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1. Introduction

The subject of this paper is to investigate intractability of computing inverses of one-

way functions. A function is called “one-way” in general if its inverse is “harder” to

compute than the function itself. Recently, one-way functions have received considerable

attention because of their practical application as well as their theoretical importance.

Note that there are many definitions for “one-way function” (see, e.g., [Wat88]). In this

paper we define “one-way” as follows: a one-way function candidate is a one-to-one,

honest, and polynomial time computable function, and a one-way $func^{f}tion$ is a one-way

function candidate whose inverse is not polynomial time computable.

Consider any one-way function (candidate) $f$ . Intuitively, polynomial time nonde-

terministic computation is sufficient for inverting $f$ ; indeed, if $f^{-1}$ is not polynomial

time computable, then $P\neq$ NP. Thus, it seems very hard to prove the polynomial

time non-invertibility of $f^{-1}$ . Structural complexity theory provides several quantita-

tive scales to measure “intractability” of problems. For example, while we have been

unable to prove that SAT is not polynomial time solvable, we can prove that SAT is the

“hardest” problem in NP, where the “completeness” notion is used to state “hardest”.

Here we investigate completeness of computing inverse of one-way function candidates.

Note that conventional computational complexity theory has been developed mostly

for “decision problems”, whereas we are considering problems of evaluating function

values; thus, we have to either characterize computation for function evaluations in

terms of decision problems or introduce the corresponding notions into our context.

Valiant [Va76] defined the class UP in order to characterize computation for inverting

one-way function candidates. Since then, several interesting results have been observed
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concerning the complexity of UP, e.g., [Wat88]. However, this approach, the study of

function evaluation problems in the context of decision problems, has limitation, and

thus, some researchers [Be88, Kr86] have started investigating more directly. We follow

this latter approach. We consider classes of functions, $\coprod_{2}^{P}$ and $optP$ [Kr86], that provide

upper bounds for inverting one-way function candidates. We define $\leq_{m}^{PF}$-reduciblity”

(or, “metric reducibility” [Kr86]) that corresponds $\leq_{m}^{P}$ -reducibility, thereby discussing
(

$\leq_{m}^{PF}$ -completeness” of inverting one-way function candidates in $\square _{2}^{P}$ and $optP$ . We

show that some structural conjecture implies that the inverse of no one-way function

candidate is $\leq_{m}^{PF}$ -complete in $\square _{2}^{P}$ (resp., $OptP$ ).

The class $P^{NP}(=\triangle_{2}^{P})$ characterizes computation for “optimization problems”.

Recently some researchers [PZ82, Kr86, He87] have introduced subclasses of $P^{NP}$ by

restricting the way $and/or$ the number of queries to oracle sets. We can observe the

structure of $P^{NP}$ using these subclasses. Classes $P_{t(n)- T}^{NP},$ $P_{tt}^{NP}$ , and $L^{NP}$ are the classes of

sets accepted, respectively, by polynomial time oracle machines asking $t(n)$ many queries

to some oracle set in NP, by polynomial time oracle machines asking non-adaptive (i.e.,

truth-table-type) queries to some oracle set in NP, and by $\log$ space oracle machines

relative to some oracle set in NP. In [BH88, He87, Wag88] it is reported that $P^{NP}$
$O(\log n)-T$

$=P_{tt}^{NP}=L^{NP}$ . On the other hand, Kadin [Ka87] proved that $P_{k-T}^{NP}\neq\subset P_{(k+1)- T}^{NP}$ if the

polynomial time hierarchy collapses to a finite level; thus, it is natural to conjecture the

following [Wag86].

Conjecture. $P_{O(\log n)-T}^{NP}\neq P^{NP}$ .

We prove that this conjecture implies that the inverse of no one-way function candidate

is $\leq_{m}^{PF}$ -complete in $\square _{2}^{P}$ (resp., $optP$).

2. Preliminaries

In the following, we define notions and notation that are necessary in this paper. We

omit defining standard ones in computational complexity theory: the reader will find

them in, e.g., [BDG88].

We use $\Sigma=\{0,1\}$ for a finite alphabet and assume some natural encoding of the set

of integers over $\Sigma$ . For any string $x$ , we use $|x|$ to denote the length of $x$ . For any oracle
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machine $M$ and set $A$ , let $L(M, A)$ denote the set of strings accepted by $M$ relative to

$A$ . We assume some tupling function that is polynomial time computable and invertible.

We denote the output of the function on $a_{1},$
$\ldots,$

$a_{n}$ by { $a_{1},$
$\ldots,$

$a_{n}$ ). In the following, by

a function we mean a function from $\Sigma^{*}$ to $\Sigma^{*};$ a function is not necessarily total. The

composition of two functions $f$ and $g$ is denoted by $fog$. For any $y$ , let $f^{-1}(y)$ denote

the set $\{x : f(x)=y\}$ . By an inverse of $f$ we mean a function $g$ mapping every $y$ in

the range of $f$ to some element in $f^{-1}(y)$ . Notice that every one-to-one function has

a unique inverse. When $f$ is one-to-one, we use $f^{-1}$ also to denote the inverse of $f$ .

A function $f$ is honest if there exists some polynomial $p$ such that $|x|\leq p(|f(x)|)$ for

every $x$ in the domain of $f$ . The “honest” property is necessary to avoid the case that

polynomial time non-invertibility is trivial. It is shown [GS88, Va76] that a one-way

function exists if and only if $P\neq$ UP ( $\subseteq$ NP); we have been unable to find a “real”

one-way function.

We use standard notation for complexity classes: e.g., $P$ , NP. Let PF denote the

class of polynomial time computable functions. For any oracle set $A$ we write complexity

classes relative to $A$ in such a way as $P^{A}$ . In order to discuss relativized complexity

classes in more detail, we use the following notation [BDG88].

Definition 1.

(1) For any set $A$ and any reduction type $r,$ $P_{r}^{A}$ is the class of sets that are $\leq_{r}^{P}$ -reducible

to $A$ .

(2) For any set $A,$ $PF_{T}^{A}$ (or, $PF^{A}$ ) is the class of functions that are deterministically

polynomial time computable relative to $A$ . A class $PF_{tt}^{A}$ is the class of functions

that are deterministically polynomial time computable asking non-adaptive (i.e.,

truth-table-type) queries to $A$ .

For any class of sets $C$ and any reduction type $r,$ $P_{r}^{C}=\bigcup_{A\in C}P_{r}^{A}$ (resp., $PF_{r}^{C}=$

$\bigcup_{A\in C}PF_{r}^{A})$ . We often use conventional notation $\square _{2}^{P}$ for $PF^{NP}$ . As mentioned in Intro-

duction, we have the following observation, which plays a key role in this paper.

Proposition 1. [BH88, He87, Wag88] $P_{tt}^{NP}=P^{NP}$
$O(\log n)-T$

We define the notion of “polynomial time reducibility” for problems of computing
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function values. The following is one reasonable definition for “polynomial time many-

one reducibility”.

Definition 2. For any function $f$ and $g,$ $f$ is polynomial time many-one reducible to $g$

$(f\leq_{m}^{PF}g)$ if there exit polynomial time computable total functions $h_{1}$ and $h_{2}$ such that

$f=\lambda x.h_{1}(x, h_{2}og(x))$ .
Remark. This reducibility is called “metric reducibility” in [Kr86].

We define the notions of “hardness” and “completeness” by the analogy of the ones for

decision problems.

3. Results

We discuss difficulty of computing inverses of one-way function candidates. First con-

sider the class $\square _{2}^{P}$ . Note that $\square _{2}^{P}$ is an upper bound for inverting one-way functions:

namely, we have the following proposition.

Proposition 2. For every one-way function candidate $f,$ $f^{-1}$ is in $\square _{2}^{P}$ .

Here we ask whether it is the case that $f^{-1}$ is “hardest” in $\square _{2}^{P}$ for some one-way

function $f$ . We show that if $P_{O(\log n)-T}^{NP}\neq P^{NP}$ , then the inverse of no one-way function

candidate is $\leq_{m}^{P}$-complete in $\square _{2}^{P}$ . That is, the conjecture concerning the structure of
$P^{NP}$ implies that the inverse of no one-way function is “hardest” in $\square _{2}^{P}$ .

For any polynomial time deterministic oracle machine $M$ and any oracle set $A$ , we

define a function $f_{PATH-M^{A}}$ as follows:

for every $x\in\Sigma^{*},$ $f_{PATH-M^{A}}(x)=\langle a_{1},$ $a_{2},$
$\ldots,$

$a_{m}$ ),

where $M$ on $x$ asks queries $q_{1},$
$\ldots,$

$q_{m}$ to $A$ , and for every $i,$ $1\leq i\leq m$ ,

$a_{i}$ is the answer to the ith query from the oracle $A$ .

Notice that $f_{PATH-M^{A}}$ is in $\square _{2}^{P}$ .

Proposition 3. For any polynomial time deterministic oracle machine $M$ and any

oracle set $A,$ $f_{PATH-M^{A}}$ is in $\square _{2}^{P}$ .

Lemma 4. For any $L\in P^{NP}$ , let $M$ and $A$ be a polynomial time deterministic oracle

machine and an oracle set in NP such that $L=L(M, A)$ . If $f_{PATH-M^{A}}\leq_{m}^{PF}f^{-1}$ for

some one-way function candidate $f$ , then $L\in P_{tt}^{NP}$ .
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Proof. The proof is almost immediate from the claim below. $\square$

Claim. For every one-way function candidate $f,$ $f^{-1}\in PF_{tt}^{NP}$ .
Remark. Indeed, we can prove that $f^{-1}\in PF_{tt}^{UP}$ .
Sketch of Proof Define Bit$(f^{-1})$ by

Bit$(f^{-1})=$ { $\{x,$ $i,$ $b\}$ : the ith bit of $f^{-1}(x)$ is $b$}.

It follows from one-to-one-ness of $f^{-1}$ that Bit$(f^{-1})$ is in UP ( $\subseteq$ NP). From one-to-

one-ness of $f^{-1}$ , we also have that for every $x\in\Sigma^{*}$ ,

$f^{-1}(x)=b_{1} \ldots b_{m}rightarrow\bigwedge_{1\leq i\leq m}(\{x, i, b_{i}\}\in Bit(f^{-1}))$ .

Thus, one can compute $f^{-1}(x)$ asking \langle $x,$ $1,0$ }, $\ldots,$ \langle $x,$ $m,$ $0$ } to Bit$(f^{A})$ . $\square$ CLAIM

Now the following theorem is immediate from Proposition 1, 2, and 3, and Lemma

4.

Theorem 5. Let $f$ be any one-way function candidate. If $P_{O(\log n)-T}^{NP}\neq P^{NP}$ , then $f^{-1}$

is not $\leq_{m}^{PF}$-complete in $\square _{2}^{P}$ .

Krentel [Kr86] introduced the class $OptP$ in order to study NP optimization prob-

lems. Next we consider this class; we obtain a yet stronger result than Theorem 5.

Definition 2.

(1) A metric machine $N$ is a polynomial time bounded nondeterministic Turing ma-

chine such that every nondeterministic path writes a string and halts with an ac-

cepting/rejecting state. For every string $x,$ $opt^{N}(x)$ is the lexicographically largest

string on any accepting path of $N$ on input $x;opt^{N}(x)$ is undefined if no accepting

path exists.

(2) A function $f$ is in $OptP$ if there is a metric machine $N$ such that $f(x)=opt^{N}(x)$

for all $x\in\Sigma^{*}$ .
Remark. This definition slightly differs from the original one.

The following function $f_{MAXSAT}$ is one of the typical functions in $OptP$ :

for every $x\in\Sigma^{*},$ $f_{MAXSAT}(x)=b_{1}b_{2}\ldots b_{m}$ ,

where $b_{1},$
$\ldots,$

$b_{m}$ is the lexicographically maximum satisfying assignment of $x$ .

(NOTE: If $x$ is not a formula nor satisfiable, then $f_{MAXSAT}(x)=00\ldots 0.$)
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Proposition 6. [Kr86] $f_{MAXSAT}$ is $\leq_{m}^{PF}$-complete in $OptP$ .

It is easy to show that $OptP$ is an upper bound for inverting one-way function

candidates.

Proposition 7. For every one-way function candidates $f,$ $f^{-1}$ is in $OptP$ .

It is clear that $OptP$ is a subclass of $\square _{2}^{P}$ ; furthermore, we have the following close

relationship between $\square _{2}^{P}$ and $optP$ .

Proposition 8. [Kr86] For every function $f,$ $f$ is in $\coprod_{2}^{P}$ if and only if $f$ is $\leq_{m}^{PF}$-reducible

to some $g$ in $OptP$ .

Hence, the following theorem follows from Proposition 7 and 8, and Theorem 5.

Theorem 9. Let $f$ be any one-way function candidate. If $P_{O(\log n)-T}^{NP}\neq P^{NP}$ , then $f^{-1}$

is not $\leq_{m}^{PF}$-complete in $OptP$ .

Remark. Note that Theorem 5 is an immediate corollary of this theorem.
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