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INTEGRABLE SYSTEMS RELATED TO BRAID GROUPS
( braid 8% 1~ BELRETIE/7 )
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INTRODUCTION. This note is a brief review on a recent development

in the study of linear representations of the braid groups appearing
as the monodromy of certain integrable connections. These connections
are defined for any simple Lie algebra and its irreducible |
representation and appear in a natural way to describe n-point
functions in the conformai field theory on the Riemann sphere wfth
gauge symmetry due to Knizhnik and Zamolodchikov [12]. We focus the
role of solutions of the Yang;Baxter equation for the face model to
express the monodromy properties of these n-point functions. We will
show that the Markov trace, which plays an important role io
construct invariants of links due to Jones [10] and several other
authors [11[19][22], appear as '"weighted" characters of these
monodromy representations. The reader may refer to [15][16] and [21]

for a complete exposition on these subjects.

1. INFINITESIMAIL PURE BRAID RELATIONS. We start from a

finite dimensional complex simple Lie algebra g and its irreduci-
ble representation p : g — End(V) . Let {Iu} be an orthonormal

basis of g with respect to the Cartan-Killing form. We consider
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the matrices ‘QaB € End(VQn) , 1<0<B<n , defined by

& 8

. = ® ... ® 1@ ®1® ... ®1@® %1 ... ®
(1.1 Qp = 2, ¢ @ 18 p(1 )6le 18 p(1)01 1

By using the fact that the Casimir element lies in the cehter of the
universal enveloping algebra U(g) we have the relations:

+ Q Q

oy’ B?] = 0 for oLkBLYy

(1.2) [Q.,, Q +93?1=t9

o TCay oB

[ QaB’ anl = 0 for distinct «, B, v, &
The above relations can be considered to be a special case of the
classical Yang-Baxter equation and have the following significance.

Let us consider the l-form

(1.3) @ = a%g X QaB dlog(za— zg)

with a complex parameter X . over

(1.4) X, = 2y, «..y 2 €C" 5 2 zg if o8 )
The relaiiods (1}2) show that the connection» © 1is integrable.

The fundamental group of Xn is called the pure braid group wifh

n strings and the quadratic relations (1.2) ma& be consider to

be an infinitesimal version of the defining relations of the pure
bfaid gréup.' This idéa~td eXpréss the-relations for the fundamental
group by the integrability condition goes back to Poincaré_and Cartén.
Following the work of Chen [4]1 and Sullivan [20] we can establish

the preciSe group theoretical meaning of the relations (1.2) ([131).
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The braid group Bn is by definition the fundamental group of the
quotient Xn/gn-’ where the symmetric group acts as the permutat-
ion of the coordinates. Now as the monodromy of the connection m'

we obtain a one parameter family of linear representations

(1.5) ¢: B — End (VZ™)

2. QUANTIZEb UNIVERSAL ENVELOPING ALGEBRA AND R-MATRIX.

We present a second method to obtain linear representations of Bn

Let U&(g) be the quantized dniversal enveloping algebra of g in

e&/2

the sense of Drinfel'd [5] and Jimbo [6]. We put gq = Let

o, + Ug(g) — End(V,) , i=1,2 , be the irreducible representation

with the highest weight Ai . The tensor product V1®V2 has a

structure of Uﬂ(g)-module by means of the comultiplication of Uﬂ(gh

Under the assumption that any irreducible component in V1®V2 has

multiplicity one, Reshetikhin [19] obtained the following R-matrix.

AA g(A) {e(M)-c(Ap)-cA)¥/2 _AjAs
q PA

2 - -
(2.1) R =2, D
The meaning of ‘the notations is as follows. First, we define the
a-Clebsch-Gordan coefficient (see Fig.l)

A, A,

Y OV P . . \*yf(
C = Cy (@) V,8v, — Vv, Fig.1
A

for any irreducible module VA with the highest weight A contained
in V1®V . The row vectors of C consist of the weight vectors of

2
VA and we normalize C as CtC = 1 . We define the projector PA ,
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by te.c . e put c(A) = <A, A+28> where & is the half sum of

the positive roots of g and g(A) is the parity of VA in V1®V2.
In the case g 1is non-exceptional and Ai , i=1,2 , corresponds

to the vector representation the above R-matrix is extracted from

trigonometric solutions of the Yang-Baxter equation

(2.3) RIZ(U)R 3(u+v)R (v) = R23(V)R12(U+V)R23(u)

2 12

due to Jimbo [7] by tending the spectral paraméter u to the
infinity.
Let us suppose A1= A2 . We denote by oi . 1<i<n-1 , the

standard generators of Bn (see [2]1). Then the corresponsence

1 i+l

. ' ' i,i+1
Eg o, — R, . = 1® ,,. ®1® R ®1® .., ®1
i i,i+l

where R = RAlA2

gives a linear representation of Bn denoted by
o Bn — End(V®n) . This representation commutes with the diago-
nal action of Uﬂ(g) and if we consider the classical limit 4 - 0

the above construction gives the situation due to Brauer and Weyl.

3. FUSION PATH AND NORMALIZED SOLUTIONS.  In this section, we

start from the vector representation p : g — End(V) and we suppose

e&/2

that q = is not a root of unity. We denote by T the highest

weight of the vector representation. We suppose that q = e"lg’/2 is
not a root_of unity. The n-fold tensor productVV®n has a
deéomposition @ (MA®VA) as a U&(g)—module where MA stands for the
mulfiplicity of the representation VA correspondfng to the highest

weight Ar. We have a basis of MA described in the following way.

- 4 -
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Let P(A) denote the set of the sequence (AO, “ees An) of dominant

integral weightsof g satisfying the following:

“(3.1) A1) AO =0, An = A

(ii) V, ® V contains V as a g-module.
Ai Ai'+1

An element # of P(A) is called a fusion path, which corresponds
to some shortest path in the decomposition diagram of an as a g-
module. We assocoate to # the following composition of gq-Clebsch-

Gordan coefficients (see Fig.2 and 5)

0 1 2 n-1

3.2y Mgy 2 VO Ly, e vE(RTD)

Ay Ay

AT . ®(n-2) ®(n-3)

CA2 (q) : VA2® ' -— VA8® v

n—lTT A
CA (q) : vAn—1® vV — VA _
Fig.2

which defines a projector eﬁ(q) : V®n — VA . These 'eﬁ(q)

form a basis‘of MA and the action of the braid group is expressed

by using W defined by

Ajq o A ¢
(3.3) W( ) = e, (q)R, . e,,(q)
Ay Ay AT, 0L A A, . A A,
: i-1 i i+l
(see Fig.3). We have e \\ \\
A, Al A, A, A,
_ i-1* i i-1 i i+l
(3.4) o, e (@) = Eﬁ, LIGrS CAL D ep @
. i i+l
Fig.3
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where the RHS is the sum with respect to #A' = (A, ..., Aé) € 2N
satisfying Aj¢ A3 if  j#i .  The above coefficients W satisfies

the Yang~-Baxter equation for the face model

: £, g . b, ¢ a, b
(3.5) ng( e, g 2 WO g2 we gy

2 a’b a!g g,C

-ZgW(g,C)W(f’e)W(e’d)

and they are extracted'from-the Boltzmann weights for the IRF model
due to Jimbo, Miwa and Okado [8] by taking .the critical limit
and tending the spectral parameter to the infinity.

exanple. Let us consider the case g = sl(N,C) . We suppose
-1 10 e dm),

dlz .. 2dm20 and Ai and A; are obtained by adjoining one node

to the r-th and s-th column (r#s) respectively (see Fig.4). Ve

that Ai corresponds to the Young diagram of type (d

put d = (dr—r)-(ds—s) . In this case W is given by
Ajoy o M

(3.6) CW(C ) = JI[d-11[d+11/[d1%
Ai * Ai+1

where [k] stands for (qk—q—k)/(q—q-l)

Fig.4 ; EEEDD. Ay
/

KL S
OB



86

The above description of the action of the braid group by
means of the face language can be used effectively to describe
the monodromy of ® defined in (1.3) with respect to the normalized
soiutions associated with the fusion paths in the following sense.

Let wl, ceey W be the blowing up coordinates of Xn such that

n-1
wk=0 corresponds to zl= ces = zk+1 . The residue of ® along
w,=0 is given by zlsa<85k+1 QaB . These elements are diagonalized.
simul taneouly with respect to the basis eﬁ = 11mq_91 eﬁ(q) with

the eigenvalues

1

(3.7 = oA {C(Ak+1) - (k+1)c(”)} , 1<k<n-1 ,

Mk 2

Let us suppose that q = exp(mii) is not a root of unity. Then
the total differential equation d® = obd has solutions associated
with the fusion paths given by

Hy Hy

(3.8) ¢ﬁ(z)= w1 w2 ces W { eﬁ + (higher order terms) }

We can show (see [16]) that after a certain normalization

¢2(2) = aﬁ(l)¢ﬁ(z) the monodoromy of the braid group is expressed as

(3.9) o¥ 8%z) = 3w Ao A ) ¢, (2)
i ﬁ /20 Ai » Ai+1 ﬁ'

To show this we used the following expansion

(3.10) (R..R.. ... R K 21 4183

2
12823 k-1,k + 045

1<o<f<k QaB

together with a description of the Riemann-Hilbert correspondence
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for the pure braid group obtained by investigating the group theo-

retical meaning of the infinitesimal pure braid relations (see [14]).

4. FUSION METHODS. The following priciple to compute the

monodromy by localizing the situation to the case of four variables
was discovered by Tsuchiya and Kanie [21]. We start from g = sl(N,()
and its vector representation. We consider the fusion paths connect-
ing Ai-l and Ai+1 (see Fig.4). Such a fusion path # defines a
g-homomorphism e, V,_,8VeV — V.., vhere Vj denotes the

irreducible representation with the highest weight Aj' We have

(4.1) 9] A

I o - Y
i-1.1 €4 = 3 (eAp=- (D= cth; ) e

1 - -
(Qi-l,i+gi—1,i+1+gi,i+1) €4 = 3 (c(A, )= 2c(M c(Ai_l)} e,

~

Let us denote by A eﬁ the RHS of the second equation. Let o
be the connection defined by

(4.2) 0o = 2

i-1<acBsi+l X Pp F108(Zy 2g)

We put zi_1= 0 . The total differential equation d® = o ® can

be written in the form

d

(4.3) ge Yo(6) =2 € Q. 1 1/ &+ Q /1)) ¥
Here we put ®(z z ) = zA Yo (E) E = 2./2
i? “i+1 i+1 'O ’ i’ %i+1

In our case this is essentially the Gauss hypergeometric differential

equation and by means of the classical methods we can compute the
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matrix relating the solution Y, normalized at 0 and the solution WQ
normalized at the infinity. - This method enables us to express the |
hormalizing factor aﬁ(x) appiearing in the previous section by

means of the T functions in the following way. In the situation of

Fig.4 we define yi(ﬁ) to be

v, (A) = TQd)/ / TQA@-1)) TAd+1))

If thefe is no such A;#Ai , we put Yi(ﬁ)=1 . Then the gamma factof
aﬁ(l) is given by the produét Yl(ﬁ) ces Yn(ﬁ) »

This principle can be aléo_applied to higher representations
o0of g . We have a formula énalogous to (3.9) where W is computed
from the R-matrix associated‘with higher representéitions. Let us |
note that the linear representations of the braid groups defined by
this R-matrix were used by Akutsu and Wadati [1] and Murakami [17]

to construct invariants of links.

5. ALGEBRAS FACTORING THROUGH THE MONODROMY. We suppose

that g 1is a non-exceptional simple Lie algebra and p : g —

End (V) its vector representation. In the case of g 1is of type A -
the monodroﬁy representation @ is equivalent to the higher order
Temperley-Lieb representation and it factors through the Iwahori's
Hecke algebra. In the other cases ¢ factors through a speciali-
zation of the algebra with two parameter Qn(a,B) discovered by
Birman-Wenzl [3] and Murakami [18]. These algebras are denoted by
Qn(g,q) and may be considered to be a q;analogue of Brauer's centra-

lizer algebras.
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The following Markov trace was related to invariants of 1inks

by Jones [10] and Turaev [22].

(5.1) o = x " Traa v ®em)) for x € B
where & is the half sum of the positive coroots and X is
‘Trace(q_6|V) . The above < gives a functional on € _(g8,q9).

We will see in the next section that the case q 1is a
foot of unit§ ié important from the viewpoint of the conformal
field theory. In this case the algebra € (g,q) is not semi-
simple but the above Markov trace gives us a method to construct
its semi-simple quotient. Let us suppose that q = exp(Uri/(L{+g))
vwhéfe { is a ﬁositivevintéger called a level and g is the

corresponding dual Coxeter number (see [11]1). We consider

(5.2) Jo= {x €8 (3,0) ; T(xy) = 0 for any vy € gn(g,q) }

Then it turns out that the quotient algebra En = gn(g,q)/Jn is
semi-simple. The irreducible representations of this algebra are
described in the following way. Let ?£(A) be the subset of PA)

consisting of #4 = (A .,.An) such that <Ai,9> <-¢{ , for any

0,
where O denotes the highest root and the Cartan-Killing form is

normalized as <6,0> = 2 . For A , A' € ?t(A) , we put

e | ‘ AjLy » A
(5.3) W, , = lim™ W( )
Atk q-E Ay o il
where & = exp(mi/(L+g)). 1t turns out that the above limit is a

non-zero finite number. Then the representationsof Bn given by

_10_

i,
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(5.4) O, ey = Zﬁ, Wiig €40

give all irreducible representations of én . The above constructioy
corresponds to the restricted model in the terminology of the
solvable lattice models (see [8]).

Moreover, we can show that the Markov trace Tt defines a

positive definite bilinear form on the algebra En

exanple. We illustrate some examles of the decomposition.of

the algebra Qn in the following figure.

Fig.b g=s51(2,C), <{£=2

6. MONODROMY OF n-POINT FUNCTIONS. We discuss how the

framework described ih the previous sections can be applied to
illustrate the monodromy properties of the n-point functions in
the conformal field theory on the Riemann sphere with gauge
symmetry of affine Lie algebras. We refer to [12] and [21] for

the operator formalism in this theory, which we shall review briefly.
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Let g’ denote the affine Lie algebra asspciﬁted with 8 ,
which is defined to be the canonical central extension of the loop
algebra g®Crt, t~ 11 . Starting from a finite dimensional irredu-
cible g-module V whose highest weight A satisfies <A,8><¢

it is known by Kac [11] that we can associate an irreducible g -

module generated by

_Xl(_nl) X2(—n2) e Xk(—nk). v o, Xi € g , ni>0 , 1Li<k ,

for v € V, on which the central element & of g’ apts as {Ixid.

Here X(n) stands for Xx®t". This is called the integrable highest

weight module of level ¢ with the highest weight A and is denoted
by %A . The Sugawara form |

1

(6.1) L, T 2, ZKGZ

Iu(-k) Iu(n+k) :

satisfies the relation of the Virasoro Lie algebra

(6.2) L, L 1= (nL -+ —0 5 e

+n 12 m+n, 0

with the central charge c¢ = { dim g/({+g) . A primary field
®(u,z) is an operator on ®<A,9>s£ %A depending linearly on u €
Vi with some fixed T , depending holomorphically on u € C-(0}

and satisfying the following conditions.

(6.3) [ Lm" ®(u,z) 1 = 2"(2(8/82) + (m+1)AL} ®(u,z)

with A" = c(M/(L+g) ,
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(6.4) [ X(m), ®Cu,z) 1 = 2" ®d(Xu,z) for X € g

For simplicity we suppose that V is the vector representation,

m
Assocoated with an {-contraint fusion path ﬁ=(A0, .o An) € ?t(A)
Tsuchiya and Kanie constructed a vertex operator ¢i for each i

which is a primary field sending ﬁA to #A .
i i+1

1t was shown by Knizhnik and Zamolodchikov [12] that the n-point
function

t
.. ®1|vac> » W€V,

(6.5) $,(2) = <u|¢9¢"'1

is a solution of the total differentiall dd = od where o is
defined in (1.3) with the paramefer A = 1/({+é) . It turns out

that the above n-point function is the normalized sulution associated
with the fusion path # in the sense of Section 3 . Now the
monodromy of the above n-pont functions is described in the following
way. We have a non-zero constant aﬁ such that the monodromy is

expressed by using wﬁ’ﬁ defined in (5.3) as
(6.6) o¥ w,8,(z) = 3, w o, ,9,,(2)
ST TATATE At CARA AT A

in the case g 1is non-exceptional. Consequently the monodromy

of n-point functions factors through the semi-simple algebra Qn

defined in the previous section carrying a positive Markov trace.

1
L+ 2

This algebra coinéides with the Jones algebra of index 4cos?( )

in the case g = s1(2,L) (see [91,[211 and [23]1).
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