<table>
<thead>
<tr>
<th>Title</th>
<th>Maximal avoidable sets of words (Algebraic Theory of Codes and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kobayashi, Yuji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1989), 697: 24-28</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/101442</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Maximal avoidable sets of words

Yuji Kobayashi, Tokushima University

We use the following notations.

Σ : an alphabet (a finite set of letters),
Σ* : the set of words over Σ,
Σω : the set of infinite words (sequences),
Σ# := Σ* U Σω,
Σ+ := Σ* - {11}, where 1 is the empty word.

For x = a1a2... , y = b1b2... ∈ Σ# define the distance of x and y by

\[d(x, y) = \frac{1}{\min(n : a_n \neq b_n)} \]

As is well known ([41]), (Σ#, d) is a compact totally disconnected metric space.

Let x, y ∈ Σ* and X ⊂ Σ#. We say y avoids x, if y does not contain x as subword, and y avoids X, if y avoids every x in X. X is called avoidable, if there is an infinite word y avoiding X, otherwise X is called unavoidable. Avoidability of sets of words called patterns were studied in [11].

Example 1. Let X = \{ v^2 | v ∈ Σ^+ \}. Then y avoids X if and only if y is square-free. It is a famous fact that X is avoidable if |Σ| ≥ 3

/
An avoidable set X is **maximal**, if any set properly containing X is unavoidable.

Theorem 1. For any avoidable set X, there is a maximal avoidable set containing X.

For a given $X \subseteq \Sigma^*$, the set

$$
\text{Min}(X) = \{ x \in X \mid \text{any } x' \in X \text{ is not a proper subword of } x \}
$$

is called the **base** of X. Easily we see y avoids X if and only if y avoids $\text{Min}(X)$. X is **finitely based** if $\text{Min}(X)$ is a finite set. The base of a maximal avoidable set is called a **critical set** of words.

Corollary. For any avoidable set X which is factor-free, that is, any word in X is not a subword of another word in X, there is a critical set containing X.

Example 2. Let $\Sigma = \{a, b\}$. Then, (a^2, ab, ba) and (a^2, b^2) are critical sets.

An infinite word x is recurrent, if for any subword v of x, there is an integer $k(v) > 0$ such that any subword of length k of x contains v as subword. In this situation v is said to be recurrent in x. If $x = v^\omega$ for some $v \in \Sigma^*$, x is called periodic; the shortest such v is the **period** of x. A periodic infinite word is recurrent, but the converse is not true.

The **shift transformation** τ is a mapping from Σ^ω to itself defined by

$$
\tau(x) = a_2a_3 \cdots \text{ for } x = a_1a_2 \cdots .
$$
Obviously, \(\tau \) is a surjective continuous mapping.

A subshift \(S \) is a non-empty closed subset of \(\Sigma^\omega \) invariant under \(\tau \). \(S \) is minimal, if it does not contain a subshift properly. For a given set \(X \subseteq \Sigma^* \) of words, \(S(X) \) is the set of infinite words avoiding \(X \). For a given subshift \(S \subseteq \Sigma^\omega \), \(X(S) \) is the set of words which do not appear as subwords of elements of \(S \).

Theorem 2. For an avoidable set \(X \), \(S(X) \) is a subshift. If \(X \) is maximal, then \(S(X) \) is minimal. Conversely, if \(S \) is a subshift, then \(X(S) \) is an avoidable set. If \(S \) is minimal, then \(X(S) \) is maximal. This gives a 1-1 correspondence between maximal avoidable sets and minimal subshifts.

Lemma 1. An avoidable set \(X \) is maximal if and only if any word out of \(X \) is recurrent in any infinite word avoiding \(X \).

Theorem 3 (Morse-Hedlund [4]). \(S \subseteq \Sigma^\omega \) is a minimal subshift if and only if

\[
S = \{ \tau^n(x) \mid n = 0, 1, 2, \ldots \}
\]

for some recurrent infinite word \(x \). Moreover,

1. \(S \) is perfect, if \(x \) is non-periodic. In this case every element in \(S \) is non-periodic.
2. \(S \) is finite, if \(x \) is periodic. In this case every element in \(S \) is periodic.

Corollary (c.f. [3, Theorem 4.2]). Let \(X \) be an avoidable set such that for any \(v \in \Sigma^* \), \(v^n \) does not avoid \(X \) for \(x \gg 0 \), then \(S(X) \) contains a perfect subset.
Theorem 4. Let X be a maximal avoidable set. Then, $S(X)$ is finite if and only if X is finitely based.

For an avoidable set X, the radical $\text{rad}(X)$ of X is the intersection of all the maximal avoidable sets containing X. X is called reduced, if $X = \text{rad}(X)$.

Lemma 2. A word v is in $\text{rad}(X)$, if and only if any recurrent infinite word avoiding X avoids v.

Corollary. Any word out of $\text{rad}(X)$ is extensible to a recurrent infinite word avoiding X.

Theorem 5. If X is a reduced avoidable set, then every isolated point of $S(X)$ is periodic.

Corollary. If X is a reduced avoidable set such that for any $v \in \Sigma^+$, v^n does not avoid X for $n \gg 0$, then $S(X)$ is perfect.

A set X of words is quasi-maximal, if $\text{rad}(X)$ is maximal.

Theorem 6. Let X be an avoidable set. Then following statements are equivalent.

1. X is quasi-maximal.
2. $S(X)$ contains a unique minimal subshift.
3. For any $n > 0$, there is a word v of length n such that $X \cup \{v\}$ is unavoidable.
4. For any word w such that $X \cup \{w\}$ is unavoidable and for any $n > 0$, there is a word v of length n such that $X \cup \{vw\}$ is unavoidable.

Example 3. Let $X = \{(a^2, bab) \in \{a, b\}^\infty \}$. Then, b^ω and ab^ω are only infinite words avoiding X, and $X \cup \{b^n\}$ is unavoidable for any $n > 0$.

4
Thus X is quasi-maximal.

An unavoidable set X is said to be minimal, if X - \{v\} is avoidable for any v \in X. As is easily seen ([2]), a minimal unavoidable set is finite.

Conjecture I (Ehrenfeucht, see [2]). For any unavoidable set X, there is a word x \in X and a letter a \in \Sigma such that (X - \{x\}) \cup \{xa\} is unavoidable.

Conjecture II. For any minimal unavoidable set X, there is a word x in X such that X - \{x\} is a quasi-maximal avoidable set.

Theorem 7. Conjecture I and Conjecture II are equivalent.

References