RWA-振動子に対する森のランジュバン方程式

北大·理 広川 真男 (Masao Hirokawa)

§1. INTRODUCTION.

We are concerned with Mori's Langevin equation for a model of a quantum harmonic oscillator coupled to infinitely many scalar bosons whose Hamiltonian H is given formally by

$$(1.1) \begin{cases} H = H_0 + H_I \\ H_0 = H_S + H_B \\ H_S = \hbar \omega_0 a^{\dagger} a \\ H_B = \Sigma_{k=1}^{\infty} \hbar \omega_k b_k^{\dagger} b_k \\ H_I = \Sigma_{k=1}^{\infty} (\Gamma_k a^{\dagger} b_k + \overline{\Gamma}_k b_k^{\dagger} a) \\ (\Gamma_k \in \mathbb{C}, k \in \mathbb{N}) \end{cases}$$

Here a and a^+ (resp. b_k and b_k) denote annihilation and creation operators of a quantum harmonic oscillator (resp. boson), respectively, which act in the symmetric Boson Fock space $\mathcal{F}_S(\mathbb{C}\oplus p^2(\mathbb{N}))$ over $\mathbb{C}\oplus p^2(\mathbb{N})$. Operators H_S and H_B denote a Hamiltonian of a quantum harmonic oscillator and the one of infinitely many scalar bosons, respectively. The operator

 ${
m H_I}$ which represents the interaction between the quantum harmonic oscillator and infinitely many scalar bosons is said to be the coupling Hamiltonian for the rotating wave approximation (abbr.RWA)-oscillator. We shall simply call the operator H the Hamiltonian for the RWA-oscillator.

The behavior of the Heisenberg picture $e^{itH/\hbar}ae^{-itH/\hbar}=a(t)$ has been studied in H.Haken([9]),K.Lindenberg and B.J. West([11]), and E.Braun([4]). They considered their own equations of Langevin type for a(t) whose form are dependent on their consideration. In particular, K.Lindenberg and B.J.West rewrite the total Hamiltonian H given by (1.1) into

(1.2)
$$\begin{cases} H = H_{S}^{(m)} + H_{B} + H_{I}^{(m)} \\ H_{S}^{(m)} = \hbar(\omega_{0} - \Delta)\alpha^{+}\alpha \\ H_{B} + H_{I}^{(m)} = \Sigma_{k=1}^{\infty} \hbar \omega_{k} B_{k}^{+} B_{k} \\ B_{k} = b_{k} + \frac{\overline{\Gamma}_{k}}{\hbar \omega_{k}} \alpha \end{cases}$$

where
$$\Delta = \sum_{k=1}^{\infty} \frac{|\Gamma_k|^2}{\hbar^2 \omega_k}$$
.

By solving a simultaneous system of differential equations $\label{eq:alpha} \text{for } a(t) \text{ and } B_k(t) :$

$$(1.3) \begin{cases} \frac{d}{dt}\alpha(t) = \frac{i}{\hbar}[H,\alpha(t)] \\ \frac{d}{dt}B_{k}(t) = \frac{i}{\hbar}[H,B_{k}(t)] \end{cases}$$

they derived an equation of Langevin type for a(t) However, the physical meaning of the quantities $\omega_0^-\Delta$ and Δ are not clear in [11]. While in his theory of generalized Brownian motion in statistical physics, H. Mori derived the so-called Mori's Langevin equation which consists of the Mori's frequency, Mori's memory function and Mori noise ([12],[13]). Mathematically, Mori's Langevin equation can be derived if a Mori-Okabe (abbr. an MO)-structure is given. Here an MO-structure consists of the triplet of a Hilbert space X, a self-adjoint operator L on X and a non-zero Δ_0 in the domain of L ([15],[16],[17]).

The purpose is to show that the Hamiltonian H in (1.1) has an MO-structure and investigate Mori's Langevin equation for the Heisenberg picture a(t) in detail . In order to carry out it , we shall construct a Hilbert space $\mathbf{X}_{\mathbf{C}}(H)$ of unbounded operators on $\mathbf{F}_{\mathbf{S}}(\mathbb{C}\oplus \mathbf{F}^2(\mathbb{N}))$ containing the annihilation and creation operators, where the inner product of $\mathbf{X}_{\mathbf{C}}(H)$ is introduced from Bogoliubov scalar product (Kubo-

Mori scalar product, or the canonical correlation) (see [5, p96],[13]). Furtheremore, we shall construct a self-adjoint (Liouville operator) on $X_{C}(H)$ in such operator L that the Heisenberg picture of a by the operator H coincides with the time evolution of a by the operator L . Since the triplet $(X_C(H),L,a)$ satisfies an MO-structure, we can develop Mori's theory of generalized Brownian motion $X_{C}(H)$. The main point is to express the Mori's frequency , the complex mobility of the Mori's memory function and the canonical correlation function of a(t)in terms of the parameters in the Hamiltonian H in (1.1), by obtaining the Bogoliubov transformation of H . Furthermore, we shall give a physical meaning of two constants $\omega_0^{-}\Delta$ and Δ in (1.2) . and show that the canonical correlation function is almost periodic, and does not converges as the time tends to infinity.

§2. MO-STRUCTURES.

By an MO-structure,we mean a triplet(X,L,A $_0$) such that X is a Hilbert space with an inner product (,) $_X$, L a self-adjoint operator on X with domain D(L), and A $_0$ a non-zero element in D(L), where the inner product (,) $_X$ is linear

in the right vector . For any MO-structure , we consider a stationary curve $A=\{A(t):t\in\mathbb{R}\}$ defined by

(2.1)
$$A(t) := e^{itL}A_0$$
 ($t \in \mathbb{R}$)

and the correlation function $R_{\mathbf{A}}$ of \mathbf{A} is given by

$$(2.2)$$
 $R_{A}(t) := (A(0), A(t))_{X}$.

Let \mathbf{X}_0 be the closed subspace generated by \mathbf{A}_0 , and \mathbf{P}_0 and \mathbf{X}_1 the orthogonal projection operator on \mathbf{X}_0 and the complementary subspace of \mathbf{X}_0 in X, respectively. Then we define a linear operator \mathbf{L}_1 on the Hilbert space \mathbf{X}_1 by

(2.3)
$$\begin{cases} D(L_1) := X_1 \cap D(L) \\ L_1x := (1 - P_0)Lx \quad (x \in D(L_1)) \end{cases}$$

Lemma 2.1. ([12],[15],[16]) L_1 is self-adjoint on the Hilbert space X_1 .

We define a real number $\omega=\omega(A_0)$, a stationary curve $I_{M}=\{I_{M}(t):t\in\mathbb{R}\}$ in X_1 and a non-negative definite function ϕ on \mathbb{R} by

(2.4)
$$\omega = \omega(A_0) := (A(0), LA(0))_X \cdot (A(0), A(0))_X^{-1}$$
,

(2.5)
$$I_{M}(t) := i \cdot e^{itL} 1 \cdot (1 - P_{0}) LA_{0}$$
,

(2.6)
$$\phi(t) := (I_{\underline{M}}(0), I_{\underline{M}}(t))_{\underline{X}} \cdot (A(0), A(0))_{\underline{X}}^{-1}$$

Concerning the correlation function $R_{\boldsymbol{A}}$, we have

Theorem 2.2.([7,§6.2],[12],[15],[16]) (a) For all $t \in \mathbb{R}$,

$$\frac{\mathrm{d}}{\mathrm{d}t}R_{\mathbf{A}}(t) = i\omega \cdot R_{\mathbf{A}}(t) - \int_{0}^{t} \mathrm{d}s \, \phi(t - s)R_{\mathbf{A}}(s) .$$

(b) For all $z \in \mathbb{C}^+$:= $\{z \in \mathbb{C}; \text{ Im } z > 0\}$,

$$\int_{0}^{\infty} dt e^{itZ} R_{A}(t) = R_{A}(0) \cdot \frac{1}{i\omega - iz + \int_{0}^{\infty} dt e^{itZ} \phi(t)}$$

Furtheremore, the equation of motion describing the time evolution of stationary curve $A=\{A(t);t\in\mathbb{R}\}$ is given in the following

Theorem 2.3.([7,§6.2],[12],[15],[16]) For all $t \in \mathbb{R}$,

(2.7)
$$\frac{d}{dt}A(t) = i\omega \cdot A(t) - \int_{0}^{t} ds \, \phi(t - s)A(s) + I_{M}(t)$$

The quantities $\omega=\omega(A_0)$, ϕ and I_M are called the Mori's frequency, Mori's memory function and Mori noise , respectively .

The equation (2.7) is said to be the Mori's Langevin equation associated with the MO-structure (X,L,A_0) .

§3.CONSTRUCTION OF A HILBERT SPACE ASSOCIATED WITH A CLASS OF CLOSABLE OPERATORS.

Let \mathcal{F} be a separable Hilbert space with an inner product (,), which is linear in the right vector. Let H be a non-

negative self-adjoint operator acting in 3 with the following properties (H.1) and (H.2):

- (H.1) There exists a complete orthonormal basis $\{\varphi_n : n \in \mathbb{N}^* = \{0\}^{\vee}\mathbb{N}\}$ in D(H) such that $\mathbb{H}\varphi_n = \lambda_n \varphi_n$ with $0 \le \lambda_n \le \lambda_{n+1}$ $(n \in \mathbb{N}^*)$.
- (H.2) $e^{-\tau H} \in \mathcal{J}_1$ for all $\tau \in (0,\beta]$, where $\beta > 0$ is the inverse temperature and \mathcal{J}_1 denotes the family of all trace class operators on \mathcal{J} .

Let

$$(3.1) \quad D := \{\sum_{k=0}^{n} \alpha_k \varphi_k; n \in \mathbb{N}^*, \alpha_k \in \mathbb{C}, k=0,1,\dots,n\}.$$

Obviously D is dense in \mathfrak{F} . We denote by $\mathfrak{L}(D,\mathfrak{F})$ the space of bounded linear operators from D into \mathfrak{F} . Every element A in $\mathfrak{L}(D,\mathfrak{F})$ has a unique extension to an element in $\mathfrak{L}(\mathfrak{F})$, the space of bounded linear operators on \mathfrak{F} . We denote the extension of A by \overline{A} or A^- .

Let $\mathcal{J}(D,H)$ be the set of linear operators A acting in \mathcal{J} with the following properties $(\mathcal{J}.1)$ - $(\mathcal{J}.3)$:

- $(\mathcal{J}.1) \quad D \subset D(A) \cap D(A^*) .$
- (4.2) For all $x \in D$, Ax and Ax are in D.
- (\mathcal{J} .3) For all $\tau \in (0,\beta]$, $e^{-\tau H}A$ (resp. $Ae^{-\tau H}$) is in $\chi(D,\mathcal{J})$ and $(e^{-\tau H}A)^-$ (resp. $(Ae^{-\tau H})^-$) is in \mathcal{J}_2 , where \mathcal{J}_2 denotes the family of all Hilbert-Schmidt operators

with the Hilbert-Schmidt norm $\| \|_2$.

In this section, we shall construct a Hilbert space $X_C(H)$ and a Liouville operator L associated with the Hamiltonian H and show that the triplet $(X_C(H), L, A_0)$ satisfies an MO-structure for any non-zero $A_0 \in D(L)$.

If two operators A and B in $\mathcal{J}(D,H)$ satisfy Ax=Bx for all $x\in D$, then we write as $A\sim B$, which gives an equivalence relation in $\mathcal{J}(D,H)$. We denote by [A] the equivalence class of $A\in \mathcal{J}(D,H)$ and by $\mathcal{J}(D,H)/\sim$ the set of all the equivalence classes.

We can introduce in $\mathcal{G}(D,H)/\sim$ the operation of addition . scalar multiplication and involution * as follows :

$$(3.2)$$
 $[A]+[B] := [A+B]$.

$$(3.3) \quad \alpha[A] := [\alpha A] \quad (\alpha \in \mathbb{C}) .$$

$$(3.4)$$
 $[A]^* := [A^*]$.

We can define a correlation ; Bogoliubov scalar product $\mbox{(Kubo-Mori scalar product , or the canonical correlation)} < \mbox{; } >_{\mbox{H}} \mbox{on } \mathcal{G}(\mbox{D},\mbox{H})/\sim \mbox{ as follows: For any [A],[B] } \in \mathcal{G}(\mbox{D},\mbox{H})/\sim \mbox{,}$

$$\int_{0}^{\beta} d\lambda \sum_{n} (Ae^{-(\beta-\lambda)H} \varphi_{n} \cdot e^{-\lambda H} B\varphi_{n})$$
(3.5) $\langle [A]; [B] \rangle_{H} := \frac{1}{\beta} \frac{1}{\operatorname{tr}(e^{-\beta H})}$

It can be easily seen to prove that <; $>_{H}$ is inner products on $\mathcal{J}(D,H)/\sim$. We denote the norm of [A] by

(3.6)
$$\|[A]\|_{H} := \langle [A]; [A] \rangle_{H}^{1/2}$$

We can define an element A(t) in $\mathcal{J}(D,H)$ and its equivalence class [A](t) by

(3.7)
$$A(t) := e^{itH/\hbar} A e^{-itH/\hbar}$$
 ($A \in \mathcal{J}(D,H)$, $t \in \mathbb{R}$),

(3.8) [A](t) := [A(t)]
$$(A \in \mathcal{J}(D,H), t \in \mathbb{R})$$
,

where $\hbar>0$ is a parameter denoting the Planck constant divided by 2π .

Lemma 3.1. For all
$$A \in \mathcal{J}(D, H)$$
, $\|[A]\|_{H} = \|[A^*]\|_{H}$.

We obtain a Hilbert space $X_C(H)$ as the completion of $\mathcal{J}(D,H)/\sim$ by the norm $\|\ \|_H$.

Remark 3.1. We can define an involution $[A] \to [A]^+$ on $X_C(H)$ such that $[A]^+=[A]^*$ for all $[A] \in \mathcal{J}(D,H)/\sim$.

Let

(3.9)
$$\mathcal{J}_{\delta} := \{A \in \mathcal{J}(D,H) : AH , HA \in \mathcal{J}(D,H)\}$$
,

(3.10)
$$D(\delta) := \{[A] \in X_{C}(H) ; A \in \mathcal{J}_{\delta}\}$$

 $D(\delta)$ is a dense subspace in $X_{C}(H)$.

We define a linear operator $\delta:D(\delta) \longrightarrow X_{C}(H)$ by

(3.11)
$$\delta[A] := \left[\frac{1}{\hbar}[H,A]\right]$$
 ([A] $\in D(\delta)$),

where [H,A] := HA - AH . Then , δ is a symmetric operator . We define for each teR the operator U(t) : $\mathcal{G}(D,H)/\sim \to X_C(H)$ by

(3.12)
$$U(t)[A] := [A](t)$$
 $(A \in \mathcal{J}(D,H))$.

Proposition 3.2. For any [A] $\in \mathcal{J}(D,H)/\sim$, and t,s $\in \mathbb{R}$,

- (a) U(t) is unitary on $\mathcal{J}(D,H)/\sim$,
- (b) U(0)[A] = [A],
- (c) U(t + s)[A] = U(t)U(s)[A],
- (d) $s-\lim_{t\to 0} U(t)[A] = [A]$.

Since it follows from Proposition 3.2 that $\{U(t); t \in \mathbb{R}\}$ is uniquely extended to a strongly continuous unitary group on $X_{\mathbb{C}}(H)$, we denote its extension by the same symbol . By Stone's theorem , there exists a unique self-adjoint operator L on $X_{\mathbb{C}}(H)$ such that

(3.13)
$$U(t) = e^{itL}$$
.

Proposition 3.3. $L \supset \delta$.

Remark 3.2. Proposition 3.3 means that the time evolution by Liouville operator L coincides with the Heisenberg picture on $D(\delta)$, i.e.,

(3.14)
$$e^{itL}[A] = [e^{itH/\hbar} A e^{-itH/\hbar}]$$
 ([A] $\in D(\delta)$).

Definition 3.4. We say that $A \in \mathcal{J}(D,H)$ is in M(D,H) if

it satisfies the following condition (C.1):

(C.1) For all τ,τ' with $0<\tau'<\tau<\beta$, there exist non-negative functions $f_A(\tau,\tau')$, $g_A(\tau,\tau')$, $f_A^*(\tau,\tau')$ and $g_A^*(\tau,\tau')>0$ such that , for all $x\in D$,

$$\left\{ \begin{array}{l} \| e^{-\tau H} A x \| \leq f_{A}(\tau, \tau') \| e^{-(\tau - \tau') H} A e^{-\tau' H} x \| + g_{A}(\tau, \tau') \| e^{-\tau' H} x \| \\ \\ \| e^{-\tau H} A^{*} x \| \leq f_{A}^{*}(\tau, \tau') \| e^{-(\tau - \tau') H} A^{*} e^{-\tau' H} x \| \\ \\ + g_{A}^{*}(\tau, \tau') \| e^{-\tau' H} x \| \end{array} \right. .$$

If A and B \in $\mathcal{J}(D,H)$ are in M(D,H), we have AB \in $\mathcal{J}(D,H)$. Then, for any A,B \in M(D,H), we define the product of [A] and [B] \in $\mathcal{J}(D,H)/\sim$ by

$$(3.15)$$
 [A][B] := [AB]

This definition is independent of the choice of the representatives of [A] and [B].

Proposition 3.5. Suppose that $\{B_0, B_1, \dots, B_N\} \subset \mathcal{J}(D, H)$ (N $\in \mathbb{N}^*$) satisfy the following conditions :

Definition 3.6. We say that A \in $\mathcal{J}(D,H)$ is H-diagonal if there exists $\sigma_A \in \mathbb{R}$ such that

(3.16)
$$[H,A]x = -\hbar \sigma_A Ax , x \in D$$
.

Remark 3.3. If A is H-diagonal with [A] \neq 0 , then σ_A is

uniquely determined .

Lemma 3.7. For any H-diagonal $A \in \mathcal{J}(D,H)$, $x \in D, \tau > 0$ and $t \in \mathbb{R}$,

- (a) $Ae^{-\tau H}x = \exp[-\tau \hbar \sigma_A]e^{-\tau H} Ax$
- (b) $Ae^{itH/\hbar}x = \exp[it\sigma_{\lambda}]e^{itH/\hbar} Ax$.

Proposition 3.8. If A,Be $\mathcal{J}(D,H)$ are H-diagonal and $\sigma_A^{\neq\sigma_B}$, then $\langle [A]; [B] \rangle_H^{=0}$.

Lemma 3.9. If $A \in \mathcal{J}(D,H)$ is H-diagonal, then A is in M(D,H). Proposition 3.10. (a) If $A \in \mathcal{J}(D,H)$ is H-diagonal, then A^* $\in \mathcal{J}(D,H)$ is also H-diagonal. Moreover, if $[A] \neq 0$, then $\sigma_A^{*=-\sigma_A}$.

(b) If $A, B \in \mathcal{J}(D, H)$ are H-diagonal , then $AB \in \mathcal{J}(D, H)$ is also H-diagonal . Moreover, if $[AB] \neq 0$, then $\sigma_{AB} = \sigma_A + \sigma_B$.

Lemma 3.11. If $A \in \mathcal{J}(D, H)$ is H-diagonal , then $A \in \mathcal{J}_{\delta}$ and so $[A] \in D(\delta)$.

We define a subset $\mathfrak{A}_{\mathbf{f}}(\mathbf{H})$ of $\mathbf{X}_{\mathbf{C}}(\mathbf{H})$ as follows :

(3.17) $\mathfrak{U}_{\mathbf{f}}(H) := \{ \mathbf{u}_0[A_0] + \mathbf{u}_1[A_1] + \dots + \mathbf{u}_N[A_N] \in X_{\mathbf{C}}(H) ; N \in \mathbb{N}^*, \mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_N \in \mathcal{J}(D, H) \text{ are } H\text{-diagonal} \}.$

 $\textit{Proposition 3.12.} \ \, \mathfrak{A}_{\mathbf{f}}(\mathtt{H}) \ \, \text{is a *-algebra and } \mathfrak{A}_{\mathbf{f}}(\mathtt{H}) \, \subset \, \mathtt{D}(\delta) \, .$

Remark 3.4. $X_C(H)$ is a partial *-algebra with a unity (see ,[1,Definition 2.1. and Definition 2.2.])

Lemma 3.13. For all [A] , [B] $\in \mathfrak{A}_{\mathbf{f}}(\mathsf{H})$ and $\mathsf{t} \in \mathbb{R}$,

- (a) L[A] and $e^{itL}[A] \in \mathcal{U}_f(H)$,
- (b) L([A][B]) = (L[A])[B] + [A](L[B]),
- (c) $L[A]^* = -(L[A])^*$.

Lemma 3.14. Suppose that $A \in \mathcal{J}(D,H)$ is H-diagonal with $\sigma_A>0$ and $[A,A^*]x=x$ for all $x\in D$. Then ,

(a)
$$\frac{\operatorname{tr}((e^{-\beta H} A^* A)^{-})}{\operatorname{tr}(e^{-\beta H})} = \frac{1}{\exp[\beta \hbar \sigma_A] - 1}$$

(b)
$$\|[A]\|_{H}^{2} = \|[A]^{*}\|_{H}^{2} = \frac{1}{\beta \hbar \sigma_{A}}$$

Deffinition 3.15. We say that the linear operator A is in $\mathfrak{C}_{\eta}(\mathbb{H})$ $(\eta \in (0,\beta))$ if A satisfies the following conditions $(\mathfrak{C}.1)$ and $(\mathfrak{C}.2)_{\eta}$:

$$(\mathfrak{C}.1)$$
 $(=(\mathfrak{J}.1))$ $D(A)$, $D(A^*) \supset D$.

$$(\mathbb{C}.2)_{\eta} (e^{-\eta H/2} A)^{-} (Ae^{-(\beta - \eta)H/2})^{-} \in \mathcal{I}_{2}$$

Lemma 3.16. For all $\eta \in (0,\beta)$,

- (a) If A is in $\mathfrak{C}_{\eta}(H)$, then A^* is in $\mathfrak{C}_{(\beta-\eta)}(H)$,
- (b) \mathfrak{C}_{η} (H) is a complex vector space ,
- (c) $\mathcal{J}(D,H) \subset \mathfrak{C}_{n}(H)$.

Lemma 3.17. For each $\eta \in (0,\beta)$ and $A \in \mathfrak{C}_{\eta}(H)$, there exists a Cauchy sequence $\{[A_N]; N \in N^*\} \subset \mathfrak{F}(D,H)/\sim$ such that

- (a) $A_N \in \mathcal{J}_{S}$,
- (b) $\lim_{N\to\infty} A_N x = Ax$ in \mathcal{J} for all $x \in D$,

(c) As a function of $\lambda \in [0, \beta]$

 $\Sigma_{\rm n}(({\rm A-A_N}){\rm e}^{-(eta-\lambda){\rm H}}\varphi_{\rm n},{\rm e}^{-\lambda{\rm H}}({\rm A-A_N})\varphi_{\rm n})$ converges uniformly to 0 as N $\longrightarrow \infty$.

For every $A \in \mathfrak{T}_{\eta}(H)$ $(\eta \in (0,\beta))$, we can define an element of $X_{C}(H)$ [A] by

$$(3.18) \quad [A] := \lim_{N \to \infty} [A_N] .$$

Remark 3.5. If we can take another convergent sequence $\{[B_N]; N \in \mathbb{N}^*\} \subset \mathcal{J}(D, \mathbb{H})/\sim$ to the operator A in the sense of (b) and (c) of Lemma 3.17, we can show that $\lim_{N \to \infty} [B_N] = [A]$ $\in X_C(\mathbb{H})$. Furthermore, we can show that there exists an injective mapping $\iota: \mathfrak{C}_\eta(\mathbb{H}) \cap \mathbb{D} \to X_C(\mathbb{H})$ defined by

$$L(A \cap D) := [A]$$

where $\mathbb{Q}_{n}(\mathbf{H}) \upharpoonright \mathbf{D} := \{ \mathbf{A} \upharpoonright \mathbf{D} : \mathbf{A} \in \mathbb{Q}_{n}(\mathbf{H}) \}$.

Definition 3.18. For each $\eta \in (0,\beta)$,

$$\mathfrak{C}_{\eta}(\mathsf{H})/\sim := \iota(\mathfrak{C}_{\eta}(\mathsf{H}) \upharpoonright \mathsf{D}) .$$

Lemma 3.19. For each $A \in \mathfrak{C}_{\eta}(H)$, $\eta \in (0,\beta)$ and $t \in \mathbb{R}$,

- (a) $e^{itH/\hbar}$ A $e^{-itH/\hbar}$ is in $\xi_{\eta}(H)$,
- (b) $[e^{itH/\hbar} A e^{-itH/\hbar}] = e^{itL} [A]$
- (c) $[A]^+ = [A^*]$, and $[A]^+ \in \mathfrak{C}_{(\beta \eta)}(H)$.

Remark 3.6. For $[A] \in \mathfrak{C}_{\eta}(H)/\sim (\eta \neq \beta/2)$, it does not always hold that $[A]^+$ is in $\mathfrak{C}_{\eta}(H)/\sim$.

§4. MORI'S LANGEVIN EQUATION FOR THE RWA-OSCILLATOR

Let a complex Hilbert space $g^2(N)$ be given by

$$(4.1) \qquad {\textstyle \not}^2(\mathbb{N}) := \{\,(\mathbf{c}_k^{}; \mathbf{k} \in \mathbb{N}) \in \mathbb{C}^{\mathbb{N}} \ ; \ \Sigma_{k=1}^{\infty} \,|\, \mathbf{c}_k^{} \,|^2 <_\infty \} \ .$$

For each $f \in \mathbb{C} \oplus \ell^2(\mathbb{N})$, we denote f by

$$(4.2)$$
 f = $(f_0, f_1, f_2, ...)$,

where $f_0 \in \mathbb{C}$ and $(f_1, f_2, \dots) \in \ell^2(\mathbb{N})$.

An inner product $\langle | \rangle$ of $\mathbb{C} \oplus g^2(\mathbb{N})$ is given by

$$(4.3) \qquad \langle \mathbf{f} | \mathbf{g} \rangle := \sum_{k=0}^{\infty} \overline{\mathbf{f}}_{k} \mathbf{g}_{k} \qquad (\mathbf{f}, \mathbf{g} \in \mathbb{C} \oplus \mathbf{g}^{2}(\mathbb{N})) .$$

Let $\mathcal{F}_S(\mathbb{C}\oplus p^2(\mathbb{N}))$ be the symmetric Boson Fock space over $\mathbb{C}\oplus p^2(\mathbb{N})$,i.e.,

$$(4.4) \qquad \mathcal{F}_{S}(\mathbb{C}\oplus \ell^{2}(\mathbb{N})) = \bigoplus_{n=0}^{\infty} S_{n}(\mathbb{C}\oplus \ell^{2}(\mathbb{N}))^{n} .$$

where , for all $n \in \mathbb{N}$, $S_n(\mathbb{C} \oplus \cancel{l}^2(\mathbb{N}))^n$ is the n-fold symmetric tensor product of $\mathbb{C} \oplus \cancel{l}^2(\mathbb{N})$, $S_0(\mathbb{C} \oplus \cancel{l}^2(\mathbb{N}))^0 := \mathbb{C}$ (see,e.g., [20,p.53]) .

For any $f \in \mathbb{C} \oplus \ell^2(\mathbb{N})$, we define $B^+(f) : S_n(\mathbb{C} \oplus \ell^2(\mathbb{N}))^n \to S_{n+1}(\mathbb{C} \oplus \ell^2(\mathbb{N}))^{n+1}$ by

$$(4.5) \quad \text{B}^+(\mathbf{f}) \Psi := \sqrt{n+1} \, \, \text{S}_{n+1}(\mathbf{f} \otimes \Psi) \qquad (\Psi \in \text{S}_n(\mathbb{C} \oplus \cancel{\ell}^2(\mathbb{N}))^n) \ .$$
 Let

$$\begin{array}{ll} (4.6) & \mathcal{F}_F(\mathbb{C}\oplus \boldsymbol{\ell}^2(\mathbb{N})) := & \left\{ \boldsymbol{\psi} = \left\{ \boldsymbol{\psi}^{(n)} \right\}_{n=0}^\infty \in \mathcal{F}_S(\mathbb{C} \oplus \boldsymbol{\ell}^2(\mathbb{N})) : \text{ there} \\ & \text{exists } n_0 \in \mathbb{N}^* \text{ such that, for all } n \geqslant n_0, \\ & \boldsymbol{\psi}^{(n)} = 0 \right\} \ . \end{array}$$

The subspace $\mathcal{F}_F(\mathbb{C}\oplus \ell^2(\mathbb{N}))$ is dense in $\mathcal{F}_S(\mathbb{C}\oplus \ell^2(\mathbb{N}))$ (see,e.g., [6,p.68]) . We denote the Fock vacuum Ω_0 by

$$(4.7) \qquad \Omega_0 := \{1,0,0,...\}$$

For each $f\in \mathbb{C}\oplus l^2(\mathbb{N})$, we define a linear operator $A^+(f)$ on $\mathcal{J}_F(\mathbb{C}\oplus l^2(\mathbb{N}))$ by

(4.8)
$$\left\{ \begin{array}{ll} (A^{+}(f)\psi)^{(n)} := B^{+}(f)\psi^{(n-1)} & (n \in \mathbb{N}) \\ (A^{+}(f)\psi)^{(0)} := 0 & . \end{array} \right.$$

Then , $A^{+}(f)$ is densely defined , and we put

(4.9)
$$A(f) := \overline{A^{+}(f)^{*} \cap \mathcal{F}_{F}(\mathbb{C} \oplus \ell^{2}(\mathbb{N}))}$$

A(f) and $A^{\dagger}(f)$ are called the annihilation and creation operator, respectively (see, e.g.,[6,§.3.1]). Operators $A^{\dagger}(f)$ and A(f) are closable and the closure of them are be denoted by the same notation .

Let $N=d\Gamma(I)$ be the second quantization of the identity I (the number operator). It is well-known that

(4.10)
$$D(A^{+}(f)), D(A(f)) \supset D(N^{1/2})$$

with estimates

Futhermore , $\text{A}^+(f)$ and A(f) leave $\mathcal{F}_F(\mathbb{C}\oplus \not\!\! L^2(\mathbb{N}))$ invariant which satisfy the canonical commutation relations

$$\{ \begin{array}{l} [A(f),A(g)]=0,[A^{+}(f),A^{+}(g)]=0 \\ [A(f),A^{+}(g)]=\langle f|g\rangle \end{array}, \qquad (f,g\in\mathbb{C}\oplus \chi^{2}(\mathbb{N}))$$

on $\mathcal{J}_F(\mathbb{C}\oplus \ell^2(\mathbb{N}))$, where [A,B] := AB - BA .

Let $\{e_k^*; k \in \mathbb{N}^*\}$ be a complete orthonormal system of $\mathbb{C} \oplus \mathcal{J}^2(\mathbb{N})$ given by

We put

$$\begin{cases} a := A (e_0), \\ a^+ := A^+(e_0), \\ b_k := A (e_k), \\ b_k^+ := A^+(e_k). \end{cases} (k \in \mathbb{N})$$

Let $\mathbb{D}^{(0)}$ denote the algebraic span of a complete orthonormal basis of $\mathcal{F}_{S}(\mathbb{C}\oplus p^{2}(\mathbb{N}))$ (see [3]),

$$\frac{1}{\sqrt{n_0! \, n_1! \cdots n_M!}} (\alpha^+)^n 0 (b_1^+)^n 1 \cdots (b_M^+)^n M \Omega_0 , M \in \mathbb{N}^*, n_0, n_1, \cdots, n_M \in \mathbb{N}^* .$$

Operators α and α^+ physically denote the annihilation and creation operators of a quantum harmonic oscillator , respectively . On the other hand, the operators b_k and b_k^+ denote the annihilation and creation operators of a heat bath , respectively .

Let $\{\omega_k^*; k \in \mathbb{N}^k\}$ and $\{\Gamma_k^*; k \in \mathbb{N}\}$ be sequences satisfying the following conditions (A.1), (A.2) and (A.3):

(A.1)
$$\begin{cases} 0 < \omega_0 ; & 0 < \omega_1 < \omega_2 < \cdots , \\ \sum_{k=1}^{\infty} \frac{1}{\omega_k^2} < \infty . \end{cases}$$

(A.2)
$$\sum_{k=1}^{\infty} \omega_k^2 |\Gamma_k|^2 < \infty .$$

(A.3)
$$\hbar\omega_0 > \sum_{k=1}^{\infty} \frac{|\Gamma_k|^2}{\hbar\omega_k}.$$

Example: We have two examples , as the frequency $\{\omega_k^{};k\in\mathbb{N}\}$ satisfying (A.1) ;

$$\omega_{\bf k}^{}=({\bf k}^2+{\bf m}^2)^{1/2}$$
 , m>0 (the relativistic case) ,
$$\omega_{\bf k}^{}={\bf k}^2(2{\bf M})^{-1} \mbox{ , M>0} \mbox{ (the non-relativistic case) .}$$

We can define a positive self-adjoint operator ω on $\mathbb{C}\oplus \ell^2(\mathbb{N})$ by

$$(4.15) \quad \left\{ \begin{array}{c} \omega \ \mathbf{e}_0 := \hbar \omega_0 \mathbf{e}_0 \\ \omega \ \mathbf{e}_k := \hbar \omega_k \mathbf{e}_k \end{array} \right. \quad (\mathbf{k} \in \mathbb{N}) .$$

Then we get the free Hamiltonian \mbox{H}_0 associated with ω defined by

$$(4.16) \quad H_0 := d\Gamma(\omega) ,$$

where $d\Gamma(\omega)$ is the second quantization of ω .

Let

$$(4.17) \quad \gamma := (0, \overline{\Gamma_1}, \overline{\Gamma_2}, \cdots) \in \mathbb{C} \oplus \ell^2(\mathbb{N}) .$$

and let

(4.18)
$$H_{I} := A^{+}(\gamma)A(e_{0}) + A^{+}(e_{0})A(\gamma)$$
.

The operator $\mathbf{H}_{\mathbf{I}}$ describes the Hamiltonian of the oscillator interacting with infinitely many scalar bosons . We note that

$$(4.19) H_{I} = \Sigma_{k=1}^{\infty} (\overline{\Gamma}_{k} b_{k}^{\dagger} a + \Gamma_{k} a^{\dagger} b_{k}) on D^{(0)}$$

Since the operator H_I is well-defined on $\mathcal{F}_F(\mathbb{C}\oplus p^2(\mathbb{N}))$ and symmetric , we denote the closure of $H_I \upharpoonright \mathcal{F}_F(\mathbb{C}\oplus p^2(\mathbb{N}))$ by the same symbol . Then , the total Hamiltonian H is given by $(4.20) \quad H := H_0 + H_I \ .$

We have $D(H_0)\subset D(H)$, and the closure of $H\lceil D(H_0)$ is essentially self-adjoint on any core for H_0 . We shall denote the closure of $H\lceil D(H_0)$ by the same symbol H.

We define a linear operator \mathbb{L} on $\mathbb{C}\oplus \mathcal{J}^2(\mathbb{N})$ as follows :

(4.21)
$$D(\mathbb{L}) := E=L.h.[\{e_k; k \in \mathbb{N}^*\}]$$

$$(4.22) \quad \mathbb{L} e_{k} := \begin{cases} \omega_{0} e_{0} + \sum_{\ell=1}^{\infty} \frac{\overline{\Gamma_{\ell}}}{\hbar} e_{\ell} & (k=0) \\ \frac{\Gamma_{k}}{\hbar} e_{0} + \omega_{k} e_{k} & (k=1,2,\dots) \end{cases}$$

It is easy to see that the operator $\mathbb L$ can be extended to

a closed symmetric operator on $\mathbb{C}\oplus \ell^2(\mathbb{N})$, and E is a core for its extension .

Lemma 4.1. (a) \mathbb{L} is self-adjoint, and there exists a unitary operator \mathbb{U} on $\mathbb{C} \oplus \mathbb{Q}^2(\mathbb{N})$ such that $\mathbb{U}^*\mathbb{L} \mathbb{U} e_p = \epsilon_p e_p$, where $\epsilon_p > 0$ for any $p \in \mathbb{N}^*$ and $\{\epsilon_p : p \in \mathbb{N}^*\}$ is the all zeros

of
$$D(z) := z - \omega_0 + \sum_{k=1}^{\infty} \frac{|\Gamma_k|^2}{\hbar^2(\omega_k^{-2})}$$

(b) Put $\langle e_k | \mathbb{U}e_p \rangle =: u_{kp} (k, p \in \mathbb{N}^*)$, then

$$u_{kp}^{=-} \frac{\overline{\Gamma_k}}{\hbar(\omega_k^{-}\epsilon_p)} u_{0p} \qquad (k \in \mathbb{N} : p \in \mathbb{N}^*) .$$

$$\epsilon_{p} - \omega_{0} + \sum_{k=1}^{\infty} \frac{|\Gamma_{k}|^{2}}{\hbar^{2}(\omega_{k} - \epsilon_{p})} = 0 \qquad (p \in \mathbb{N}^{*})$$

$$|\mathbf{u}_{0p}|^2 = \{1+\sum_{k=1}^{\infty} \frac{|\Gamma_k|^2}{\hbar^2(\omega_k^{-\epsilon_p})^2}\}^{-1} \quad (p \in \mathbb{N}^*)$$

Let $\Gamma(\mathbb{U})$ be a unitary operator on $\mathcal{F}_{S}(\mathbb{C}\oplus \ell^{2}(\mathbb{N}))$ defined by

$$(4.23) \qquad \Gamma(\mathbb{U}) \ \lceil \ S_n(\mathbb{C} \oplus \ell^2(\mathbb{N}))^n = \otimes_{k=1}^n \mathbb{U} \qquad (n \in \mathbb{N}) \ .$$

 $(4.24) \quad \Gamma(\mathbb{U}) \mid S_0(\mathbb{C} \oplus \ell^2(\mathbb{N}))^0 = I \quad \text{(the identity)} ,$ and define for each $f \in \mathbb{C} \oplus \ell^2(\mathbb{N})$

(4.25)
$$\begin{cases} \beta^{+}(\mathbf{f}) := \Gamma(\mathbb{U})A^{+}(\mathbf{f})\Gamma(\mathbb{U})^{-1}, \\ \beta(\mathbf{f}) := \Gamma(\mathbb{U})A(\mathbf{f})\Gamma(\mathbb{U})^{-1}. \end{cases}$$

We put

$$(4.26) \quad \begin{cases} \beta_k^+ := \beta^+(e_k), \\ \beta_k^- := \beta(e_k). \end{cases} \quad (k \in \mathbb{N}^*)$$

Since \mathbb{U} is unitary on $\mathbb{C}\oplus \ell^2(\mathbb{N})$, the following commutation relations hold on $\mathcal{F}_F(\mathbb{C}\oplus \ell^2(\mathbb{N}))$, for all $f,g\in \mathbb{C}\oplus \ell^2(\mathbb{N})$.

$$(4.27)$$
 $[\beta(f), \beta^{+}(g)] = \langle f | g \rangle$,

(4.28)
$$[\beta(f), \beta(g)] = 0$$
, $[\beta^{+}(f), \beta^{+}(g)] = 0$.

Lemma 4.2.
$$\sigma(H) = \{ \hbar \epsilon_0 n_0 + \dots + \hbar \epsilon_N n_N ; N \in \mathbb{N}^*, n_0, \dots, n_N \in \mathbb{N}^* \}$$
.

Corollary: H satisfies conditions (H.1) and (H.2) .

Lemma 4.3. (a) β_p , $\beta_p^+ \in \mathcal{J}(D,H)$ are H-diagonal.

(b)
$$\sigma_{\beta_p} = -\epsilon_p = -\sigma_{\beta_p}^+ \qquad (p \in \mathbb{N}^*)$$
.

Lemma 4.4. α and $\alpha^+ \in \mathfrak{T}_{\eta}(H)$ $(\eta \in (0, \beta))$.

Lemma 4.5. (a)
$$\omega(a) = -(\mathbb{L}^{-1})_{00}^{-1}$$

where $\omega(a)$ denotes the Mori's frequency of a .

(b) For
$$z \in \mathbb{C}^+$$
,
$$\int_0^\infty dt \ \phi(t) e^{itZ} = i\omega(a) \cdot \frac{F(z)}{1+F(z)}.$$

where ϕ is the Mori's memory function of a ,

$$F(z) := \sum_{p=0}^{\infty} \frac{(\overline{\mathbb{L}^{-1}})_{kp}((z-\mathbb{L})^{-1})_{kp}}{\overline{\mathbb{L}^{-1}})_{kk}((z-\mathbb{L})^{-1})_{kk}}.$$

and , for any operator T on $\mathbb{C}\oplus \ell^2(\mathbb{N})$, $T_{kp}^{}=<e_k^{}|Te_p^{}>$.

Theorem 4.6. (a) Mori's Langevin equation for [a](t) is

(4.29)
$$\frac{d}{dt}[a](t)=iD(0)[a](t)-\int_{0}^{t}ds \ \phi(t-s)[a](s)+[I_{M}](t) .$$

Here the Mori's memory function ϕ is characterized by

(4.30)
$$\frac{1}{2\pi} \int_{0}^{\infty} ds \ e^{itZ} \phi(t) = \frac{iD(0)F(z)}{2\pi(1 + F(z))} \qquad (z \in \mathbb{C}^{+}) .$$

and $\phi(0) = -D(0)\Delta = -\omega(a)\Delta$, where

(4.31)
$$F(z) := \sum_{p=1}^{\infty} \frac{|\Gamma_p|^2}{\hbar^2 \omega_p(\omega_p - z)} \quad \text{and} \quad \Delta = \sum_{k=1}^{\infty} \frac{|\Gamma_k|^2}{\hbar^2 \omega_k}.$$

and Mori noise $[I_{M}](t)$ satisfies

(4.32)
$$\langle [I_{M}](0); [I_{M}](0) \rangle_{H} = -\frac{\phi(0)}{\beta \hbar \omega(a)} = \frac{1}{\beta \hbar} \Delta$$
.

(b)
$$R_{\alpha}(t) = \langle [\alpha]; [\alpha](t) \rangle_{H}$$

$$= \frac{1}{\beta \hbar} \sum_{p=0}^{\infty} \frac{1}{|D'(\epsilon_{p})|} \cdot \frac{e^{-it\epsilon_{p}}}{\epsilon_{p}}$$

is an almost periodic function .

Remark 4.1. The equality $\omega(a)=D(0)$ physically means that Mori's frequency is equal to the difference between the frequency ω_0 of a quantum harmonic oscillator and the initial value of the canonical correlation function of Mori noise multiplied by $\beta\hbar$. In [11], K.Lindenberg and B.J.West

gave attention to the quantity Δ . (4.32) gives such a physical meaning that Δ is the initial value of the canonical correlation function of Mori noise multiplied by $\beta \hbar$.

We note that $R_a(t)$ does not converge as $t \to \infty$.

References

- [1] J.-P.Antoine and W.Karwowski, Partial *-algebras of closed linear operators in Hilbert space, Publ.RIMS, 21, (1985) 205-236.
- [2] A.Arai, Spectral analysis of a quantum harmonic oscillator coupled to infinitely many scalar bosons, to be published in J.Math.Anal.Appl...
- [3] F.A.Berezin , The method of second quantization ,
 Academic Press , New York , (1966)
- [4] E.Braun, Irreversible behavior of a quantum a quantum harmonic oscillator coupled to a heat bath, Physica 129A, (1985) 262-301.
- [5] O.Bratteli and D.W.Robinson , Operator Algebras and

 Quantum Statistical Mechanics II , Springer-Verlag ,

 New York Inc ., (1981)
- [6] H.Ezawa and A.Arai, *Quantum Field Theory and Statistical Mechanics*, Nihon Hyoron Shya, (1988) (in Japanese)

- [7] D.Forster , Hydrodynamic fluctuations , broken symmety , and correlation functions , Benjamin , (1975)
- [8] J.Glimm and A.Jaffe , *Quantum physics*, Springer-Verlag, (1981)
- [9] H.Haken , Laser Theory , in Vol.XXV/2C of Encyclopedia of Physics , Springer , Berlin , (1970)
- [10] R.Kubo, Statistical-mechanical theory of irreversible processes .I : General theory and simple applications to magnetic and conduction problems , J.Phys.Soc.Japan, 12 .6 ,(1957) , 570-586 .
- [11] K.Lindenberg and J.West , Statistical properties of
 quantum systems : The linear oscillator , Phys.Rev., 30,
 1 ,(1984), 568-582 .
- [12] H.Mori , Transport, collective motion , and Brownian motion, Prog. Theo. Phys., Vol. 33 , No. 3 , (1965), 423-455 .
- [13] , A continued fraction representation of the time-correlation functions ,Prog.Theo.Phys. ,34 , 3 , (1965), 399-416 .
- [14] H.Nakazawa, in proceedings of the third university of California conference on statistical mechanics, (1988), to appear in Nucl. Phys. B supplement.

- [15] Y.Okabe , On a Langevin equation ,
 Sugaku , 33 ,(1981), 306-324 (in Japanese) .
- [16] ______, KMO Langevin equation and fluctuation-dissipation theorem (I), Hokkaido Mathematical Journal, 15,2,(1986), 163-216.
- [17] ______, KMO Langevin equation and fluctuation-dissipation theorem (II), Hokkaido Mathematical Journal, 15,3,(1986), 317-355.
- [18] E. Prugocecki, Quantum Mechanics in Hilbert Space,
 (second edition), Acadmic Press, New York, (1981)
- [19] and A.Tip, Semi-groups of rank-preserving transformers on minimal norm ideals in $\mathcal{B}(\mathcal{U})$, Comp.Math. 30 ,(1975), 113-136 .
- [20] M.Reed and B.Simon , Methods of Modern Mathematical

 Phisics Vol.I : Acadmic Press, New York , (1972)
- [21] _______, Methods of Modern Mathematical

 Phisics Vol.II: Acadmic Press , New York , (1975)
- [22] _______ , Methods of Modern Mathematical Phisics Vol.III: Acadmic Press , New York , (1978)

the second with the second second second second