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確率的多項式時間アルゴリズムの能力について
戸田誠之助 (電気通信大学・情報工学科)

Abstract. In this article, we investigate the computational power of probabilis-

tic Turing machines. Let PP(A) denote the class of sets accepted by polynomial time-

bounded probabilistic Turing machines with two-sided unbounded error probability. We

show that PP(FewP) $=PP(SPARSEnNP)=$ PP(BPP) $=$ PP, where $FewP$ denotes the

class of sets accepted by NP-machines with the property that for all inputs $x$ , the number

of accepting paths is bounded above by a polynomial in $|x|$ , SPARSE denotes the class

of sparse sets, and BPP denotes the class of sets accepted by polynomial time-bounded

probabilistic Turing machines with two-sided bounded error probability. Furthermore, we

observe that all equivalences above can be relativized with all oracles (i.e., PP(FewP(A))

$=PP(SPARSE\cap NP(A))=PP(BPP(A))=$ PP(A) for all oracles A). Our motivation of

this work is to find the precise relationship between PP and PH (the polynomial-time hi-

erarchy). In particular, whether PH is included in PP is the most important question. An

approach to this question is to ask whether PP(NP) $\subseteq PP$ . If one could settle this question

by using a relativizable technique, then he will observe PH $\subseteq$ PP. Thus our work can be

viewed as a case study of the original question which has remained open.

1 Preliminaries.

We assume that the reader is familiar with the basic concepts of computational com-

plexity theory. Let $\Sigma$ be a finite alphabet. Our sets in this paper are all over $\{0,1\}$ unless

otherwise specified. For a string $w\in\Sigma^{*},$ $|w|$ denotes the length of $w$ . For a set $L\subseteq\Sigma^{*}$ ,
$\overline{L}$ denotes the complement of $L$ . For a class $C$ of sets, co-C denotes the class of sets

whose complement is in C. Let $\Sigma^{n}$ (resp., $\Sigma\leq n$ and $\Sigma^{<n}$ ) denote the set of strings with

length $n$ (resp., at most $n$ and less than $n$ ). For a finite set $X\subseteq\Sigma^{*},$ $\Vert X\Vert$ denotes the

number of strings in $X$ . Let $N$ denote the set of natural numbers. All natural numbers are

encoded in binary unless otherwise specified. \langle $\cdot,$

$\cdot$ } denotes a pairing function on $\Sigma^{*}$ which

is polynomial-time computable and whose left and right inverses are also polynomial-time

computable. A k-tuple function on $\Sigma^{*}$ is defined by a usual manner.

We also assume that the reader is familiar with standard complexity classes such as
$P$ , NP, and the polynomial-time hierarchy. We abbreviate by an oracle P-machine (resp.,
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an oracle NP-machine) a polynomial time-bounded deterministic (resp., nondeterministic)

oracle machine. An oracle NP-machine is called an oracle FewP-machine iff for each oracle

set A and each input $x$ , it has at most a polynomial number of accepting paths. FewP(A)

denotes the class of sets accepted by oracle FewP-machines with oracle set A. The class

$FewP$ is defined as the class $FewP(\emptyset)$ . PP(A) is the class of sets accepted by polynomial

time-bounded probabilistic oracle Turing machines with two-sided unbounded error prob-

ability which consult to an oracle set A. In other word, a set $L$ is in PP(A) if there exists

an oracle NP-machine $M$ such that for all $x,$ $x\in L$ iff more than half of computation paths

of $M(A)$ on input $x$ is accepting. The class PP is defined as the class $PP(\emptyset)$ .

$\#P(A)$ is the class of functions which gives the number of accepting paths of oracle NP-

machines with oracle set A. PF is the class of polynomial-time computable functions. All

functions in this paper are ones from strings to natural numbers unless otherwise specified.

It is well known that PP and $\neq P$ are closely related to each other. Some relationships are

mentioned in the next section and are used to prove our main results.

We assume that all oracle machines $M$ satisfy the following conditions.

(1) Its transition function has exactly two possible transitions from each configuration.

(2) There exists a polynomial $p$ such that for all oracles $A$ and all input $x$ , each com-

putation path of $M(A)$ on $x$ from the initial configuration to a halting configuration is of

length $p(|x|)$ exactly.

(3) All computation paths of it is encoded into a string of $\{0,1\}^{*}$ by a usual manner,

where a computation path may contain possible answers from a given oracle and the oracle

answer “yes” (resp., “no”) is encoded by $0$ (resp., 1).

These assumptions are technical ones. Obviously, we do not loose the generality under

these assumptions.

A set $L$ is said to be PP-low iff PP(L) $=PP$ . A class $C$ of sets is said to be PP-low ffl

all sets in the class are PP-low. It is trivial that for any class $C$ , it is PP-low iff PP(C)

$=$ PP. Thus we will use the phrasing “a class $C$ is PP-low” instead of describing the

equality PP(C) $=PP$ . A notion of low sets was first introduced by Sh\"oning [8] within the

polynomial-time hierarchy. That notion has been used to clasify decision problems and

to show some structural differencies of NP-complete sets from sets with special properties

[8,5,7].
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2 Technical lemmas.

Before proving main results of this paper, we prepare some technical lemmas. Although

we omit the proofs of these lemmas, almost all of these are not difficult.

Lemma 2.1 For any sets $L$ and $A_{f}$ the following statements are equivalent.

(1) $L$ is in $PP(A)$ .

(2) There exist two functions $f,g\in\neq P(A)$ such that $L=\{x : f(x)\geq g(x)\}$ .

Lemma 2.2 Let $g,$ $f$ be functions in $\# P(A)$ and let $g$ give the number of accepting paths

of an oracle NP-machine $M$ with oracle set A. Let $t$ be a polynomial bounding the run time

of M. Then, $h_{1}$ , $h_{2}$ and $h_{3}$ defined below are $in\neq P$.

$h_{1}(x)=f(x)+g(x),$ $h_{2}(x)=f(x)g(x),$ $h_{3}(x)=2^{t(|x|)}-f(x)$ .

Lemma 2.3 Let $g:\Sigma^{*}\cross Narrow N$ be a functio.$n$ $in\neq P$, let $e,$ $f$ be a function in $PF$, and

let $A$ be a set of natural numbers recognizable in polynomial time. Then, $h$ defined below is

$in\neq P$ .

$h(x)= \sum_{e\langle x)\leq i\leq f(x),i\in A}g(x, i)$
.

Lemma 2.4 For each set $L,$ $L\in PP(FewP)$ iff there exist a set $A$ in $FewP$, a polynomial

$p$, and a function $f$ in $PF$ such that for each $x_{f}$

$x\in L$ iff $\Vert\{w\in\Sigma\leq p($同$) :\{x, w\}\in A\}\Vert\geq f(x)$ .

Lemma 2.5 For each $k\geq 1,$ $-\Sigma_{1\leq i\leq k}(-1)^{i}(ik)=1$ .

3 PP-low classes: $FewP$, Sparse sets in NP, and BPP.

In this section, we prove the following theorem.

Theorem 3.1 $FewP$ is PP-low. Namely, $PP(FewP)=PP$.

The inclusion PP $\subseteq PP(FewP)$ is obvious. The proof of the converse inclusion is quite

involved and is done by a sequence of lemmas.
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Let $L$ be a set in PP(FewP). Let $A,$ $p$ and $f$ be the same ones as in Lemma 2.4. Then,

for each $x$ ,

$x\in L$ iff $\Vert\{w\in\Sigma\leq p(|x|) : \langle x, w\}\in A\}$ $\Vert\geq f(x)$ .

Let $M_{a}$ be a FewP-machine which accepts A and let $q$ be a polynomial bounding the

number of accepting paths of $M_{a}$ . Let $r$ be a polynomial satisfying that $r(n) \geq\max\{$

$|\langle x,w$ } $|$ : $|x|=n$ and $|w|\leq p(n)$ } for each $n\geq 0$ . We note that for each input $\langle x, w\rangle$ such

that $|w|\leq p(|x|)$ , the number of acceptng paths of $M_{a}$ is bounded above by $q(r(|x|))$ . We

define a set $B$ and a function $g$ by

$B=\{\{x, i,w, Q\}$ : $1\leq i\leq q(r(|x|)),$ $|w|\leq p(|x|)$ ,
$Q$ is a set of accepting paths of $M_{a}$ on input $\{x, w\}$ , and $\Vert Q\Vert=i$ },

$g(x, i)=\Vert\{(w, Q\rangle : \langle x, i, w, Q)\in B\}\Vert$ .

In the above definitions, a finite set $Q$ is encoded as a lexicographically ordered list of

elements in the set.

It is not hard to see that $B$ is in $P$ and hence $g$ is in $\neq P$ . Let $t$ be a polynomial such

that for each { $x,$ $i\rangle$ satisfying $0\leq i\leq q(r(|x|))$ ,

$t(|x|) \geq\max\{|\{w, Q\}| : \langle x, i,w, Q)\in B\}$ .

Then we define two functions $g’,$ $h$ as $fo$llows:

$g’(x, i)=\{\begin{array}{l}2^{t(|x|)}-g(x,i)if0\leq i\leq q(r(|x|))0otherwise\end{array}$

$h(x)=$ $\sum$ $g(x,$ $i)+$ $\sum$ $g’(x,$ $i)$ .
$1\leq i\leq q(r(|x|)),i$ is odd $1\leq i\leq q(r(|x|)),i$ is even

It is easy to see from Lemma 2.2 and Lemma 2.3 that $g’$ and $h$ are in $\#P$ . Now, we would

like to prove the following lemma.

Lemma 3.2 For each $x$ ,

$x$ is in $L$ iff $h(x)\geq f(x)+2^{t(|x|)}\cdot\lfloor q(r(|x|))/2\rfloor\cdot(\lfloor q(r(|x|))/2\rfloor+1)$ .

From this lemma and Lemma 2.1, we conclude $L$ is in PP. To prove this lemma, we need

more definitions.

For each $x$ and each $1\leq k\leq q(r(|x|))$ , we define a set $C(x, k)$ by

$C(x, k)=\{w\in\Sigma\leq p(|x|)$ : the number of accepting paths of $M_{a}$ on input
$\{x, w\}$ is exactly $k$ }.
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Lemma 3.3 For each $x$ ,

$x\in L$ iff $\sum_{1\leq k\leq q(r(|x|))}\Vert C(x, k)||\geq f(x)$
.

Proof. It is easy to see that $C(x, k)\neq C(x, k’)$ for each $x$ and each $1\leq k\neq k’\leq$

$q(r(|x|))$ . Furthermore, for each $x,$ $\bigcup_{1\leq k\leq q(r(|x|))}C(x, k)=\{w$ : $|w|\leq p(|x|)$ and $\{x,w\rangle$ $\in$

$A\}$ . Hence, for each $x$ ,

$x\in L$

iff I { $w$ : $|w|\leq p(|x|)$ and $\langle x,$ $w$} $\in A$ } $\Vert\geq f(x\cdot)$

iff $\sum_{1\leq k\leq q(r(|x|))}\Vert C(x,$ $k)||\geq f(x)$ . 口

Lemma 3.4 For each \langle $x,$
$i$ } satisfying $1\leq i\leq q(r(|x|))$ ,

$g(x, i)=$ $\sum$ $(_{i}^{k})\Vert C(x, k)\Vert$ .
$i\leq k\leq q(r(|x|))$

Proof. From the definition of $g$ ,

$g(x, i)=\Sigma_{i\leq k\leq q(r(|x|))}\Sigma_{w\in C(x,k)}\Vert\{S\subseteq ACC(M_{a}, \langle x, w\rangle):\Vert S\Vert=i\}\Vert-$

$=\Sigma_{i\leq k\leq q(r(|x|))()\Vert C(x,k)\Vert}ki$
’

where $ACC(M_{a}, \langle x, w\rangle)$ denotes the set of accepting paths of $M_{a}$ on input $\langle x, w\rangle$ . $\square$

Lemma 3.5 For each $x$ ,

$h(x)=$ $\Sigma_{1\leq k\leq q(r(|x|))}\{-\Vert C(x, k)\Vert\cdot\Sigma_{1\leq i\leq k}(-1)^{i}(ik)\}$

$+2^{t(|x|)}\cdot\lfloor q(r(|x|))/2\rfloor\cdot(\lfloor q(r(|x|))\rfloor+1)$ .

Proof. From the definition of $h$ and Lemma 3.4,

$h(x)=$ $\{\Sigma_{1\leq i\leq q(r(|x|)),iisoddg(x,i)-}\Sigma_{1\leq i\leq q(r(|x|)),iiseven}g(x, i)$

$+\Sigma_{1\leq i\leq q(r(|x|)),iiseven}2^{t(|x|)}$ .
$=$ $\Sigma_{1\leq k\leq q(r(|x|))}\{-\Vert C(x, k)\Vert\cdot\Sigma_{1\leq i\leq k}(-1)^{i}(ik)\}$

$+2^{t(|x|)}\cdot\lfloor q(r(|x|))/2\rfloor\cdot(\lfloor q(r(|x|))\rfloor+1)$ .

Hence we have this lemma. $\square$

Proof of Lemma 3.2. From Lemma 3.5 and Lemma 2.5, for each $x$ ,

$h(x)= \sum_{1\leq k\leq q(r(|x|))}\Vert C(x, k)\Vert+2^{t(|x|)}\cdot\lfloor q(r(|x|))/2\rfloor\cdot(\lfloor q(r(|x|))/2\rfloor+1)$
.
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Hence we have this lemma from Lenma 3.3. 口

We also have other PP-low classes. A set $S$ is sparse iff there exists a polynomial $p$ such

that for all $n\geq 0,$ $\Vert$ $\{ x\in S : |x|=n\}\Vert\leq p(n)$ . Let SPARSE denote the class of sparse

sets. Then we have the following theorem.

Theorem 3.6 All sparse sets in $NP$ are PP-low. Namely, $PP(SPARSE\cap NP)=PP$.
The proof is quite different from the above one but is based on a slightly complecated

simulation technique. It will appears in [6]. Let BPP denote the class of sets accepted

by polynomial time-bounded probabilistic Turing machines with two-sided bounded error

probability.

Theorem 3.7 $BPP$ is PP-low. Namely, $PP(BPP)=PP$.

The proof of this also appears in [6].

4 Concluding remarks.

In this paper, we considered PP-computations relativized with oracle sets from some in-

teresting classes and we showed that all informations from the oracle sets can be decided

within PP \’itself. Our proof techniques are based on some simulations of the relativized

machines by unrelativized machines. Hence we can observe that all equality mentioned in

the previous section can be relativized with all oracle sets. That is, for all oracle sets $A$ ,

PP $(FewP(A))=PP(SPARSE\cap NP(A))=PP$ (BPP $(A)$ ) $=PP(A)$ . From this observation,

we observe that nore complex classes are PP-low. For example, for any PP-low class $C$ ,

FewP(C), $SPARSE\cap NP(C)$ and BPP(C) are PP-low. However, most important question

whether NP is PP-low or not has remained open. If one could settle this question by using

a relativizable technique, then he will observe that PH $\subseteq$ PP, a glorious inclusion of PH

in PP. Conversely, if one could show a good evidence such that PP(NP) is strictly harder

than PP, then he must know that UP and $FewP$ differ from NP. Then it is an interesting

question whether there exists an oracle set separating PP(NP) from PP. Finally, we note

that a lot of works closely related to this paper were recently done in [2,9,10] and that all

results in this paper will appears in [6].
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