A COUNTER EXAMPLE OF STRONG BAUM-CONNES CONJECTURES

FOR FOLIATED MANIFOLDS

Hiroshi TAKAI

Department of Mathematics,
Tokyo Metropolitan University,
Fukazawa, Setagaya, Tokyo, JAPAN.

§1 Introduction Related to a new index theory, Baum and Connes conjectured in [1] that the analytic and topological K-theory for foliations and dynamical systems are isomorphic each other under the K-theoretic index map. Since then, there appeared several papers supporting the conjecture (cf:[1]~[9] except [4]). However, Skandalis recently showed in [4] that there exists a counter example of the strong Connes-Kasparov conjecture for K-theory of C^*-crossed products. In his proof, a central tool is the property T due to Kazhdan in semisimple Lie groups of real rank one.

Modifying his idea, we shall show in this note that there exists a counter example of the strong Baum-Connes conjecture for foliated manifolds.

§2 Preliminaries Let (M,F) be a foliated manifold and G its holonomy groupoid. Taking the source and range maps s,r from G to M respectively, one can define the foliation \tilde{F} of G coming from the tensor product of the pull backs $s^*(F)$ and $r^*(F)$ of F by s and r
respectively. Let $\Omega^{1/2}$ be the half density bundle over G tangential to \mathfrak{F} and denote by $C_c(\Omega^{1/2})$ the $*$-algebra of all continuous sections of $\Omega^{1/2}$ with compact support. The $*$-algebraic operation is defined as follows:

$$(f \cdot g)(\tau) = \int_{\tau = \tau_1 \tau_2} f(\tau_1)g(\tau_2)$$

$$f^*(\tau) = \overline{f}(\tau^{-1})$$

for all $f, g \in C_c(\Omega^{1/2})$ where $\overline{f}(\tau) = \overline{f(\tau)}$. Given any $x \in M$, let H_x be the Hilbert space consisting of all L^2-sections of $\Omega^{1/2}$ over G and π_x the $*$-representation of $C_c(\Omega^{1/2})$ on H_x defined by

$$(\pi_x(f)\xi)(\tau) = \int_{\tau = \tau_1 \tau_2} f(\tau_1)\xi(\tau_2)$$

for all $f \in C_c(\Omega^{1/2})$ and $\xi \in H_x$. The completion $C^*_r(M,F)$ of $C_c(\Omega^{1/2})$ with respect to $\|f\| = \sup_{x \in M} \|\pi_x(f)\|$ is called a foliation C^*-algebra associated to (M,F).

We now consider the K-theory $K_a(M,F)$ of $C^*_r(M,F)$ which is called the analytic K-theory of (M,F). We also have another K-theory of (M,F) using a pure topological way. It is called the topological K-theory of (M,F) which is denoted by $K_t(M,F)$. By Baum-Connes[1], if G is torsion free, then $K_t(M,F)$ is nothing more than the twisted K-theory $K^\nu(BG)$ of the classifying space BG of G by the transverse bundle ν of F. More precisely, the latter is the K-theory $K(B\tilde{\nu}/S\tilde{\nu})$ of the Thom space $B\tilde{\nu}/S\tilde{\nu}$ of the ν-bundle $\tilde{\nu}$ over BG. We then state the Baum-Connes conjecture for foliated manifolds as follows:

Baum-Connes Conjecture: Given a smooth foliated manifold (M,F), the K-index map is an isomorphism from $K_t(M,F)$ to $K_a(M,F)$.

- 2 -
There exists several papers supporting the above conjecture (cf:[1]-[9] except [4]).

Suppose G is torsion free and ν has a spinC structure, then we know that $K^0(BG)$ is equal to $K(BG)$ via Thom isomorphism. Related to the conjecture, we may formulate the following conjecture which is a strong version of the Baum-Connes' one:

Strong Baum-Connes Conjecture: Given any smooth foliated manifold (M,F) where G is torsion free and ν is spinC, then the K-index map is an KK-isomorphism from $K^*_c(M,F)$ to $K_a(M,F)$ in the sense of Kasparov.

§3 Construction

Let G be a connected semisimple linear Lie group which is locally isomorphic to $Sp(n,1)$ or F_4 $(n \geq 2)$. Then it is of real rank one without Kazhdan's property T. Thanks to Skandalis[4], it is non K-nuclear, which means that the K-theory of the reduced group C*-algebra is no longer KK-isomorphic to that of nuclear C*-algebras. Using this fact, he found a counter example of the strong Connes-Kasparov conjecture for C*-crossed products. We now modify his idea in order to find a counter example of the strong Baum-Connes conjecture for foliated manifolds.

Let V be a vector group on which G acts faithfully. By Borel's result [12], there exist torsion free uniform lattices Γ, Δ of G, V respectively such that Δ is Γ-invariant. By Wang's result [10], the semidirect product $V \times_s G$ of V by G has the property T which is no longer of real rank one. Since $\Delta \times_s \Gamma$ is a uniform lattice of $V \times_s G$, it also has the property T. By the similar way as in the proof of Skandalis [4], we have the following lemma which is of
Lemma 1. \(C^*_\Gamma(\Delta \times \Gamma) \) is non KK-nuclear.

Remark Dr. Matsumoto generalized the above lemma in more general setting.

Since \(\Delta \) is a torsion free uniform lattice of \(\Gamma \), the character group \(\Delta \) of \(\Delta \) is a torus which may be chosen as of even dimension.

Let \(H \) be a maximal compact subgroup of \(G \) and \(M = (G/H) \times \Delta \) the orbit space of \((G/H) \times \Delta \) by the diagonal \(\Gamma \)-action. As \(\Gamma \) is torsion free, \(M \) is a smooth manifold. Let \(F = (G/H) \times \Gamma(t) : t \in \Delta \). Then we have the following lemma:

Lemma 2. \((M,F)\) is a foliated \(\Delta \)-bundle over \(\Gamma \backslash G/H \).

Let us consider the reduced crossed product \((C(\Delta) \times \Gamma) \overset{\text{r}}{\otimes} \) of \(C(\Delta) \) by the holonomy action \(\alpha \) of \(\Gamma \) on \(\Delta \) and \(BC(\cdot) \) means the \(C^* \)-algebra of all compact operators on a Hilbert space \(\cdot \). By the joint work with Natsume (cf:[11]), we have by Lemma 1 the following Lemma:

Lemma 3. \(C^*_\Gamma(M,F) \) is isomorphic to \((C(\Delta) \times \Gamma) \overset{\alpha}{\otimes} BC(L^2(\Gamma \backslash G/H)) \).

It then easily follows from Lemma 2 that

Corollary 4. \(K_a(M,F) = K_a(\Delta,\Gamma) = K(C(\Delta) \times \Gamma) \).

In what follows, we shall determine \(K_t(M,F) \). Let us consider the leaf \(\ell_\chi \) in \(F \) passing through \(\chi \in \Delta \). Then its fundamental group \(\pi_1(\ell_\chi) \) is the stabilizer \(\Gamma_\chi \) of \(\Gamma \) at \(\chi \). Since \(\Delta \) is the torus of even dimension, the holonomy map \(h_\chi \) of \(\ell_\chi \) is a homomorphism from \(\pi_1(\ell_\chi) \) into \(\pi_1(\Delta) \). Therefore, \(h_\chi(\Gamma_\chi) \) is torsion free for all \(\chi \in \Delta \), which means that \(G \) is also torsion free. By Baum-Connes [1], we then have
the following lemma:

Lemma 5. \(K_t(M,F) = K^\nu(BG) \) where \(\nu = T(M)/F \).

In our case, as \(T(M)/F = T(\Delta) \), \(\nu \) has a complex structure. By Thom isomorphism, we deduce the following lemma:

Lemma 6. \(K^\nu(BG) = K(BG) \).

Combining all the lemmas cited above, we obtain the following main theorem:

Theorem 7. Let \(G \) be a connected semisimple Lie group which is locally isomorphic to \(Sp(n,1) \) or \(F_4(n \geq 2) \) acting on a vector group \(V \) faithfully. Let \(\Gamma, \Delta \) be torsion free uniform lattices of \(G, V \) respectively such that \(\Gamma \) is \(\Delta \)-invariant. If \((M,F) \) is a foliated \(\Delta \)-bundle over \(\Gamma \backslash G/H \), then it is a counter example for the strong Baum-Connes conjecture where \(\Delta \) is the character group of \(\Delta \) and \(H \) is a maximal compact subgroup of \(G \).

Proof. By definition, the holonomy groupoid \(G \) of \(F \) has no torsion and \(\nu = T(M)/F \) has a complex structure. Suppose the \(K \)-index map is a \(KK \)-isomorphism from \(K_t(M,F) \) to \(K_a(M,F) \). This means by Lemma 3,5 and 6 that there exists an invertible element of \(KK((C(\Delta)\times_\alpha \Gamma)_r, C_0(BG)) \) which implement the \(K \)-index map where \(C_0(BG) \) is the \(C^* \)-algebra of all continuous sections of \(E\Gamma \times_{\Gamma} C(\Delta) \) vanishing at infinity. Since \(C_0(BG) \) is nuclear and \((C(\Delta)\times_\alpha \Gamma)_r = C_\Gamma(\Delta \times_\Gamma \Gamma) \) up to isomorphism, this contradicts to Lemma 1. Q.E.D.

Remark. In spite of the above theorem, the original Baum-Connes conjecture still remains open even for the above example.
References