<table>
<thead>
<tr>
<th>Title</th>
<th>A Difference Set Of A Cantor Set (The Study of Dynamical Systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SANNAMI, ATSURO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1989), 696: 38-46</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/101430</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Difference Set Of A Cantor Set

ATSURO SANNAMI

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060 Japan

Abstract. An example of a regular Cantor set whose self-difference set is a Cantor set with a positive measure is given. This is a counter example of one of the questions related to the homoclinic bifurcation of surface diffeomorphisms.

§0 Introduction.

In [2], Palis–Takens investigated the homoclinic bifurcations of surface diffeomorphisms in the following context. Let \(M \) be a closed 2-dimensional manifold. We say a \(C^r \)-diffeomorphism \(\phi : M \to M \) is persistently hyperbolic if there is a \(C^r \)-neighborhood \(\mathcal{U} \) of \(\phi \) and for every \(\psi \in \mathcal{U} \), the non-wandering set \(\Omega(\psi) \) is a hyperbolic set (refer [1] for the definitions and the notations of the terminologies of dynamical systems). Let \(\{\phi_\mu\}_{\mu \in \mathbb{R}} \) be a 1-parameter family of \(C^2 \)-diffeomorphisms on \(M \). We define \(\{\phi_\mu\}_{\mu \in \mathbb{R}} \) has a homoclinic \(\Omega \)-explosion at \(\mu = 0 \) if:

i) For \(\mu < 0 \), \(\phi_\mu \) is persistently hyperbolic;

ii) For \(\mu = 0 \), the non-wandering set \(\Omega(\phi_0) \) consists of a (closed) hyperbolic set \(\tilde{\Omega}(\phi_0) = \lim_{\mu \to 0} \Omega(\phi_\mu) \) together with a homoclinic orbit of tangency \(\mathcal{O} \) associated with a fixed saddle point \(p \), so that \(\Omega(\phi_0) = \tilde{\Omega}(\phi_0) \cup \mathcal{O} \); the product of the eigenvalues of \(d\phi_0 \) at \(p \) is different from one in norm;

iii) The separatrices have quadratic tangency along \(\mathcal{O} \) unfolding generically; \(\mathcal{O} \) is the only orbit of tangency between stable and unstable separatrices of periodic orbits of \(\phi_0 \).

Let \(\Lambda \) be a basic set of a diffeomorphism on \(M \). \(d^*(\Lambda) \) (\(d^u(\Lambda) \)) denotes the Hausdorff dimension in the transversal direction of the stable (unstable) foliation of stable (unstable) manifold of \(\Lambda \) (refer [2] for the precise definition), and is called the stable (unstable) limit capacity. \(B \) denotes the set of values \(\mu > 0 \) for which \(\phi_\mu \) is not persistently hyperbolic.

The result of Palis–Takens is;
THEOREM [2]. Let $\{\phi_{\mu}; \mu \in \mathbb{R}\}$ be a family of diffeomorphisms of M with a homoclinic Ω-explosion at $\mu = 0$. Suppose that $d^s(\Lambda) + d^u(\Lambda) < 1$, where Λ is the basic set of ϕ_0 associated with the homoclinic tangency. Then

$$\lim_{\delta \to 0} \frac{m(B \cap [0, \delta])}{\delta} = 0$$

where m denotes Lebesgue measure.

This result says that if $d^s(\Lambda) + d^u(\Lambda) < 1$, then the measure of the parameters for which bifurcation occurs is relatively small.

Now the case of $d^s(\Lambda) + d^u(\Lambda) > 1$ comes into question as the next step. In the proof of the theorem above, one of the essential points is a question of how two Cantor sets in the line intersect each other when the one is slid. In [3], Palis proposed the following questions.

(Q.1) For affine Cantor sets X and Y in the line, is it true that $X - Y$ either has measure zero or contains intervals?

(Q.2) Same for regular Cantor sets.

For two subset X, Y of \mathbb{R},

$$X - Y = \{ x - y \mid x \in X, y \in Y \}.$$

This can also be written as;

$$X - Y = \{ \mu \in \mathbb{R} \mid X \cap (\mu + Y) \neq \emptyset \},$$

namely $X - Y$ is the set of parameters for which X and Y have a intersection point when Y is slid on the line.

Cantor set Λ in \mathbb{R} is called affine, regular or C^r for $1 \leq r \leq \infty$ if Λ is defined with finite number of expanding affine, C^2 or C^r maps respectively (see §2 Definition 5 for the rigorous definition).

Our result in this note is that there is a counter example of (Q.2), namely;

THEOREM. There exists a C^∞-Cantor set Λ such that

(i) $m(\Lambda - \Lambda) > 0$,

2
(ii) $\Lambda - \Lambda$ is a Cantor set.

In the succeeding sections, we give an outline of the proof of this theorem. The complete proof will appear elsewhere.

§.1 Definition of the Cantor sets $\Lambda(s), \Gamma(s)$.

First of all, we define two cantor set depending on a sequence of real numbers.

Definition 1. Let $I = [x_1, x_2]$ be a closed interval and λ a real number with $0 < \lambda < \frac{1}{2}$. We define,

$$I_0(\lambda; I) = [x_1, x_1 + \lambda(x_2 - x_1)]$$

$$I_1(\lambda; I) = [x_2 - \lambda(x_2 - x_1), x_2].$$

Definition 2 (Cantor set $\Lambda(s)$). Let $I^0 = [0, 1]$ and $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ be a one sided sequence of real numbers with $0 < \lambda_i < \frac{1}{2}$ for all $i \geq 1$. We define the Cantor set $\Lambda(s)$ as follows.

Let $I_0^1 = I_0(\lambda_1; I^0), I_1^1 = I_1(\lambda_1; I^0)$ and $I^1 = I_0^1 \cup I_1^1$. Δ_n denotes the set of all sequences of 0 and 1 of length n. When I^m_{β}'s are defined for all $\beta \in \Delta_{n-1}$, we define;

$$I_{\beta 0}^n = I_0(\lambda_n; I^m_{\beta})$$

$$I_{\beta 1}^n = I_1(\lambda_n; I^m_{\beta}).$$

Inductively, we can define I^m_α for all $\alpha \in \Delta_n$ and for all $n \geq 0$. Define

$$I^n = \bigcup_{\alpha \in \Delta_n} I^n_\alpha$$

and

$$\Lambda(s) = \bigcap_{n \geq 0} I^n.$$

This is clearly a Cantor set by the definition.

Next, we define another Cantor set $\Gamma(s)$.
DEFINITION 3. Let $J = [x_1, x_2]$ and $0 < \lambda < \frac{1}{3}$. We define,

\[
J_0(\lambda; J) = [x_1, x_1 + \lambda(x_2 - x_1)]
\]
\[
J_1(\lambda; J) = \left[\frac{x_1 + x_2}{2} - \frac{\lambda}{2}(x_2 - x_1), \frac{x_1 + x_2}{2} + \frac{\lambda}{2}(x_2 - x_1) \right]
\]
\[
J_2(\lambda; J) = [x_2 - \lambda(x_2 - x_1), x_2]
\].

DEFINITION 4. Let $J^0 = [-1, 1]$ and $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ be a one sided sequence of real numbers with $0 < \lambda_i < \frac{1}{3}$ for all $i \geq 1$. Let

\[
J_0^1 = J_0(\lambda_1; J^0)
\]
\[
J_1^1 = J_1(\lambda_1; J^0)
\]
\[
J_2^1 = J_2(\lambda_1; J^0)
\]

and Π_n denote the set of all sequences of 0, 1, 2 of length n. When J_{δ}^{n-1}'s are defined for all $\delta \in \Pi_{n-1}$, we define;

\[
J_0^{\delta} = J_0(\lambda_n; J_{\delta}^{n-1})
\]
\[
J_1^{\delta} = J_1(\lambda_n; J_{\delta}^{n-1})
\]
\[
J_2^{\delta} = J_2(\lambda_n; J_{\delta}^{n-1})
\].

Inductively, we can define J_γ^n for all $\gamma \in \Pi_n$ and for all $n \geq 0$. Define

\[
J^n = \bigcup_{\gamma \in \Pi_n} J_\gamma^n
\]

and

\[
\Gamma(s) = \bigcap_{n \geq 0} J^n.
\]

These cantor sets have the following relation.

THEOREM 1. Let $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ be a sequence of real numbers with $0 < \lambda_i < \frac{1}{3}$ for all $i \geq 1$. Then,

\[
\Lambda(s) - \Lambda(s) = \Gamma(s).
\]
§.2 Outline of the proof.

DEFINITION 5. Let Λ be a Cantor set on a closed interval I. Λ is called **affine, regular** or C^r–Cantor set for $1 \leq r \leq \infty$ if there are closed disjoint intervals I_1, \cdots, I_k on I and onto affine, C^2 or C^r–maps $f_i : I_i \to I$ for all $1 \leq i \leq k$ such that;

(i) $|f'_i(x)| > 1 \quad \forall x \in I_i$

(ii) $\Lambda = \bigcap_{n=0}^{\infty} \left\{ \bigcup_{\sigma \in \Sigma_n^k} f^{-1}_{\sigma(1)} f^{-1}_{\sigma(2)} \cdots f^{-1}_{\sigma(n)}(I) \right\}$,

where $\Sigma_n^k = \{ \sigma : \{1, \cdots, n\} \to \{1, \cdots, k\} \}$.

Our main result is restated as follows.

THEOREM 2. There exists a sequence of real numbers $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ with $0 < \lambda_i < {1 \over 8}$ for all $i \geq 1$ such that;

(i) $\Lambda(s)$ is a C^∞–Cantor set,

(ii) $m(\Lambda(s) - \Lambda(s)) > 0$,

where $m(\)$ denotes the Lebesgue measure.

From now on, we shall give the outline of the proof of this Theorem 2.

Let $\{\tau_n\}_{n \geq 0}$ be a sequence of positive real numbers such that

$$(1) \quad \sum_{n=0}^{\infty} \tau_n < 1.$$

We define $\{\lambda_n\}_{n \geq 1}$ using this $\{\tau_n\}_{n \geq 0}$ as follows.

$$\left\{ \begin{array}{l}
\lambda_1 = {1 \over 3} (1 - \tau_0) \\
\lambda_{n+1} = {1 \over 3} \left({1 - \sum_{i=0}^{n} \tau_i \over 1 - \sum_{i=0}^{n-1} \tau_i} \right)
\end{array} \right.$$

It is easily seen that

$$(3) \quad 0 < \lambda_n < {1 \over 3} \quad \forall n \geq 1.$$

These numbers has the following relations.
LEMMA 3.
\[\sum_{i=0}^{n} r_i = 1 - 3^{n+1} \prod_{j=1}^{n} \lambda_j \quad \forall n \geq 0. \]

LEMMA 4.
\[r_n = 3^n(1 - 3\lambda_{n+1}) \prod_{j=1}^{n} \lambda_j \quad \forall n \geq 0. \]

where, we assume \(\prod_{j=1}^{0} \lambda_j = 1 \) for the simplicity of notation.

Using these lemmas, we can show (ii) of Theorem 2. In fact, the following lemma holds.

LEMMA 5. Let \(\{r_n\}_{n \geq 0} \) be a sequence of positive real numbers such that \(\sum_{n=0}^{\infty} r_n < 1 \), and \(\{\lambda_n\}_{n \geq 1} \) be the sequence defined by (2). Then, \(m(\Gamma(s)) > 0 \).

§.3 The regularity of \(\Lambda(s) \).

We define a sequence \(\{r_n\}_{n \geq 0} \) (and so \(\{\lambda_n\}_{n \geq 1} \)), and prove that \(\Lambda(s) \) is \(C^\infty \). First of all, we fix a \(C^\infty \)-function \(h(t) \) on \([0,1]\) with the following properties.

(i) \(h(t) \geq 0 \),
(ii) \(\int_{0}^{1} h(t)dt = 1 \),
(iii) for all \(n \geq 0 \),
\[\begin{cases} \lim_{t \downarrow 0} h^{(n)}(t) = 0, \\ \lim_{t \uparrow 1} h^{(n)}(t) = 0. \end{cases} \]

To define \(\{r_n\}_{n \geq 0} \), we define the following sequences. For each integers \(n \geq 0 \), let
\[q_n = \max\{q_0, q_1, \ldots, q_{n-1}, 1, \sup_{t \in [0,1]} |h^{(n)}(t)| \} . \]

For \(n \geq 0 \), we define,
\[r_n = \frac{4^{-(n^2+2)}}{q_n} \]
Since \(r_n \leq 4^{-(n^2+2)} \leq 4^{-(n+2)} \), we have,

\[
\sum_{n=0}^{\infty} r_n < \sum_{n=2}^{\infty} \frac{1}{4^n} = \frac{1}{12} .
\]

Therefore, \(\{r_n\}_{n \geq 0} \) satisfy (1). We define another sequence of positive real numbers;

\[
m_n = \frac{3(3r_{n-1} - r_n)}{2^{n-1}(1 - \sum_{i=0}^{n-1} r_i)} \quad \forall n \geq 1 .
\]

Since \(\{r_n\}_{n \geq 0} \) is monotonically decreasing and by (4), \(m_n > 0 \) for all \(n \geq 1 \).

\(U^0 \) denotes the open interval between \(I_0^1 \) and \(I_1^1 \), namely;

\[
U^0 = I^0 \setminus (I_0^1 \cup I_1^1) .
\]

In general, \(U_{\alpha}^{n-1} \) (\(\alpha \in \Delta_{n-1} \)) denotes the open interval between \(I_{\alpha 0}^n \) and \(I_{\alpha 1}^n \) in \(I_{\alpha}^{n-1} \), namely;

\[
U_{\alpha}^{n-1} = I_{\alpha}^{n-1} \setminus (I_{\alpha 0}^n \cup I_{\alpha 1}^n) .
\]

Let \(\ell_n = \ell(I_{\alpha}^n) \). Then, by the definition,

\[
\ell_n = \lambda_n \ell_{n-1} .
\]

Let \(u_n = \ell(U_{\alpha}^n) \), and \(U_{\alpha}^n = [x_{\alpha}, y_{\alpha}] \). Then,

\[
u_n = \ell_n - 2\ell_{n+1} ,
\]

and

\[
u_n = y_{\alpha} - x_{\alpha} .
\]

We prove the smoothness of \(A(s) \) as follows. We define a non-negative \(C^\infty \)-function \(f(t) \) on \([0, \lambda_1]\) and define;

\[
g(t) = \int_0^t (f(s) + 3) ds .
\]

We put;

\[
\begin{cases}
g_0(t) = g(t) & \text{on } [0, \lambda_1] \\
g_1(t) = g(t - 1 + \lambda_1) & \text{on } [1 - \lambda_1, 1] .
\end{cases}
\]
and prove that these g_0 and g_1 define $\Lambda(s)$.

DEFINITION OF $f(t)$. Recall that we have already defined a C^∞-function $h(t)$ on $[0, 1]$. We define $f(t)$ using this $h(t)$ as follows. Let $[x'_\alpha, y'_\alpha]$ be the interval of length $\frac{\ell_n}{3}$ in the middle of U^n_α such that
\[
[x'_\alpha, y'_\alpha] = \left[x_\alpha + \frac{1}{2}(u_n - \frac{\ell_n}{3}), y_\alpha - \frac{1}{2}(u_n - \frac{\ell_n}{3})\right].
\]
We define $f(t)$ as follows.

(i) On U^n_α ($n \neq 0$),
\[
\begin{cases}
 f(t) = m_n h\left(\frac{t - x'_\alpha}{\frac{\ell_n}{3}}\right) & t \in [x'_\alpha, y'_\alpha] \\
 f(t) = 0 & \text{otherwise }.
\end{cases}
\]
(ii) On $\Lambda(s)$, $f(t) = 0$.

What we have to show are:

(I) $f(t)$ is a C^∞-function on $[0, \lambda_1]$.

(II) g_0 and g_1 define $\Lambda(s)$.

To show the smoothness of $f(t)$, we define a function $f_n(t)$ for any $n \geq 0$ as follows. Since $f(t)$ is C^∞ on $U = \bigcup_{n \geq 1, \alpha \in \Delta_n} U^n_\alpha$ ($= [0, \lambda_1] \setminus \Lambda(s)$), $f^{(n)}(t)$ exists for all $n \geq 0$ on U. We define,
\[
\begin{cases}
 f_n(t) = f^{(n)}(t) & \text{for } t \in U \\
 f_n(t) = 0 & \text{otherwise (i.e. } t \in \Lambda(s))
\end{cases}
\]
The smoothness is shown by proving that;

LEMMA 6. For any $n \geq 0$, f_n is differentiable at any $t \in [0, \lambda_1]$ and $f'_n(t) = f_{n+1}(t)$.

For the proof of (II), we need some lemmas. Let $I^n_\alpha = [x^n_\alpha, s^n_\alpha]$.

LEMMA 7. For all $\alpha, \alpha' \in \Delta_n$,
\[
\int_{I^n_\alpha} f(t) dt = \int_{I^n_{\alpha'}} f(t) dt.
\]
Lemma 8. For all $n \geq 1$,
\[
\int_0^{t_n} f(t) \, dt = \frac{1}{3} m_n \ell_n + 2 \int_0^{t_{n+1}} f(t) \, dt .
\]

Lemma 9. For all $n \geq 1$,
\[
\ell_{n-1} = g_0(\ell_n) .
\]

We have to prove that,
\[
\Lambda(s) = \bigcap_{n \geq 0} \{ \bigcup_{\sigma \in \Sigma_n} g_{\sigma(1)}^{-1} g_{\sigma(2)}^{-1} \cdots g_{\sigma(n)}^{-1}(I^0) \} .
\]

Recall that $\Sigma_n^2 = \{0,1\}^{\{1,\cdots,n\}}$ and $I^0 = [0,1]$. This is obtained by showing the following lemma.

Lemma 10. For all $n \geq 0$ and $\alpha \in \Delta_n$,
\[
g_0(I_{0\alpha}^{n+1}) = I^n_\alpha , \quad g_1(I_{1\alpha}^{n+1}) = I^n_\alpha .
\]

References

