inner

products on $(D,H)/~ . We denote the norm of [A] by

1/2
H

We can define an element A(t) in $(D,H) and its equiva-

(3.6) Al := <IAl:[A]>

lence class [A](t) by

(3.7)  A(t) := P/ 4 A g L tem .
(3.8) [A](t) := [A(t)] (A e $(D,H) , t € R) ,
where #%>0 is a parameter denoting the Planck constant di-

vided by 27z .

Lemma 3.7. For all Ae$(D.H) , "[A]"H:“[A*]“H X

We obtain a Hilbert space XC(H).’as the completion of
$(D,H) /~ by the norm | "H .
Remark 3.7. We can define an involution [A] — [A]+ on

X (H) such that [a1*=[a1" for all [Ale$(D.H)/~ .

Let

(3.9) 95 = {A e $(D,H) ; AH , HA ¢ $(D,H)}

(3.10)  D(3) := {[Al e X (H) ; A e 4}

D(3) is a dense subspace in X.(H)

We define a linear operator 3:D(8) — X (H) by
(3.11)  3[A1 := [ £[H.A] 1 ([A] € D(3)) .

_.g_
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where [H,A] := HA - AH . Then , § is a symmetric operator .
We define for each teR the operator U(t) : $(D,H)/~ —»
X (H) by - .
(3.12)  U(r)[A] := [A](t) kA e $(D.H))
Proposition 3.2. For any [A] € y(D,H)/g , and t,s e R ,
(a) U(t) is unitary on $(D.H)/~ .
(b) U(0)[A] = [A] ,
(c) U(t + s)[A] = U(x)U(s)[A]

(d) s—lim#»OU(t)[A] = [A]

Since it follows from Pfoposition 3.2 that {U(t);teR} is
uniquely extended to a strongly continuous unitéfy group
on XC(H) , we dengte its exﬁénsion by the same symbol . By
Stone’s theorem , there exists a unique self—adjoint oper-
ator L on XC(H) such that
(3.13)  U(t) = eltt

Proposition 3.3. L O & .

ﬁémank 3.2 Proposifion’3.3 means that the time evolu-
tion by Liouville operator L coincides with the Heisenberg
picture on D(8) .,i.e., ‘

3.14)  'Ppay = B A AL (1a) € DoY)
4%¢§bjtjaa J. 4. We say that A ¢ $(D,H) is in M(D,ﬂ)‘if

_10_
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it satisfies the following condition (C.1)
(C.1) For all =z.7’ with 0<z’<7z<A. there exist non-negative

functions fA('z:.’z:').gA(’l:.’c’).fA*(’z:.z') and gA*(q;.»c’)zo such

that , for all xeD ,

’ ’

z’H

x|

{ le Maxisty (z.z) e TF Mae  Bajeg, (2.7 ) e

- % - — X -’
e ’CHA X||$fA*(’TJ-’C’)||e (z-z )HA e T HX"

2’

-z’H
g (T 7 ) e © x|

If A and B € $(D,H) are in M(D,H) , we have AB € $(D,H)
Then , for any A,B € M(D,H) , we define the product of [A]
and [B] e $(D.H)/~ by
(3.15) [A][B] := [AB]

This definition is independent of the choice of the repre-
sentatives of [A] and [B]
Proposrtron 3.5. Suppose that {BO,Bl,m,BN}Cy(D.H) (N ¢

*
N ) satisfy the following conditions :

% * .
BkBﬂ ,BﬂBkej(D,H) and [Bk'Bﬂ]xskﬂx (k,9=0,1,-,N,xeD)

Then , {[BO].[Bl],m.[BN]} is linearly independent .-
Definition 3.6. We say that A ¢ $(D,H) is H-diagonal if
there exists o € R such that
(3.16) [HA]lx = - ﬁdAAx , xeD .
Remark 3.3. 1If A is H-diagonal with [A] # 0 ,then Sp is

_11_



uniquely determined .

Lemma 3.7. For any H-diagonal Ae$(D,H), xeD,z>0 and t €R.

(a) Ae IHX = expl[- zﬁaA]e— zH Ax

(b) AeitH/ﬁx itH/% Ax .

= exp[itgA]e
Proposrition 3.8. 1f A ,Be$(D,H) are H-diagonal and ¢

then <[A];[B]>H=O .

Lemma 3.9. 1f Ae$(D.H) is H-diagonal,then A is in M(D.H).

*
Proposition 3.70. (a) 1f Ae$(D,H) is H-diagonal, then A
e$(D,H) is also H-diagonal. Moreover, if [A]#0 , then
K==
6,%="0, -

(b) If A,Be$(D,H) are H-diagonal , then ABe$(D,H) is also

AB %A"9B -
Lemma 3.77. 1f Ae$(D,H) is H-diagonal , then Aej3 and so

H-diagonal . Moreover, if [AB]#0, then ¢

[A]eD(3)

We define a subset ﬂf(H) of XC(H) as follows :

(3.17) Hf(H):={u0[A0]+u1[A1]+m+uN[AN]eXC(H):NEN*. Uy Uy

uNeC.and AO.Al.m.ANeﬁ(D.H) are H-diagonal}.

Proposrtrion 3.12. ﬁf(H) is a *-algebra and ﬂf(H) c D(3).

Remark 3. 4. XC(H) is a partial *-algebra with a unity
(see ,[1,Definition 2.1. and Definition 2.2.])
Lemma 3.73. For all [A] . [B] € ﬂf(H) and t € R .

_12_
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(a) L[A] and eitL[A] € ﬂf(H) .
(b) L([AT[B]) = (LIADIB] + [AI(L[B]) .
* *
(c) L[A] = - (L[A]) .
Lemma 3. 74. Suppose that A € $(D,H) is H-diagonal with

*
>0 and [A,A ]x=x for all xeD . Then ,

%A
tr((e_ﬁH A*A)—) 1
@) tr(e A - exp[gho,T - 1
o2 x2 1
(b) II[AIlg = ITAY lIy = ‘
H H ﬁﬂo‘A

A@ffinitiaé Jg.715. We say that tﬁe linear operator A is
in @ﬂ(H) (7e(0,8)) if A satisfies the following conditions
(@!i) and (@.2)0 : . |
€.1) (=($.1)) D) . DA") > D .
@2), (MA@ BTN g
Lemma 3.16. For all n e (0,8) ,

(a) If A is in € (H) . then A" is in G4 (H)

- )
(b)vQﬂ(H),is a complex vector space ,
(c) $(D,H) C QD(H) ;
Lemma 3.717. For each 7e(0,8) and Ae@n(H) . there exists
. .
a Cauchy sequence'{[AN];NeN }C$(D . H)/~ such that
(a) Ay e$s .

(b) llmN» A

Ayx = Ax in ¢ for all x e D ,

_13_
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(c) As a function of Ae[O,ﬂJ .
En((A_AN)e—(ﬁ‘A)Hwn.Q—XH(AfAN)¢n) _converges uniformly

to 0 as N—o .

For every Ae@ﬂ(H) (ne(0,8)) , we can define an element

of XC(H) [A] by
(3.18) [A] := limN»w[AN]

Remark 3.5. 1f we can take another convergent sequence
{[BN];NeN*}Cj(D,H)/w to the operator A in the sense of (b)
and (c) of Lemma 3.17 , we can show that 1imN+m[BN] = [A]
€ XC(H) . Furthermore , we can show that there exists an
injective mapping ¢ : Qﬂ(H)fD — XC(H) defined by

L(A[D) := [A]
where @b(H){D = {A[D : A € € (1))
~ Definition 3.18. For each 5 e (0,8)
H» ~N .= H D .
6, M)/~ i< (G, (D)
Lemma 3.79. For each A € @n(H) ., ne (0,8) and t € R,
(a) eitH/:ﬂ A_e_itH/ﬁ is in @n(H) .
(b) [eltH/ﬁ A e—itH/ﬁ] _ eltL [A]
(c) A1" = [a"1 , and [A1" ¢ @ (H)

© B VR |

PRemark 3.6. For [A]e@n(H)/x (ntp/2), it does not always
hold that [A]® is in g, (H)/~ .

~14-



§4.’MORI’S LANGEVIN EQUATION FOR THE RWA-OSCILLATOR
Let a complex Hilbert space QZ(N) be given by
2 © 2
(4.1) 220 :={(c kel e : 3p_,lcp | <o}
For each feCeﬂz(N) , we denote f by
(4.2) f = (fo.fl.fz.m)
where foec and (fl,fz,m)eﬁz(w)
An inner product < | > of CeQZ(N) is given by
(4.3)  <flg> := 5_Fg,  (F.8eCop’ ()
Let ?S(Ceﬂz(ﬂ)) be the symmetric Boson Fock space over
CQﬂZ(N) Ji.e.,
(4.4)  F(Cop’ (W) = o°_.S_(Cop? ()™
) S n=0"n

where , for all neN , Sn(Cegz(N))n is the n-fold symmetric
tenSor product of Ceﬂz(N) \ SO(Ceﬂz(N))O = C (see,e.g.,

[20,p.53])
For any £ e Cog’(N) . we define B'(f) : S _(Cog”(N)" —

S_,1(Cog” ()™ by
(4.5) BY(E)y := fAFI S, (fov)  (¥eS_(Cog’(N)™)

Let
2 o . (n) e 2 )
(4.6) ?F(Ceﬂ (N)) = {v={¥ }n=0 € ?S(C ® # (N)) : there
exists nOEN* such that, for all n?no,

v{™) =0y

_15_.
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- The suBspace ?F(Ceﬂz(m)) is dehse in ?S(C$ﬂ2(N)) (see,e.g. .,
[6.p.68]) . We denote the Fock vacuum QO by
(4.7) Qy = {1,0,0,-}

For each f ¢ C@ﬂz(N) , we define a linear operator A+(f)
on Fy(Cog’ (M) by

(n-1) (n e N)

{ @A™ - BTy
(4.8)
(A+(f)1]r)(0) = 0

Then , A+(f) is densely defined , andee put

(4.9)  A(E) := 27" [ Fo(cor® ()
A(f) and A+(f) are called the annihilation and creation
operator, respectively (see; e.g..[6,8.3.1]) . Operators
A+(f) and A(f) afe closable and the closure of them are be
denoted by the same notation .

Let N=dI'(I) be the second quantization of the identity I
(the number operator). It is well-known that

1/2,

(4.10) D(AT(£))., D(A(£f)) > D(N"'%)

with estimates

1A% (E)el < 1E1- 1 2y 12
(4.11) 1/2 (v ¢ D(N ))
NACE) ¥ < J€0-INT" v .
Futhermore , A+(f) and A(f) leave ?F(CeQZ(N)) invariant

which satisfy the canonical commutation relationms

_16_
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[A(£).A()]=0.[A"(£).A" (g)1=0

(4.12) { (f.geq:epz(m)')

[ACf) A" (8)1=<f|g> .
on $,(Cog”(N)) . where [A.B] := AB - BA .

* ' *
Let {ek;keN } be a complete orthonormal system of C@ﬂz(N)

given by
(k+1)-th
(V)
(4.13) ek .= (0,0,-,0,1,0,0,-)
We put
a :=A (eo)
a :=a"(ey) .
(4.14)
b, :=A (e,) ,
k k
4 (k € N)
bk:=A (ek)

Let D(O) denote the algebraic span of a complete ortho-

normal basis of ?S(Ceﬂz(ﬂ)) (see t3])

*

1 +.n,,, tn +.n %
(a ) O(bl) 1'"(bM) MQO IMEN |n0|n1 ."',nMEN s

! F... }
Jho.nl. my !

" + . 1 .
Operators g and g physically denote the annihilation
and creation operators of a quantum harmonic oscillator ,

+
Kk and bk

denote the annihilation and creation operators of a heat

respectively . On the other hand, the operators b

bath , respectively .

._.17_
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* ' .
" Let {mk;keN } and {Fk;keN} be sequences satisfying the

following conditions (A.1) ., (A.2) and (A.3) :

0<w0;0<(¢)1<®2<-’-',
(A.1) - 1

Ek=1 5 < o .

“x
(A.2) 2;:=1“’12<‘Fk|2 < w .
2
S lI1k|

(A.3) h

Wy T 2 .
0 k=1 ﬁmk

ﬁkamp]e:?%ahéve two examples , as the frequency {wk;keN}

satisfying (A.1)

mk=(k2+m2)1/2 , m>0 (the relativistic case) ,

@1(:1(2(2?’1)—1 , M>0 (the non-relativistic cése)

We can define a positive self—adjoint operator « on
C@ﬂz(N) by

@ e, = ho e, .
(4.15) { 0 00
© e :=.ﬁwkek (k ; N)

Then we get the free Hamiltonian H associated with

0

defined by
(4.16) H0 = dI'(w)

where dl'(w) is the»second‘quantizatiqn of @ .

_18_.
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Let
(4.17) r = (O,TI.f;.m) € C@ﬁz(N)
and let

+ +

(4.18) Hy := A ()A(ey) + A (e)A(y)
The operator HI describes the Hamiltonian of the oscilla-
tor interacting with infinitely many scalar bosons . We
note that

_ 00 — .+ + (O)
(4.19) HI = Ekzl(Fkbka + Fka bk) on D

Since the operator HI is well-defined on ?F(CQQZ(N)) and
symmetric , we denote the closure_of HIF?F(C@pz(N)) by the
same symbol . Then , the total Hamiltonian H is given by
(4.20) H := H0 + HI |

We have D(HO) C D(H) , and the closure of HfD(HO) is es-
sentially self-adjoint on any core for HO. We shall_denote

the closure of HfD(HO) by the same symbol H .

We define a linear operator [L on Ceﬂz(m) as follows :

I

(4.21)  D(L) := E<L.h.[{e, :keN }]

o F’O
wnen T3, e (k=0)
(4.22) L e, T 0o =14 2
r
. ﬁ_}—(eo + a)kek (k=1-2!"')

It is easy to see that the operator [L can be extended to

_.19._
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a closed symmetric operator on Ceﬁz(m) , and E is a core
for its extension .
Lemma 4.7. (a) L 1is self—adjoinf , and there éxists a
unitary operator [J on Ceﬂz(ﬂ) such that U*Lmep = epep.
where ep>0 for any péN* and {ep:peN*} is the all zeros

2
o gl
Of D(Z):=Z - &)0‘+ Ekle'———— .
h (wk-Z)
(b) Put <§k|Uep>=:ukp-(k'pEN*) _ th6§
2 (keN:peN')
u, =- u eElN, PE ,
k @~ 0
P ﬁ(wk ep) p
2
Ep—m0+2k=lﬁ____e—_)~'0 (peN ) .
RN )
2
[T, |
2 _ o k' -1 *
ugp!? = r3p_ 5 ———1 7 (pel)
(wk ep)

Let T(U) be a unitary operator on 7S(Ce92(m)) defined by

n

' 2 n _
(4.23) T@W [ S (Cog (N))" = & 4

U (n e N)

(4.24) (@) [ Sy(€ o 2)° = T (the identity)

and define for each f ¢ C@ﬂz(N)
g = rwa Hra .

(4.25) { 1
B (£f) := T(@A ()T (W) ~

-20-
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. We put

ﬂ1: 1= ﬁ+(ek)

(4.26) { (k € N*)

ﬂk :=‘ B (ek)
Since [ is unitary on Cepz(N) , the following commutation
relations hold on ?%(Ceﬂz(m)) , for all f.g ¢ Ceﬁ?(N) .
(4.27)  [B(£).8 (8)] = <f|g> .
(4.28)  [B(£).8(8)1 =0 , [8(£).8(g)] =0 .
* %
Lemma 4. 2. d(H)={ﬁeon0+m+ﬁeNnN:NeN .no.f.nNeN }
corol/lary: H satisfies conditions (H.1) and (H.2)

Lemma 4.3. (a) ﬁp. ﬁ;ej(D.H) are H-diagonal .

%
(b) aﬁ = —‘ep = - dﬁ; (p e N)

Lemma 4.4. q and a+e@”(H) (7€(0, 4))
Lemma 4.5. (a) w(a)#*(L—l)aé

where @{(q) denotes the Mori’s frequency of g .

F(z)

(b) For zeC' Jgt ¢(t)eitz = ie(a)- 1+F(z) °

where ¢ is the Mori’s memory function of q .,

1

_1 —_
L H (-
= e kp kp
F(z) := 3 4 ,
o (D

_ , ) i
and , for any operatoriT on Cof (N). Tkp—<eleep> .
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Theorem 4L€, (a) Mori’s LangeVin_equation for [ag]l(t) 1is
(4.29) af[a](t)=iD(0)[a](t)—st ¢(t-S)[a](S)+[IM](t)
v . 0 , ,

Here the Mori’s memory function ¢ is characterized by

1 5 itz _ iD(0)F(2) +
(4.30)  — jgs e’ r(t) = ST+ F @) (zeC)
and ¢(0)=-D(0)A=-w(a)A ., where
2
. Ir . Tl
(4.31)  F(2):=%_, P and . A=3_ -
PP O

and Mori noise [IM](t) satisfies

(4.32)  <IT,1(0): [T,1(0)>y=- 0o = o
() R (t) = <[al:[al(t)>
-ite
1 5 1 )
T S0l (e )T

is an almos{ periodic function .

Kemark 4.7. The equality «(q)=D(0) physically means that
Mori’s frequency is equal to ‘the difference between the
frequency @ of a quantum hérmonic oscillator and the ini~
tial value of the canonical correlation function of Mori

noise multiplied by gh. In [11], K.Lindenberg and B.J.West
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gave attention to the quantity A . (4.32) gives such a
physical meaning that A is the initial value of the canon-

ical correlation function of Mori noise multiplied by gh
We note that Ra(t) does not converge as t — « .
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