Algebraic Riemann manifolds

KAZUO YAMATO 大 和 一 夫

College of General Education, Nagoya University

We give a criterion by which we decide whether two given Riemann manifolds M, \overline{M} are isometric or not. We recall the following classical theorem.

Theorem (C^ω Isometry Theorem). Let M, \overline{M} be real analytic Riemann manifolds of dimension n. Let $p \in M, \overline{p} \in \overline{M}$. Suppose that there exists a linear isometry $I : T_p(M) \to T_{\overline{p}}(\overline{M})$ which preserves the curvature tensors R, \overline{R}, and their covariant differentials $\nabla^k R, \nabla^k \overline{R}$ of any order k. Then the mapping I can be extended to an isometry h between neighborhoods of p, \overline{p}. Hence in particular if M, \overline{M} are complete, connected, and simply connected, then M, \overline{M} are isometric.

By replacing C^ω with the Nash category C^Ω, and introducing the notion "minimal differential polynomial" ϕ_M of a C^Ω Riemann manifold M, we observe that the proof of this theorem implies the following criterion.

Theorem 1. Let M, \overline{M} be C^Ω Riemann manifolds of dimension n. Let $p \in M, \overline{p} \in \overline{M}$. Suppose that

1. the minimal differential polynomials $\phi_M, \phi_{\overline{M}}$ coincide,
2. the two point p, \overline{p} are "nonsingular" with respect to $\phi_M, \phi_{\overline{M}}$, respectively, and
3. there exists a linear isometry $I : T_p(M) \to T_{\overline{p}}(\overline{M})$ which preserves the curvature tensors R, \overline{R}, and their first $4n - 5$ covariant differentials $\nabla^k R, \nabla^k \overline{R}$.
Then the mapping I can be extended to an isometry h between neighborhoods of p, \bar{p}.

As an application we obtain

Theorem 2. Let M be a compact C^Ω Riemann manifold of dimension n. Suppose that M is nowhere homogeneous, i.e. for any distinct points p, q of M, there exists no isometry $h, h(p) = q$, between neighborhoods of p, q. Then M is C^Ω embeddable, and the embedding is given by means of general scalar curvatures. If any point of M is nonsingular with respect to ϕ_M, then some finite number of general scalar curvatures of order at most $4n-5$ give a one to one mapping of M into a vector space.

Reference