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POLYNOMIAL-TIME ACCESSIBILITY TO SYMMETRIC SOLUTIONS
(extended abstract)

Tomoyuki Yamakami (il &)
Department of Mathematics, Rikkyo University, Nishi-ikebukure, Tokyeo, 171, Japan

ABSTRACT. Any NPncoNP-set A is known to be characterized by a P-predicate
structure, i.e., A={x|(Jy,|y|=0(|x|))Q{x,y)}={x| (Vy,|y|=p(|x]))R(x,y)} for
some P-predicates Q,R and polynomial p. Strings satisfying lyl=p(lxi)A
{(Q{x,y)VR(x,y)) are called symmetric solutions for A on an input x. This
paper studies the computational complexity of the accessibility to
symmetric solutions for any NPncoNP-sets.

8§1. INTRODUCTION. One of central open problems in Complexity Theory is to
determine whether P contains NPncoNP or not. NPncoNP behaves itself like
a mixture of P and NP. It is closed under the polynomial-time {(abbr. p-
time) many-one reducibility while it is still unknown to possess a
complete language. We notice that P+NP is immediately concluded unless
P=NPncoNP.

Let us recall that every set A in NPncoNP has thekstructure in the form

A={x| (Jy, |yl=p(|x]|)Q(x,y) }={x]| (Vy, |y|=p(|x]|)IR(x,y)}

with two defining P-predicates Q,R and a defining polynomial p. We just
call it a P-predicate structure of A. To investigate the complexity of A,
we now turn our attention to its P-predicate structures. Let us say y a
symmetric solution for A on an input x if |y|=p(|x|)A(Q{x,y)Vv-R(x,y)) is
satisfied. The symmetric solutions for A directly represent the
complexity of P-redicate structures of A. For example, if we can access
such a solution easily then A is easily recognizable. Hence it is less
complex. So we may observe how intricate we access symmetric solutions
for A.

Let us call f an access function for a set AeNPncoNP if f computes a
symmetric solution for A on each input. This paper aims at investigating
the computational complexity of each access function for NPncoNP-sets. To
see the complexity of computing access functions, here is used four types
of classes consisting of restricted p-time computable functions with
oracles. More precisely, we define and use the following classes of
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functions on 3* (say {0,1}*), denoted by PF.(B), which are computed by
deterministic algorithms with an oracle set B in several restricted
manners, where re{T,tt,T[O(logn)]l,btt}. For any oracle machine M,
Query(M,B,x) represents the set of all query words in the computation of
MP(x). Let Set{(g(x)) be a set‘{yl,---,yk} whenever g{(x)=<¥yy,---,Ye> for a
function g, where < > stands for a standard pairing operater. Write
either #B or |B| to denote the cardinality of a set B. Let us define:

(1) A function f is in PF;(B) if some p-time deterministic oracle
transducer M.computes f with B as an oracle. Let PFy mean PF;(9).

{(2) A function f is in PFy(B) if fePF;(B) via a transducer M which
all query words appearring in the computation of MB(x) is listable by some
function gePFy, i.e., Vx{(Query(M,B,x)=Set(g{(x))). Call g a query list.

(3) A function f is in PFrpo(iogmi(B) if f€PFy(B) via a transducer M,
where #Query(T,B,x)sclog|x|+d holds for all x by some absolute constants
¢,dz0. _

(4) A function f is in PFp(B) if fePF.(B) via a transducer M, where
for all x #Query(M,B,x) is bounded by some absolute constant.

In the continued section we introduce the concept of p-time
accessibilities. A p-time r-accessible class with an oracle B, PA.(B), is
the collection of languages A in NPncoNP such that an access function for
A belongs to PF.(B), where re{T,tt,T[O(logn)],btt}. Our paper contains a
classification of NPncoNP-sets by the complexity to compute access
functions for them. One of these classes PAr(B) is shown to coincide with
the polynomially helped class Ppe1p(B) discussed by Schéning[16] and Ko
[14].

Section 3 studies some fundamental properties of the class PF.(B) for
re{T,tt,TlO(logn)],btt}. PF.(B) can be considered as a natural extension
of the language class P.(B) [5,23]. One of main results in this section
is the existence of a recursive oracle B such that Py(B)=P.(B) and
PF+(B) +PF,,(B) .

In Section 4 we discuss several p-time accessible classes falling on P.
It is shown that the restrained classes PAp¢{B) and PATQHZOmn](B) collapse
to P. Hence the p-time accessibility needs superlogarithmically-many
oracle queries only if it is more complex. Moreover we see that
PA+(PSEL) falls on P contrary to the fact PAf(PSEL)-=PAy(P/poly), where
PSEL is the class of p-selective sets.

Relations among PA.(B), re{T,tt}, and other known classes are
principally discussed in Section 5. A typical result we obtain here is
that FewPncoFewP is contained in both PAy(FewP) and PA..(NP).

Let us further call B a r-self-accessible set if B is in PA.(B), where
re{T,tt}. In Section 6 we discuss these sets and strict-d-self-reducible
sets, a variation of d-self-reducible sets.
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Here is assumed reader’'s familiarity with [3,11,17,21]1. 1[It is remarked
that our approach in this paper is closely related to the robust
algorithms [14,16]1, the polynomial terseness [2] and the promise problems
[20].

§2. POLYNOMIAL-TIME ACCESSIBILITY. Tb capture a P-predicate structure of
a set A in NPncoNP, we need to investigate the structural complexity of
computing its access function f following p-time algorithms by several
restricted ways using oracles. The problem we now meet is how to evaluate
its complexity. Recall that we have already mentioned four types of
function classes, i.e., PF.(B) for re{T,tt, T[O{logn)]l,btt}. So we merely
examine whether fePF.(B) holds or not for each f, however, from more
general standpoint we here introduce and discuss the p-time r-accessible
classes PA.(B) of every language whose access function belongs to PF.(B).

We start by defining PA.(B) precisely, where re{T,tt,T[O{logn)],btt}.
DEFINITION 2.1. Assume re{T,tt,T[O(logn)]1,btt} and Bc3*.

{1) A language A belongs to the p-time r-accessible class with the
oracle B, PA,.(B), if and only if there exist two defining P-predicates Q,
R, a defining polynomial p and a function fePF.(B) such that

(i) A={x]) 3y, lyl=p{|x]))Q(x,y) }={x| (Vy, |y|=p(|x])))R(x,y)}, and
(ii) vel|f(x) |=p(|x]|)A{Q(x,f(x))v-R(x,f(x)))].

{(2) For a complexity class €, PA.(€) is the unibn of PA.(B) for every
oracle set Beg. ‘ |

Notice that the number of symmetric solutions on each input is clearly
more than zero. Thus, for each access function [,

A={x|Q(x, f(x)) }={x|R(x,f{x)}
is always satisfied.

Let us see some basic natures of PA.(B) in the following two
propositions. Their proofs are obtainable from definition without
difficulty. ‘

PROPOSITION 2.2. Let r be in {T,tt,T[O{logn)],btt}.

(1) A€PA.(C) and BePA.{(C) imply A®BePA.(C).

(2) P.(B)cP.{(C) implies PA.(B)cPA.(C).

(3) PA.(B)<P.(B)n(NPncoNP) .

(4) PAp:(B)<SPAro(10ogn)1{(B)<PA, . (B)<PA7(B).
PROPOSITION 2.3. Let re{T,tt,btt}.

(1) A€P.{B) and BecPA.(C) imply AcPA,.(C).

(2) AcPA.(B) and BeP.(C) imply A€ePA.(C).

(8) A€PA,(B) and BePA.(C) imply AcPA.(C).

It is noted that PA.(Q)=PA.(P)=P holds for every re{T,tt,T[O(logn)],
btt}), and also PA,(Z”)QNPncoNP is shown, where 2% denotes the power set
of 3*.
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Let Q,R be any P-predicates and p be any polynomial defining A, i.e.,
A={x| (3y, ly|=p(|2]))Qx,y) }={x| (Vy, |y|=p(|x|))R(x,y)}.

Then we define two prefix sets Pref{(Q,R,p) and MinPref(Q,R,p) by:
Pref(Q,R,p)={<x,u>|Fvl|uv|=p(|x]| ) A {Q(x,uv)v-R{x,uv))1},
MinPref(Q,R,p)={<x,Oi>{(y)i=1, where y is lexicographically

the minimal string s.t. |y|=p{]x])A(Q(x,y)v-R(x,¥y})},

where (y); expresses the i-th bit of the string y. Pref(Q,R,p) must be d-

self-reducible and it satisfies MinPref(Q,R,p)<Pr(Pref(Q,R,p)).

To show a given set A is in either PAy(B) or PA{(B), the next lemma is
so useful.

LEMMA 2.4. Suppose Q,R are any P-predicates and p is any polynomial

defining a set A. Then the followings hold.
(1) AePAz(Pref(Q,R,p)).

(2) AePA;;(MinPref(Q,R,p)).

PROPOSITION 2.5. PA;(NP)=PA,,{AS)=NPncoNP.

It is still unknown for us whether PA.{(NP)=NPncoNP is infered or not.
However, the consequence of Proposition 2.5 can be generalized to the
following theorem.

THEORENM 2.6. PA7(B)=PA,,(Pr(B)). In paticular PA7(8)=PA..(€) if a

complexity class € satisfies either Pr(€)=P, (€) or Pr(8)=€.

This result is widely applicable. For example, we obtain PAp(8)=PA(8)
for the following classes €: P,NPncoNP,BPP,ZPP,P /poly, (NPncoNP) poly.

Schéning[16] introduced the concept of polynomially helping the robust
algorithms. In the last place of this section, we see the relationship of
two concepts, the p-time T-accessibility and the polynomially helping the
robust algorithms. This was first announced (in a different form) only
for self 1-helpers by Balcdzar([4]. k

Any deterministic Turing machine M is said to be robust if L(M,%)=L{(M,A)
holds for every oracle A. Let us assume M is a robust machine. An oracle
B helps M (or L{M,2}) if Me always halts in p-time. Ppe1p(B) denotes the
class of languages helped by B.

THEOREM 2.7. PA7(B)=Pre1p(B).

83. PF.(B)-FUNCTIONS. This section discusses basic properties of the
function classes PF.(B), re{T,tt,T[O(logn)],btt}. Let us first see PF.(B)
to be a natural extention of ordinary language classes P.(B) [5,23]. Let
X, denote the characteristic function for A. |
PROPOSITION 3.1. Assume re{T,tt,T[0O(logn)],btt} and A,Bc<3™.

(1) AeP.(B) &> x,€PF.(B).

(2) PFp¢ (B)<PFrro(10gn)1{(B)<PF,, (B)<PFr(B).
PROPOSITION 3.2. Let r be in {T,tt, T[O(logn)],btt}.

(1) PF.(B)<PF.(C) < P.(B)<P.(C).
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(2) PFp 1 (B)SPF,; (C) & Ppe (BY<P, (C).
(3) PF,,(B)SPFr(C) & P (B)cPz(C).
(4) PF¢(BYSPFp: (C) = Py (B)SPp: (C) .
(5) PFy(B)<PF, (C) = Pr(B)<sP,. (C).

Corresponding to (4) and (5), the inverse;implications do not always
hold because the following oracles exist. Let N be the set of nonnegative
integers. '

THEOREM 3.3. There exist two recursive oracles A and B such that
(1) Ppyr(A)=P,;,(A) and PFy,, (A)+PF,,(A), and
(2) P, (B)=P7(B) and PF,,(B)+PFr(B). -

More strongly we can claim that REC-TALLY, the set of recursive tally
sets, separates PF . (REC-TALLY) from PFTuulamn](zzﬂ. This shows a
limitation of the power of functions obtained by logarithmically-many
oracle queries. Note that PF.;(REC-TALLY)=PF;(REC-TALLY).

THEORENM 3 .4. There exists a set S€<REC-TALLY such that
PFriociogm1 (2> ) #PF 1. (S) .

84. COLLAPSING CLASSES TO P. In Proposition 2.5, it was shown that
PAy(NP) and PA¢t(A§) exactly correspond to NPncoNP. 1In the opposite
direction, this section studies several p-time accessible classes which
collapse to P.

We start with the case of p-time btt- and T[O(logn)]-accessible classes.
Observations in Section 3 showed that PFrro(iogn)3(B)-functions are no more
powerful than PF{(REC-TALLY)-functions. Therefore, if an access function
for a given set A can be chosen among PFy.¢(B) or PFrio(iogny; (B), then A is
interestingly shown to be computed just by a P-algorithm without any help
of oracles. This intuitively indicates that the p-time accessibility
needs superlogarithmically-many oracle queries only if it is more complex
than P itself. Now let us prove PATm(mgm](223=PAbu(2p)=P.

THEOREM 4.1. PArgo(1ogm1(2” )=PAp:.(2%)=P.

Recently Ko[14] showed Strong—P/poly'is no-helper, in other words,
PAr(Strong-P/poly)=P. Assume € is either P, NPncoNP or NP. His argument
can be generalized for Strong-€/poly. We define a language B to be in
Strong-€/poly if there exist a set Be® and integers c,d20 such that, for
every n>0, some w satisfies both relations |w|<clogn+d and (Vx,|x|<n)[xcA
= (x,w>€B]. ‘

PROPOSITION 4.2. PAr(Strong-€/poly)=PAy(8), where € is either P, NPncoNP
or NP.

Turn to the p-time tt-accessible classes which can collapse to P. We
next see two collapsing results concerning the concepts of the polynomial
terseness [2] and the p-selectivity [13]. Let us begin with (f,g)-pterse
sets, an extension of pterse sets. ‘
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DEFINITION 4.3. Let f,g be functions on N. :
(1) A set B is (f,g)-pterse if and only if, for any p-time
deterministic oracle Turing machine M, it holds that:
(x) Vav{x,, - -, xpm} [F(n)2g(n) A¥Query (M,B, (xq, - - - ,Xpm)>) <g(n)] =
3RIY1, - - Yraey } I (YL, - YD) =<K {¥1) 5 - s X (Uraen ) 01
(2) A set B is (poly,logpoly)-pterse if B is (p,logq)-pterse for any
polynomials p and q. \

A remark we raise now is only that the k-pterseness is equivalent to the
(k,k)-pterseness. In the following theorem we use the counting argument
directly. '

THEOREM 4.4. PA,;(B)=P unless B is (poly,logpoly)-pterse.

Selman[18] showed Py (PSEL)=Py{(TALLY), while P,.(PSEL)=+P;(PSEL) is
recently proved by Watanabe[24]. This difference is clear in the case
PA.(PSEL). From Selman's result,

PAr (PSEL) =PAr(TALLY) =PAy(P/poly)
holds, however, PA{;(PSEL) collapses to P. Before showing the collapse of
PA;.(PSEL), we introduce wider class of bounded-p-selective sets
containing PSEL.

Recall that preorder < on I* is partially p-time computable if there
exists a PFy-function f such that

(i) x<y and yfx imply f(x,y)=f(y,x)=x,

(ii) x<y and y<x imply fix,y)=f(y,x)e{x,y}, and

(i1i) x¥y and yx imply f(x,y)é¢{x,y}.
We simply write xay if x<y and y=<x, and denote by <' the induced order on
>/ [18].
DEFINITION 4.5.

(1) A preorder < is b-linear if there is an integer m=0 such that, for
any n>0, some disjoint partition {B;,---,Bg} of 33" has the following
properties: '

(i) x€B; and y€B; imply either'x<y or y<x, and
(ii) xeB;, y€B, and i+k imply both x4y and y%x.

(2) A set A is bounded-p-selective if there exist a partially p-time

computable preorder < and an integer k>0 such that

(i) <' is b-linear on 3*/», and

(ii) A=u{B;|B;cSeg(a;),a; is a <'-chain,lgizk},
where Seg{a) is the set of all initial segments on a. bDPSEL denotes the
family of all bounded-p-selective sets.

We notice that bPSEL is contained between PSEL and the class wPSEL of
weakly p-selective sets [13]. Hence it is infered that,for re{T,tt},

PA; (PSEL)<PA, (bPSEL) cPA. (WwPSEL) .

Let us claim the collapse of PA.(bPSEL) to P.
THEOREM 4.6. PA,,(bPSEL)=PA,,(PSEL)=P.

3
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8§5. RELATIONS AMONG CLASSES IN NPncoNP. We have just seen that p-time
T[O(logn)]- and btt-accessible classes fall into P in the previoﬁs
section. Therefore we devote our attention to the elucidation of
structural complexities of the remaining accessible classes among well-
known complexity subclasses of NPncoNP.

We here denote 8%.; by Prro(iogn)1(35) [28]1 for k20. In [14], Hemachandra
proved 85=P,,(NP). On the other hand Cai et al.[7] showed BH=P..(NP) for
the Boolean hierarchy BH. Thus the inclusion relation NPcBHc®3c4) holds
evidently. We remark that it is still open whether any one of these
‘inclusions becomes proper or not. Nevertheless, the following result is
simply obtainable.

PROPOSITION 5.1. PAT(NPncoNP)sPA,t(NP)=PA¢1(BH)=PA¢¢(eg).

Let SPARSE be the class of sparse sets and PCLOSE be that of p-close

sets. By the recent work of Book and Ko([5], it holds that
Pr(P/poly)=P.(SPARSE) =P, (TALLY) =P, (PCLOSE) ,

where re{T,tt}. Then we immediately get: :

PROPOSITION 5.2. PAr(P/poly)=PA,.(SPARSE)=PA,.(TALLY)=PA.{PCLOSE)} for

re{T,tt}. - ' '

Now denote by EL§ the k-th level of the extended low hierarchy [17].
PAtt(ELg) contains all these classes.

PROPOSITION 5.3. PAT(NPncoNP)UPA;(P/poly)gPAr((NPncoNP)/poly)gPAtt(EL§).

Let us recall that REC-TALLY is the collection of recursive tally sets.
Similar to Book and Ko's result, Pr(APT) can be shown to coincide with the
p-time Turing reduced class from REC-TALLY. It should be noted that APT
is the family of languages A so that some deterministic Turing machine
recognizing A halts in p-time on every input in 3*-S, where S is a sparse
set. Hence every APT-set is recursive. It is known that every set in APT
is not many-one complete for NP unless P-NP [171.

LEMMA 5.4. Py(APT)=P,,(APT)=P.(REC-TALLY)=P.(REC-SPARSE) for re{T,tt}.
PROPOSITION 5.5. PAr(APT)=PA.,(APT)=PA.(REC-TALLY)=PA,(REC-SPARSE), where
re{T,tt}. ’

It reminds us that ZPP is a natural probabilistic class contained in
BPPn(NPncoNP)} [8]. It is known that every ZPP-set A is chracterized, for
any polynomial g, by some defining P-predicates Q,R and defining
polynomial p which satisfy #{y||y|=p(|x|),-Q(x,y) AR(x,y)} 2P I¥-21=D) ¢4
all input x (see e.g.[17]). Let us see that ZPP is located between two p-
time accessible classes PAr(BPP) and PA;(APT).

THEOREM 5.6. PAr(BPP)<ZPP<PAy(APT).

Another well-known class belonging to NPncoNP is the class UPncoUP. Due
to Ko’'s insight [14], we obtain:

PROPOSITION 5.7. PAy(UPNcoUP)=PA,, (UPncoUP)=UPncoUP.
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For the case FewPncoFewP, we can use Hemachandra’s technique of hiding
informations to a NP-set [12] to see FewPncoFewPcPAy(NP). Recall that
every FewP-set has the property which the number of its solutions on each
input is bounded by some absolute polynomial [1].

THEOREM 5.8. FewPncoFewP<sPAy (FewP)nPA,; (NP) .

We do not have any proof to show that FewPncoFewPcPAr(FewPncoFewP) and
PAr(FewPncoFewP) cFewPncoFewP hold contrary to Proposition 5.7.

As for the class &P [15], the situation is exceedingly different. Note
that any @P-set consists of strings of which the number of solutions is
odd. It follows from definition that oP is closed under complement.
Moreover ®P contains FewP [11] and clearly UP. Notice that any relation
between NP and oP is not known.

PROPOSITION 5.9. PAr(eP)=PA;,(®P)coPn(NPNcoONP) .

8§6. SELF-ACCESSIBILITY. Let us first define r-self-accessible sets for
re{T,tt}.
DEFINITION 6.1. Let re{T,tt}. We say a set A to be r-self-accessible if
A€PA.(A) is satisfied. SACCESS. is the collection of all r-self-
accessible sets.

-Clearly all sets in P are tt-self-accessible and

SACCESS {1cSACCESS1<PAf (NPhcoNP)

holds. By Ko[14], every set in DSREDncoDSRED is T-self-accessible, where
DSRED denotes the family of d-self-reducible sets. In the followings, we
treat some natural subsets of NPncoNP and show that they have the property
of the self-accessibility.

Here we recall the d-self-reducible sets [13,19]. A set A is d-self-
reducible if and only if there is a p-time computable partial ordering <,
on 3, a polynomial p and a function fePFy such that:

(1) any <,-decreasing chain begining with x has length <p(|x]|),
(2) VaVy(yeSet(f(x)) => ydax), |

(3) Vx[Set(f(x))=0 = (x€A < f(x)=1)], and

(4) vx[Set(f(x))+0 = (x€A & 3JyeSet(f{x)) (yeA))].

All d-self-reducible sets are natural self-reducible sets which are

many-one complete for NP. On the analogy of the T-self-accessibility of
DSREDNncoDSRED, we here define the restricted version of the d-self-
reducible sets. ,
DEFINITION 6.2. A set A is strict-d-self-reducible if A€DSRED via a PFy-
function f and there exists a function gePFqy satisfying
Ve (Q(f,x)=Set(g(x)), where Q(f,x)=UeQu(f,x), Qo{f,x)={x} and
Qi1 (f,2)=U{Set(f{y)) |yeQu(f,x)}}. Denote by sDSRED the class of all
strict-d-self-reducible sets.

By this definition all strict-d-self-reducible sets are d-self-
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reducible. Moreover, since SAT is obviously strict-d-self-reducible, so
Pp (SDSRED) =Py, (DSRED) =Py (NP) '
is infered although whether sDSRED-DSRED is not known.
The next lemma is due to Selman’s argument [19].
LEMMA 6.3.
(1) If AeDSREDncoDSRED then there exist P-predicates @,R and a
polynomial p defining A such that Pr{A)=Py(Pref(@Q,R,D)). ‘
(2) If AcsDSREDncosDSRED then there exist P-predicates Q,R and a
polynomial p defining A such that P;,(A)=P.,,(MinPref(Q,R,p)).

Section 2 introduced two types of prefix sets Pref(Q,R,p) and
MinPref{(Q,R,p) reduced from P-predicate structures of basic sets. These
prefix sets'directly reflect symmetric solutions for basic sets. So we
now take two special classes consisting of these prefix sets which are
computable in p-time using basic sets as oracles.

DEFINITION 6.4. PREF (MINPREF resp.) contains all languages A such that
Pref(Q,R,p)ePr(A) (MinPref{(Q,R,p)eP.(A) resp.) holds for some P-
predicates Q,R and some polynomial p defining A. .

At the last of this section we prove the desired relations to be hold,
i.e., the sets defined above are all self-accessible. '
THEOREM 6.5.

(1) DSREDncoDSRED<PREF<SACCESSy.
(2) sDSREDncosDSRED<MINPREF<SACCESS,, .
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