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Decision Problem for a Logic of Temporal Information
Jian-Ming Gao and Akira Nakamura

Department of Applied Mathematics, Hiroshima University
Higashi-Hiroshima, 724 Japan

Abstract. This study deals with a logic TIL of temporal information. By formalizing a language of
logic TIL containing classical propositional operations, modal operations determined by parameters and
tense operations, we provide a logical tool for solving definability problem of temporal information.
Finally, we show that logic TIL is decidable.

1. Introduction

“Logical treatment of knowledge representation has been an issue of concern [2, 4, 8].
But in many approaches, models for the formalized languages have been regarded as ones of
the current states of knowledge. In real world, however, temporal information, for example
hbspital records, meteorological phenomena and so on, universally exist, and hence files in
their databases are dynamic and must be brough up to date regularly to reflect changes in
status of items in the files.

On the other hand, since information processing presupposes the classification of
information, a class of relations in a set of objects, which are determined by properties of the
objects may be looked upon as criterions of the classification. The main task of temporal
information processing is to collect all relevant information characterized by some of the
given properties in a domain at a moment of time. ‘

The purpose of this paper is to solve the definability problem of temoral information
based on a class of relations — indiscernibility relations in the set of objects, by proposing a
language, and the decision problem for logic TIL. Two objects are in such an indiscernibility
relation corresponding to a set of properties exactly if the two are distinguishable by means of
the set of properties. The indiscernibility (cf.[10]) is generalization of some properties of
real-world models, say, relation databases [14], information systems [12]. The logic
considered in this’paper is based on tense logic [1, 7, 13] and modal logic [5, 6]. The former
will be used as an auxiliary tool of this approach; the latter has modal operators relative to the
parameters referred to as properties of objects.

2. Temporal information system and temporal definability of objects

For convenience, we introduce a mathematical frame for temporal information — a
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temporal information system. By a temporal information system ( a TI system for short )
we mean a system 8=(OB, PROP, TM, {ind(P,t)}pc prop,eTv» R) Where OB is a nonempty

set of objects, PROP is the family of all sets of properties of objects, TM is a nonempty set
of moments of time, ind(P,t) is an equivalence relation in OB, referred to as temporal

indiscernibility relation in OB determined by properties from P attime t (e TM ), Ris a
transitive linear ordering in TM. "

Given a TI system, we define equivalence class ind(P, t)(o) of an object o
determined by relation ind(P, t): :
ind(P,t)(o)={o'e OB | (0,0")eind(P,t)}.

Theorem 2.1. The following conditions are equivalent:
(1) ind(P,t)cind(Q,t).
(2) for all oe OB ind(P,t)(0)cind(Q,t)(0).

For Pe PROP and ScOB, we define ind(P,t)S={oe OB | ind(P,t)(0)cS} and
ind(P,t)S={oe OB | ind(P,t)(0)"S#J}. In other words, ind(P,t)S is the union of those
equivalence classes of ind(P,t) which are included in S; ind(P,t)S is the union of those
equivalence classes of ind(P,t) which have an element in common with S. ind(P,t)S is called

a lower approximation of S with respect to relation ind(P,t), and ind(P,t)S an upper
approximation of S with respect to ind(P,t).

Temporal indiscernibility of objects influences definability of sets of objects by means
of properties.

We say that vset Sis (P,t)-deﬁnablé exactly if ind(P,t)S=S=ind(P,1)S, i.e., S is P,
-definable iff it is covered by equivalence classes of relation ind(P,t). Given a set S of
objects, in terms of approximation we define (P,t)-positive, (P,t)-negative and (P,t)-
borderline elements of S as follows: ‘

— o/is a (P,t)-positive element of S iff oe ind(P,t)S,
— ois a (P,t)-negative element of S iff oe OB-ind(P,t)S,
— ois a (P,t)-borderline element of S iff oe ind(P,t)S-ind(P,t)S.

Theorem 2.2.

(1) ind(P,)ScScind(P,1)S.
(2) ind(P,t)S=-ind(P,t)-S.
(3) ind(P,t)S=-ind(P,t)-S.

Theorem 2.3. v :
(1) If ind(P,t)cind(Q,t), then for any SCOB, ind(Q,t)Scind(P,t)S and
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ind(P,t)Scind(Q,1)S.
(2) If ind(P,t)cind(Q,t), then (Q,t)-definability implies (P,t)-definability.
Proof. (1) This proof is the application of Theorem 2.1.
(2) This proof is by Theorem 2.2(1) and condition (1). //

We list some of the properties of temporal approximations:
Theorem 2.4.
(1) Scind(P,t)ind(P,1)S.
(2) ind(P,t)(SNT)=ind(P,t)SNind (P,t)T.
(3) ind(P,)SUind(P,)) Tcind(P,t)(SUT).
(4) ind(P,t)OB=0B.
(5) ind(P,1)J=22.
(6) if ST, then ind(P,t)Scind(P,t)T.
(7) ind(P,))S=ind(P,t)ind(P,1)S.

Note that the counterparts of the above conditions for upper approximations hold by
duality of lower and upper approximations.

3. The logic TIL of temporal information

Formulas of the language of TIL are intended to represent sets of objects. We admit
the following pairwise disjoint sets to define the formulas: ‘ :
— VARO: a set of variables representing sets of objects, =
— {—, Vv, A, &, ©}: the set of propositional operators of negation, disjunction,
conjunction, implication and equivalence, respectively,
— VARP: a set of variables representing sets of properties,
— {[ 1, <>}: the set of modal propositional operators corrcspondmg to lower and
upper approximations, respectively,
— {G, F, H, P}: the set of tense operators,
— {(,)}: the set of left and right parentheses as punctuations.

Set FOR of the formulas is the least set satisfying the following conditions:
VAROCFOR

if X, YeFOR, then =X, XvY, XAY, XY, XY, GX, FX, HX,PXe FOR,
if Ae VARP and Xe FOR, then [A]X, <A>Xe FOR.

Formulas X and Y ére called subformulas of foumulas XvY, XAY, X—>Y and

XeY; X is called subformula of formulas —X,GX, FX, HX, PX, [A]X and <A>X; in
addition, any formula X is a subformula of itself.
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Before we formally give the semantic definitions of G, F, H and P, let us intuitively
interpret them as: necessarily in the future, possibly in the future , necessarily in the past and
possibly in the past , respectively.

Truth or falsity of a formula, to a certain extent, depends on time. From this
viewpoint, we define semantics of the language by means of the notions of model
determined by a TI system and temporal satisfiability of formulas in a model.

By a model, we mean a system M=(OB, TM, PROP, {ind(P,t)}pc prop,icmvt R: V)
where OB is a nonempty set of objects, TM is a nonempty set of moments of time, PROP is
the family of all sets of properties of objects, ind(P,t) is the indiscemibility relation in OB,
determined by properties from P at time t, R is a transitive linear ordering in TM, v is a

valuation function such that v(A)e PROP for Ae VARP, v(X)SOB for Xe VARO.

Given a model M, we define temporal satisfiability of the formulas. For oe OB and
te TM, we say that an object o satisfies a formula X in model M at moment of time t (
M l=f) X)) iff the following conditions are satisfied:

 for Xe VARO ML X iff oe v(X),

MEL XvYiff Ml X or MELY,

Ml XAY iff ML X and MELY,

ME! -Xiff not ML X,

MEf XY iff M —XVY,

M, X Y iff ML (XA -X),

M &L [AIX iff for all o' (0,0)e ind(v(A),t) implies M =L X,

M L <A>X iff there is an o' such that (0,0)e ind(v(A),t) and M & X,

M =L GX iff for all t' (tt')e R implies ML X,

M l=g FX iff there is a t' such that (t,t')eR and M t=g X,

M=t HX iff for all t' (t',t)e R implies ML X,

M =L PX iff there is a t such that (t,)e R and M} X.

It is easily seen that operators [A], G and H are dual with respect to <A>, F, and P,
respectively. To each formula X we assign a set extyX (extension of X in model M at time t)
of these objects which satisfy X in M at time t: extyX={oe OB |M |=I') X}.

Theorem 3.1.

(1) extyX=v(X) for Xe VARO.
(2) extyX=-ext},X.

(3) extyX v Y=extfXextyY.
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(4) extyX AY=extiXextiY.

(5) extyX - Y=-extiX Uext}Y.

(6) extyX > Y=(extiXnextiY)U((-extiX)N(-extifY)).

(7) extyf AIX=ind(v(A),DextiX .

(8) extM<A>X—md(v(A) DextyX.

(9) extyGX={oe OB | for all t' (t,t')e R implies oe extMX}

(10) extyffX={oe OB | there is a t' such that (t,t')e R and oe cxtde }.
(11) extiFHIX={oe OB | for all t' (t',t)c R implies oc extyX}.

(12) extyPX={oe OB | there is a t' such that (t',H)e R and oe extMX}
Proof. immediate. ’ i/

‘Theorem 3.2.

(1) exty Al X=-exti<cA>—X.
) extMGX——extMF—‘X

3) extMHX—-extMP—.X

We introduce the notions of truth and validity of formulas. A formula X is said
to be true in model M (=X ) if for all te TM extyX=0B. A formula X is said to be valid
(=X) if X is true in all models for logic TIL. Note that X is satisfiable iff —X is not valid.

Theorem 3.3. The following conditions are equivalent:

(1) EMX—-Y.

(2) For te TM extyXCextyY

Proof. syX—Y iff extyX—Y=0B iff -ext{X UextyY=OB iff ext X CextyY. // -

Theorem 3.4. The following conditions are equivalent:
(1) =p<A>X-[AIX.

(2) extyX is (v(A),t)-definable for all te TM.
Proof. By theorem 3.1(7) and (8), Theorem 3.3 and Theorem 2.2(1).

Theorem 3.5. For every model M, if ind(v(B),t)cind(v(A),t), then for every formula X,

=m[AIX—[BIX.
Proof. Since ind(v(B),t)cind(v(A),t), by Theorem 2.3(1), for any SCOB 1nd(v(A) S C
ind(v(B),1)S. Therefore, -ind(v(A),DextXLind(V(B),ext}X=0B. /

Using standard techniques of proposttional logic, modal logic [5] and tense logic [7],
we can show the following.
Theorem 3.6.

(D If =X and XY, then 1=MY.
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(D) If =X, then = [AJX.
(3) If =X, then =GX.
D If =X, then = HX.

Let A, be arbitrary expression and let X and Y be arbitrary formulas. Then, we
formulate some valid formulas of logic TIL.
Theorem 3.7. The following formulas are valid:
(1) All classical propositional tautologies.

(2) (@) [AIX=>Y)=>(AIX—>[A]Y).
(b) [A]IX—>X.
(c) X—[A]<A>X.
(d) [AIX—>[A][AJX.
3) (@) GX—>Y)—(GX—GY).
(b) HX— YY)~ HX—HY).
(c) X—>GPX.
(d) X—>HFX.
(e) GX—>GGX.
(f) HX—HHX.
(£) FXAFY > (FXAY)VF(XAFY)VF(FXAY)).
(h) PXAPY —(P(XAY)VP(XAPY)VP(PXAY)).

Theorem 3.7(2a) and (3a), (3b) assure that logic TIL is normal. Theorem 3.7(2) and
Theorem 3.6(1) and (2) have an obvious connection with the axiomatization of modal logic
S5: for a fixed A, they form S5. Theorem 3.7(2b), (2¢) and(2d) show reflexivity, symmetry
and transitivity of the indiscernibility relations, respectively. Theorem 3.7(3) and Theroem
3.6(3) and (4) correspond to tense logic CL. Theorem 3.7(3c), (3d) say that past)tense
operations are inverse with future tense operations; (3e), (3f) express transitivity of time
ordering and (3g), (3h) express forwards linearity and backwards linearity, respectively.

4. Decidability

In this section, we investigate the following important property of logic TIL: for any
formula X, X is satisfiable if and only if X is satisfiable in a finite model for logic TIL
(where both OB and TM have less than 22x!_ 2®@x! 4 1 elements, @yl is the cardinality of

set @x of all subformulas of X). The way of proving the finite model property is the method
of filtration (cf. [3, 9]; in this paper, the model contains two classes of "worlds' and two

classes of relations): given a model M and a formula X, we define another model M* which
is finite and in which for some object o and for some time t such that not M 1-_-2) X, provided

X is not true in M. Finally, we give a positive solution to the problem of deciding whether or
not a formula in logic TIL is satisfiable (or valid).
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Given a formula X and a model M=(OB, TM, PROP, {ind(P,t)}pc prop, e R» V),
we construct a model M*=(0OB*, TM*, PROP*, (ind*(P,t)}pc prop* 1eTv» R*, V¥) in the
following.

For any oe OB and any te TM, we define an cqulvalence relation = in OBxTM by
(0,6)=(0",t")deL | for any Ye @x Mt=t Yiff M l= Y,

where ®x is the set of all subformulas of X (mcludmg X 1tself)

[o,t]]_—?{ (0',tYe OBXxTM | (0,t)=(0',t)}. That is, we define [o,t] as an equivalence
class (containing the pair (o,t) ) of the relation =, It is easily known that the number of all the

classes [0,t] can be limited within 2*x. It should be noticed that in general, if (0',t)e[o,1],
then [0',t']=[o,t]; but if (o,t")¢ [0,t] ( (0',t)¢ [0,t] ), then [o,t]#[0,t"] ( [0,t]#[0',t] ).

Moreover, ®(o, t)D{ o eOB | for some t' such that (0",t)e[0,t]}, ¥(0,)P{t'e TM |
for some o' such that (0',t)e [0,t]}.

The components of M* are as follows:

(H)OB*={0*c OBl o*= N ®(0"t")-[( U @("t") N (ND©O'L)) 1}
‘ cdEy) oz OE'L) , e OEY)
ad
OO N DOL)=D
o &EY1)
) TM*= {t cTMI t'= N ¥(o',t)-[( U Y(o"t") N (NP ]}.
te YEyx) te ‘P(o £ e Y@©Lr)

Il

‘I’(o £( n Yor)=2
=Yy

(3) PROP* is the least set of v(A) satisfying the following condition: for Ac VARP
v(A)e PROP* if A occurs in a modal operation contained by a subformula of X
(4) for Pe PROP* (v(A)=P), t*e TM*, (0*,0'*)e ind*(P,t*) iff for any [A]Ye Dy the
following conditions are equivalent:
@) for all (x,t1)e [o,jNo*xt* M =Ll [A]Y,
(ii) for all (x',t12)e [0',t]N0"*xt* M :tf. [A]Y;
(5) R* in TM*xTM* is defined below:
if there is no tense operation in X, R* is ordered under a transitive lmear condition
arbitrarily; otherwise, (t*,t*)e R* iff for any oe OB the following (i) and (ii) hold:
(i) for any GYe ©x (a) implies (b):
(@) for all (x,t1)e o*xt*n[o,t] M=l GY

(b) for all (y’t2)e O*Xt‘*m[o,t'] M l=§,2 GY and M t‘—";,z Y;
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(ii) for any HY e ®x (c) implies (d):
(c) for all (x,2)e o*xt'*No,t] M=2HY
(@ for all (y,tDe o*xt*No,t] M=U{HY and M |=tyl Y, | |
(6) v¥: VAROUVARP—AOB*)UPROP* is a valuation function satisfying the following
conditions:

for Ye VARO v*(Y)<OB* such that for any o*e v*(Y) iff oe v(Y),
for Ae VARP v*(A)e PROP* such that v*(A)=v(A) if v(A)e PROP*.

As defined above, all the eiements of OB* are disjoint, and so are the elements of
TM#*. This consideration is meaningful in giving the definitions of ind*(P,t*) and R*. The
definitions of OB* and TM* show that o* and t* contain, as least, o and t, respectively, and
that OB* and TM* are nonempty since both OB and TM are nonempty. We evaluate the
cardinalities of OB* and TM* just as we calculate the number of various intersections Qf 21

circles. Therefore, the upper bound of OB* is 220X - 2@x! 4 1; this result is suitable for TM*,
too.

Lemma 4.1. For any Ye @y the following conditions are equivalent:

(HM t=f) Y.

(2) For all (0',t)e [o,]No*xt* M LY.

Proof. Suppose (1) holds. Then, there is an equivalence class [o,t] of = such that for all
(0',tYeo,t] M&=E)Y iff M l=t(;-Y. It follows that (2) holds. Suppose (1) does not hold.
Then, for all (0',t')e[o,t], not M t=t(;.Y. Consequently, (2) does not hold.  //

It should be stressed that [o,t]No*xt*#o*xt* and if (2) were: For all (0',t")e o*xt*
M r=%'Y, Lemma 4.1. would not hold.

Lemma 4.2.
" (1) For Pe PROP* and t*e TM* ind*(P,t*) is an equivalence relation in OB*,
(2) For Pe PROP* if (0,0")e ind(P,t), then (0*,0'*)e ind*(P,t). ,
(3) For [A]Ye @x if (0%,0™)eind*(P,t*), then, M= [A]Y implies Mi=!,, Y for (0",t)e
[0',t]No ' *xXt*.
Proof. (1) This proof is the matter of the definition of ind*(P,t*).

(2) Suppose (0,0)eind(v(A),). If M=, [A]Y, then M=} [AJ[A]Y and by the
assumption, M l=to.[A]Y. Conversely, since (0,0")e ind(v(A),t) implies (0',0)e ind(v(A),1),
similarly, we show that if ML [A]Y, then M=l [A]Y. By Lemma 4.1, (0*,0%)c
ind*(v*(A),t*). g \ "

(3) Suppose (0*,0'*)e ind*(v¥*(A),t*) and M L=g [A]Y. Then, it can be derived from
the definition of ind*(v*(A),t*) that M|=g,. [A]Y for (0",t)e [0',t]Mo"*Xt* and so, on
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account of the reflexivity of ind(v(A)), we have ML, Y. /I

Lemma 4.3.

(1) If (t,t)eR, then (t*,t'*)e R*.

(2) R* is a transitive linear ordering in TM*. .

(3) For any GYe @y if (t*,t*)e R¥, then for any oe OB M l=t GY implies M |=t Y forall

(0',tMe o*xt"*M[o,t'].

(4) For any HYe @y if (t*,t'*)e R*, then for any oe OB M l=to' FY implies M t=g. Y for

(0',t")e o*xt*M[o,t].

Proof. Let us make a comment on (1): if there is no tense operation in formula X, then, (1)
does not hold. Indeed, we will zipply (1) only in the case of existence of the tense operation
(see the proof of Lemma 4.4).

(1) Assume that (t,t)eR. By Theorem 3.7, Mt=t GY implies M¥= GGY. By the
assumption, M I=g GY implies M lr=f) Y,and M I=g GGY implies M t=}) GY. Similarly, we
show that for any HYe @ if M =5 HY, then M =L HY and M=l Y. Thus, by Lemma 4.1,
we have (t*,t'*)e R*.

(2) The transitivity of R* follows from the definition of R*. Supposes there is a pair
(t*,t'*) in TM*XTM* such that (t*,t'*)e R* and (U'*,1%)g R* and t*#t'*. Then by (1),
(t,t')e R and (t',t)¢ R and tt', a contradiction. Therefore, R* is linear.

(3) Assume that (t*,t'*)e R*. Suppose M lzg GY. Then, by the definition of R*, we
have ML, Y for all (0't")e o*Xt"*No,]. »

(4) This is similar to the proof of (3). Vi

Bky a finite model for TIL, we mean a model M=(OB, TM, PROP,
{ind(P,t)}pc prOP, 1@ R, V) for TIL, where both OB and TM are finite. In this sense, the

previous discussion makes it clear that the model M* is a finite model for TIL.

Lemma 4.4. For any Ye®x, any oc OB and any te TM ML Y iff M* i, Y.
Proof. This proof is by induction on the structure of Y. /

We call M* filtration of M when Lemma 4.4 holds.

Theorem 4.5. X is satisfiable iff X is satisfiable in a finite model where
IOB| <22®x! - 2x! + 1 and ITMI<22Px! . 2P 4 1,

Proof. It is sufficient to show the "only if" part only: if X is not satisfiable in any such finite
model, then, X is not satisfiable in any model. Suppose the claim does not hold, namely,
there is a model M (without loss of generality, M can be assumed to be not such a finite
model) such that X is satisfiable in M. Then, by Lemma 4.4, X is satisfiable in M*, a
contradiction. I
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The finite model property has an important bearing on decidability. This means that

there are finitely many finite models where JOB| <220x!. 29x! 1 1 and ITMI<22®x! - 20x! 4 1,
and that given a formula X and such a model, it is possible to decide effectievly whether or
not X is satisfiable (or valid) in the model.

As desired, we reach a conclusion on the decidability of logic TIL.
Corollary 4.6. The satisfiability problem( or the validity problem ) of formulas in logic
TIL is solvable.

5. Future topic

We have proposed a logic TIL of temporal information, and shown the decidability of
TIL. In fact, in addition to the indiscernibility, there are many relations depending on
properties of objects that can be used to induce patterns in a set of objects. A question is how
to completely axiomatize these logics like TIL with respect to "2 dimensional” worlds.
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