スーパーコンピュータの現状と展望

専修大学 唐木幸比古 (Yukihiko KARAKI)

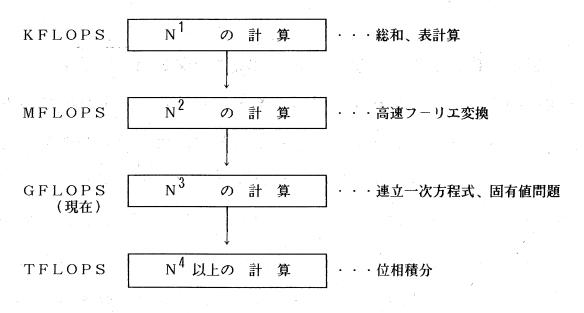
数値シミュレーションの問題をコンピュータの演算速度と記憶容 量に基いて数値解析と物理学の両面から分類整理し、現状のスーパ コンピュータの到達水準と応用範囲を概観する。特に今回は、問 題の分析を基礎に、3つの調和数による3軸等角表現によって演算 パイプライン型や多重プロセッサ型のスーパーコンピュータの性能 を総合的に評価する新しい方法を提案したい。この方法による評価 によれば、CRAY-1、X-MP、Cyber 205などは2 等辺三角形、S-810、S-820、VP-400、SX-2、 3090 VFなどは正三角形に近い型になり、並列演算性能の調 和の度合いなどの特徴を良く把握できる。例えばS-820はS-810より正三角形に近く、調和性を高めていることがわかる。ま た、表現された性能三角形の大きさの比較によって演算器能力がど れだけ実効的に発揮されているかを直観的に知ることができる。例 えば、S-820の性能三角形は3090 VFのものよりかなり 大きい。最後に、スーパーコンピュータの将来展望にも触れる。

1.数値シミュレーションの問題の分類

主要な数値シミュレーションの問題の核心部分を調べると、何ら かの演算を繰返し行うものが多い。例えばそれをFORTRANプ ログラムで表現すれば、DOループで記述される。データの長さを Nとすれば 総和や表計算は N^{1} の計算量になる。N=100程度 の問題であれば人間の暗算または算盤でもよいが、それを超えると 人手では時間が掛り、誤りも増える。この問題に対しては、KFL OPS程度の演算速度があれば、N=1000であっても1秒で済 む。つまり、総和や表計算の問題はKFLOPS機械に対応してい る。次にフーリエ変換を考える。これは元来 N^2 の計算であり、高 速フーリエ変換プログラム(FFT)では算法の工夫によってそれ をN・1ogNの計算量に縮めている。この計算は、N=1000 程度の問題でもKFLOPS機械で1K秒程度は掛ることになり、 信号処理などの実用に供するには、本来、MFLOPS機械が必要 な問題であった。FFT算法ではそれをKFLOPS機械上で数秒 の計算(計算可能)にした点が、ソフトウェアとしての画期的な評 価を得た所以である。つまり、ハードウェアでは一世代前の機械で 次世代の問題を解いたところにFFTのソフトウェア価値がある。

ENIAC (1945年) がKFLOPS機械(現在のパソコン・クラス)、CDC6600 (1965年) がMFLOPS機械である。

連立一次方程式や固有値問題では、未知数または固有ベクトルの要素数をNとするとき、N³の規模の計算量になる。通常は係数行列をN×Nの密行列でなく、帯行列や疎行列とするように工夫するので完全な立法体計算になることは少ないが、例えばN=1000としてそれをKFLOPS機械で処理しようとすれば、1M秒(~300時間)程度掛ることになり、MFLOPS機械でも1K秒クラスの計算になる。三次元構造物を10×10×10の網目に分割するだけでも、各点に対応する未知数は1000になる。流体解析のように非線形非定常でもっと多くの網目と物理量を必要とするとか非線形構造解析問題など、この規模の計算を繰返し行う必要がある場合には、これに対応できるのはGFLOPS機械ということになる。後述するように、乱流解析に必要な未知数は10⁹の規模になるから、その問題を数値シミュレーションするにはTFLOPS機械も必要になる。


3次元空間と時間に附随する物理量を扱う古典力学の問題には、このほかに多粒子系の動力学や協力問題がある。これはアボガドロ数(6×10^{23} 個)程度の粒子の振舞いを追跡することになるので、粒子間相互作用の計算規模はたとえ \mathbf{N}^2 であっても、そのままではTFLOPS機械をもってしても全く対応できない。通常は統計力学やモンテカルロ計算などの手法によって計算量の縮少を計ることになるが、例えばボルツマン方程式の積分は \mathbf{N}^6 の計算になる。

それに対して、量子力学や相対論的量子電磁力学の問題では、固有値問題や反応解析の計算規模はN³であるが、三次元空間(複素数)のほかに量子数空間(パウリ原理など)が加わるので四次元以上の空間点での物理量の解析(位相積分など)が必要になる。空間点と量子空間点の長さを共通にNとすれば、位相積分(波動関数)の計算規模はN⁴以上になるので、やはりTFLOPS以上の機械が必要になる。これらの概略を次頁の図に示す。

データの長さNは、計算機の記憶容量、特に、主記憶の容量に規定される。1語=8バイト(B)としてKB, MB, GB, TBの各容量に収容できる問題を分類すると、KBでは10²程度、MBでは10⁵程度、GBでは10⁸程度, TBでは10¹¹程度が限度であるから、KB機械では一次元問題、MB機械では二次元問題、GB機械では三次元問題、TB機械では四次元問題というように大よその対応がつけられる。問題の非線形性や非定常性によってはクラスが一段階ずれることもある。その概略を次頁の図に示す。

後述するように、現在の最高水準にあるスーパーコンピュータは [GFLOPS, GB]のクラスにあるので、それに見合う範囲の 問題が数値シミュレーション可能となる。例えば、三次元非線形問 題や低いレイノルズ数の移流拡散問題などをPCG法/PBCG法 系統の算法などによって安定に数値解析することができる。

数値シミュレーションの問題の分類

N: データの長さ(1語=8B)

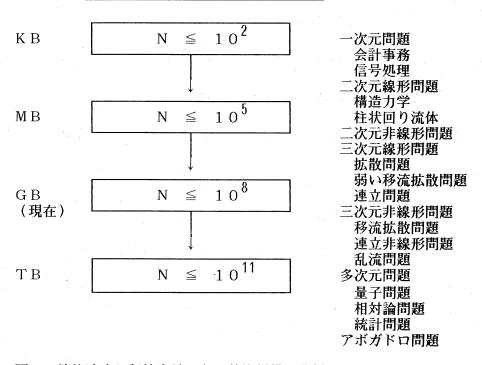


図1. 演算速度と記憶容量による計算規模の分析

2. スーパーコンピュータの概観

性能と価格によるコンピュータの概略の分類を図2に示す。

現在のスーパーコンピュータの基準を、64ビット演算の最高性能が200MFLOPS以上にあるものとすれば、その基準をみたすものは、クレイ社のX-MP、CRAY-2、Y-MPシリーズ、CDC/ETA社のCyber 205、ETA10シリーズ、IBM社の3090 VF 多重プロセッサ・シリーズ(以上米国製品)、日立製作所のS-810、S-820シリーズ、富士通のVPシリーズ、日本電気のSXシリーズ(以上日本製品)などのような演算パイプライン方式を基調とするものと、シンキングマシン社のConnection Machineやインテル社のiPSC、Ncube社のNcubeなどのパラレル方式のものがある。

演算パイプライン方式スーパーコンピュータの市場動向について 、図3a~fに示す。3090 VFをスーパーコンピュータに含めるか否かで、市場占有比率が大きく変化する。

スーパーコンピュータの主な流れを表1に示す。単体プロセッサでは、現在、S-820/80の3GFLOPSが最高水準にあり、1990年予定のVP-2600が4GFLOPSを目指している。1992年頃に登場予定のCRAY-4は、2GFLOPSを単体とする64多重プロセッサを目指している。

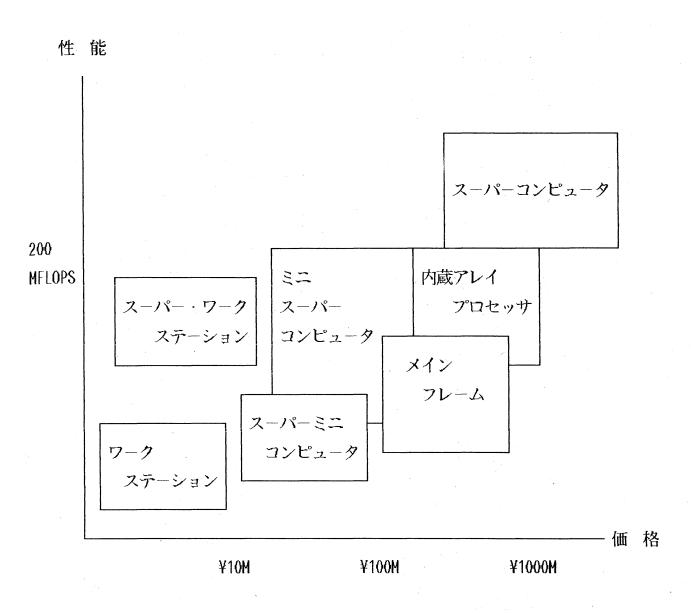


図2. 性能と価格によるコンピュータの分類

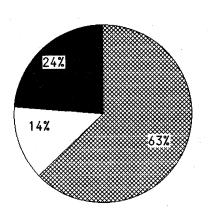

累積数

図3a. ス-パ-コンピュ-タの占有状況

日本製 □ CDC製 ◎ クレイ製

年

日本製

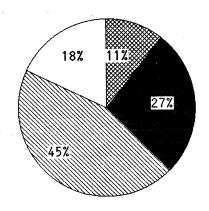
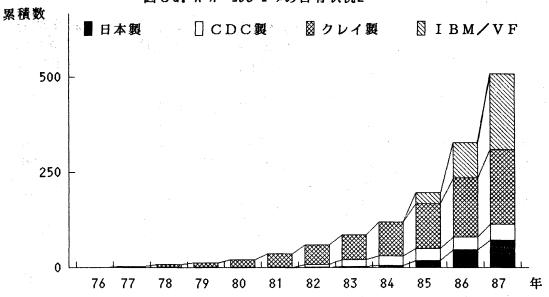



図3d. ス-パ-コンピュ-タの占有状況2

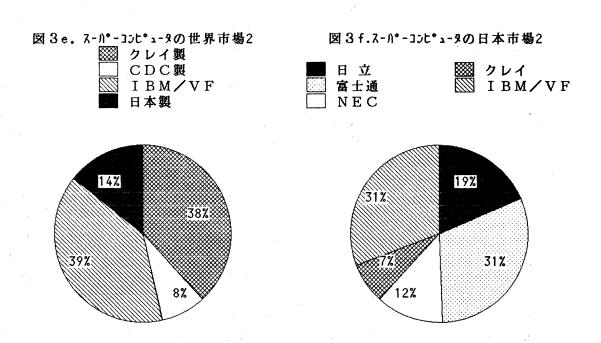


表1. スーパーコンピュータの発展動向

	年	単体性能 (64bit) MFLOPS	多重度 (並列度)	最高性能 (64bit) MFLOPS
ILLIAC IV	1972	1.25	6 4	80
STAR-100 CYBER203 CYBER205 CYBER205 ETA10-E ETA10-G	1973 1980 1981 1982 1987 1988	50 100 200 400 381 571	1 1 1 1 8 8	50 100 200 400 3047 4571
C R A Y - 1 C R A Y - 2 C R A Y - 3 C R A Y - 4	1976 1985 1989 1992	$\begin{array}{c} 160 \\ 488 \\ 1000 \\ 2000 \end{array}$	1 4 16 64	160 1951 16000 128000
$\begin{array}{c} X-MP/2 \\ X-MP/4 \\ Y-MP/8 \end{array}$	1983 1985 1988	210 235 333	2 4 8	420 941 2667
IBM/VF	1985	116	6	698
S-810 S-820 S-830	1983	857 3000	1 1	857 3000
VP-100 VP-200 VP-400 VP-400E VP-2600	1983 1984 1985 1987 1990	$\begin{array}{c} 267 \\ 571 \\ 1143 \\ 1714 \\ 4000 \end{array}$	1 1 1 1	267 571 1143 1714 4000
SX-1 $SX-2$ $SX-3$	1985 1985	571 1333	1	571 1333

3 二調和数による性能評価法 ニュー・ニューニュー

スーパーコンピュータの性能評価には、様々なプログラムが用いられる。標準的なものでは、ロスアラモス研究所の基本演算速度測定プログラム、ローレンスリバモア研究所の14カーネルおよびその発展版である24カーネル、アルゴンヌ国立研究所のリンパックなどが知られる。そのほかにも、CRAY-1ベンチマークス、S-810ベンチマークス、NASAエームズ研究所のNASライブラリ・ベンチマークス、Mendezベンチマークス、Whetstoneベンチマークスなどが知られる。また、分子科学、高エネルギー物理学、プラズマ物理学、流体力学、構造力学などに特有のプログラムによる個別ベンチマークテストなども行われている。スカラーコンピュータの性能評価では、GibsonーMixプログラムなども古くから知られている。

医蜂类尿 医乳磺胺酚 网络东西欧洲自己国际人名法巴里地 在这个人

現代のスーパーコンピュータは、スカラー演算器とベクトル演算器をプログラムの内容に応じて使い分けるので、その性能にも1~100倍程度のバラツキが出る。従って、スーパーコンピュータの性能を把握する場合には、スカラー性能と最高性能を知って性能の下限と上限を押えることはまず必要である。しかしながら、その上下幅は、大抵、非常に大きいので多くの応用問題における実効的な性能を知るのには極めて不十分である。

そこで、幾多のプログラムによるベンチマークテストが行われることになるわけであり、更に利用者プログラムをも加えて全数検査的な評価をすれば、スーパーコンピュータの性能の特徴は把握できよう。しかしながら、スカラーコンピュータと異なり、スーパーコンピュータでは各々のプログラムに対するMFLOPS値は様々に異なるので、通常、それらの中から標準的と思われる数値を選択して、あるいはその平均値をとって実効性能値の目安とすることが多い。例えば、リバモア14カーネルまたは24カーネルの平均速度(単純平均または調和平均)、リンパック(100次元または300次元)の性能などである。しかしながら、それらの数値自体にも大きな幅があり、例えばS-820/80では次のようになる。

S-820/80の標準的な性能値

	MFLOPS
理論最高性能	3 0 0 0
スカラー性能(リバモア平均	23
リバモア14カーネル単純平	4 1 8
調和平	2均 8 2
リバモア24カーネル単純平	353
調和平	4 3
リンパック (300×300	4 4 0
(100×100)	3 8

最高性能とスカラー性能の間には100倍以上の開きがあること が知られるが、実効性能値にも1~10倍の開きがある。そこで問 題になるのは、どの数値を実効性能の基準とすればよいかというこ とである。これらの数値はいずれもハードウェアとFORTRAN コンパイラを合体しての性能値であるが、あたかも、素粒子の質量 スペクトルにおける重粒子と軽粒子の如くに、幾つかのモードがあ る。その数値も安定的なものと不安定なものがあり、リバモア単純 平均速度やリンパック300次元速度が、コンパイラ版の変更に対 してかなり安定的であるのに対して、リバモア調和平均速度やリン パック100次元速度はコンパイラ版の変更に対してかなり不安定 である。S-820の例では、プリプロセッサによってリンパック ・プログラムの中のサブルーチンCALLをインライン展開すると 100次元の性能が38から65MFLOPSに大幅に向上する 。またリバモア調和平均速度は、内部の幾つかの低いMFLOPS 値のループの性能をコンパイラの改良で向上させると、大幅に変化 することも知られている。逆に、リバモア単純平均速度やリンパッ ク300次元の速度がコンパイラの変更によって余り大きく変動し ないのは、ベクトル演算器の高い性能を既にかなり引出しているた めに、性能が眠っている部分の揺り起こしの寄与が小さいからであ る。こうしてみると、実効性能の基準にはコンパイラ鈍感のものを 選ぶほうが適切なように思われる。

そこで素粒子物理学における基本素粒子の考え方を取入れて、実効性能の基準となる基本性能値を選抜することにした。坂田模型における3粒子(陽子、中性子、ラムダ粒子)のように、あるいはゲルマンとツバイクのクォーク模型における3粒子(×2)のように、安定的な実効性能値を3つ選び、それを用いて3種類の基準値を定義し、それを調和数と名付けることにした。次にそれを3軸等角表現(120°交差)によって図形化し、性能三角形を描いてスーパーコンピュータの実効性能の調和性を見ることにした。

実効速度の3つの基準値として、浮動小数点乗算、リバモア14カーネル平均およびリストベクトル演算の各速度を選ぶことにした。リンパック300次元の速度を浮動小数点乗算速度の代りに選ぶこともできるが、いずれも、連続アクセス型のベクトル演算性能を計る最も単純なものであり、乗算だけで十分に性能を知ることができる。そこでこれをA軸の基準性能値とした。次に、リバモア14カーネルの単純平均速度を選んだが、これは24カーネルであってもよい。調和平均速度を選ばぬ理由は既に述べた。この数値は、スーパーコンピュータの応用分野として適切な問題の核心部分を集めたプログラムの平均的な速度を表現しているものであり、応用面での実効性能の目安になる。そこでこれをB軸の基準性能値とした。第三には、主記憶制限の極限で最大性能を得るのに重要で応用範囲の広いリストベクトル演算を選び、C軸の基準性能値とした。

調和数による性能評価法の原理

3 軸等角表現

A軸···[乗算] 浮動小数点乗算の実測速度

B軸···[LLL] リバモア14カーネルの平均速度

C軸・・・「LIST」 リストベクトル演算の実測速度

調和数の計算法

正規化の母数=浮動小数点加算の理論最高速度

[例] CRAY-1の場合

A値 =
$$\frac{37.5 \text{ MFLOPS}}{80.0 \text{ MFLOPS}} \times 100 = 47$$
B値 = $\frac{37.9 \text{ MFLOPS}}{80.0 \text{ MFLOPS}} \times 100 = 47$
C値 = $\frac{3.3 \text{ MFLOPS}}{80.0 \text{ MFLOPS}} \times 100 = 4$

スーパーコンピュータの調和性

付録の表(A. 1)に基き、幾つかのスーパーコンピュータについて3つの基準性能値を選び、表2に示す。次に、既に述べた評価法の原理により計算された3つの調和数(A値、B値、C値)について、表3に示す。

表3の数値を3軸等角表現したものを図4a~hに示す。

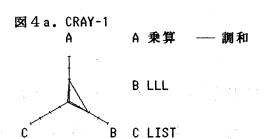
図4aとbによれば、CRAY-1とX-MPの性能図は2等辺 三角形でほぼ相似形をなしており、X-MPにおいて三角形が大き くなっている。これは、両者の基本アーキテクチャが共通で、演算 器の活用効率が向上したことを示している。主な改良点であるデー 夕転送能力強化(1本 \rightarrow 3本)の効果が現れたといえる。C値が弱 点であることがわかる。なおクレイ社では、X-MPの改良版(マ シンサイクル $9.5ns\rightarrow 8.5ns$)においてリストベクトル性能を向上 させている。

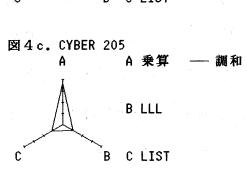
図4eとfによれば、S-810/20とS-820/80の性能図はほぼ正三角形であるが、S-820の方がより調和がとれている。主記憶まわりのハードウェアの強化によってリストベクトル性能を改善したことが性能図に良く表現されている。この機械の課題は三角形をもっと大きくすることである。それにはデータ転送能力をもっと強化する必要がある。S-820とSX-2では,ほぼ同等の演算器活用度を示しているが、SX-2のC値が少し弱い。

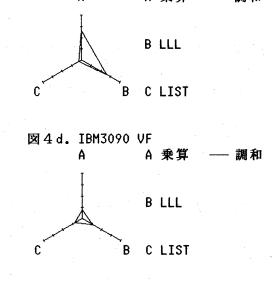
ほぼ正三角形にあるS-820、VP-400、3090 VF などは、いずれも調和性にすぐれているといえるが、性能三角形の 大きさでみると、

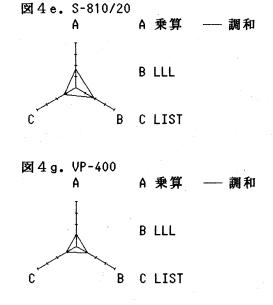
S-820 > VP-400 > 3090 VF となっており、演算器能力の活用度において VF などはまだ不十分であることを示している。 VP-400のデータ転送能力は演算器能力に比べてやや弱いことが知られているが、この性能三角形によってそのことが一目瞭然となる。

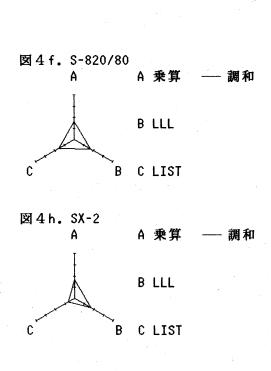
その反対にCyber 205の性能三角形は一定の大きさを有しているが、それに寄与しているのはA値だけである。A値は、連続アクセスで短項型の演算性能を見るものであり、205では、それに限れば演算器性能に近い性能値になっている。しかしながらB値やC値のように、非連続アクセスや多項型の複雑な演算の実効性能を見るものに対しては、演算器能力を十分に発揮しているとはいえない。ここでは示していないが、この特徴はETA10にも受けつがれている。 [例えば、リバモア24カーネルの単純平均速度は、Cyber 205(マシンサイクル20ns) の28.8MFLOPSに対して、ETA10-E(マシンサイクル12.5ns)の46.7MFLOPSである。] ETA10はリンパック100次元の速度が勝れていることで知られているが、これは、Cyber 205の弱点の一つであった短いベクトルに対する演算性能をETA10で例外的に強化したことによる。


表2. スーパーコンピュータの3速度


機種種	8 7 J. 18 3 J	速	度。
1戌 1鬼	乗算	LLL	LIST
C R A Y - 1	37.5	37.9	3.3
X - MP	6,8.7	68.6	7.0
CYBER 205	91.6	26.4	27.7
IBM3090 VF	10.6	15.6	10.7
S - 810/20	120.0	130.6	85.0
S - 8 20 / 80	399.9	417.9	400.0
VP-400	152.6	163.9	149.4
S X - 2	279.1	285.4	106.1


単位=MFLOPS


表3. スーパーコンピュータの調和数


機種	調	和和	数	
1戌 1鬼	A 値	B 值	C 値	
CRAY-1	47	47	4	
X - MP	6.5	6 5	7	
CYBER 205	92	26.	28	
IBM3090 VF	18	27	18	
S - 810/20	4 2	4 6	3 0	
S = 820/80	40	42	40	
VP-400	27	29	26	
SX-2	4 2	4 3	16	

4. 現状の到達点と課題

現状のスーパーコンピュータの下で数値シミュレーションが抱えている問題は、流れの速い場における様々な物理現象の解析である。移流拡散方程式によって表現される問題においては、移流速度(b)を含む移流項と、拡散係数(k)を含む拡散項の寄与比率が数値解析の難易度を決める。その比率は、物理学の側ではレイノルズ数として現れ、数値解析の側ではセル・ペクレ数として現れる。

レイノルズ数 (物理側)

$$Re = |\underline{b} \cdot a| / k | (a \sim n \Delta x)$$

セルペクレ数(数学側)

$$Pec = |\underline{b} \cdot \Delta x / k|$$
 (Δxは網目幅)

 $Re \ge 10^4$ のような高いレイノルズ数の流体では、乱流解析が重要になる。それを直接に数値シミュレーションするには、

が必要であることが知られている。例えば $Re=10^4$ の場合には 10^9 の網目が要求される。各網目に5つの未知物理量、7点差分で1語=8Bとすると、必要な記憶容量は280GBになる。現在のスーパーコンピュータの記憶容量の水準から逆算すると、

現在の実効主記憶 256 MB → Re ≤ 400 最大拡張記憶 12GB → Re ≤ 2400

となる。セルペクレ数で見れば、 $0 \le Pec < 1$ では数値解析が 安定するが、 $Pec \ge 1$ に対してはどこまで安定的に拡大できるかが算法研究の重要な課題となる。現在のところ、PBCG法/PCGS法などの安定性が注目されている。また、この系統のプログラムを含めた連立一次方程式の反復解法では、<math>スーパーコンピュータのリストベクトル性能による高速化が極めて有効であることが 知られている。

5. スーパーコンピュータの将来展望

現在の到達点にあるスーパーコンピュータは、

- [a] 演算および記憶素子をできるだけ高速化してマシンサイクル を短縮し、演算パイプラインのピッチを上げる方向にあるもの (S-820、CRAY-3、VP-2600など)
- [b] 演算および記憶素子の高速化の限界を見越して演算の多重処理化をめざすもの(X-MP、ETA10、Y-MPなど)
- [c]演算記憶装置の安価なものを大量に集めて並列処理化を拡大しようとするもの(Connection Machine、Ncubeなど)などに分類される。

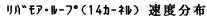
第一の方向は半導体その他のデバイス技術に全面的に依存する。

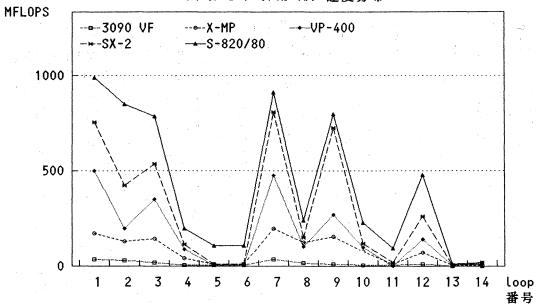
第二の方向は現状の主流にあるが、多重処理で広範なプログラム を高速化するにはソフトウェアのサポートを必要とする。

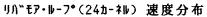
第三の方向は既に画像処理等の単能レベルでの超高速化には成功 しているが、演算パイプライン方式クラスの汎用性を実現できるか 否かの課題を残している。

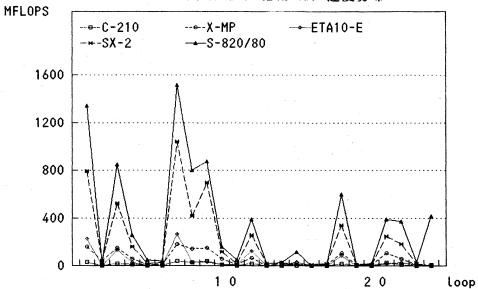
次世代への主な応用課題は乱流解析であり乱流モデルやLESモ デルなどの工夫がなされているが、直接シミュレーションのために は「TFLOPS、TB〕の機械が必要である。現在の水準の「約 1000倍の主記憶と演算速度をもつスーパーコンピュータの出現 が期待される。

参考文献


- [1] 唐木幸比古編:特集『スーパーコンピュータの現在』、コンピュートロール、No. 20, 1987年 、コロナ社。
- [2] 村田健郎・小国力・唐木幸比古:『スーパーコンピューター科学技術計算への適用ー』、 1985年、丸善。
- [3]日本物理学会編:『スーパーコンピュータ』、1985年、培風館。 [4]シドニー・ファンバック編(長島重夫訳):『スーパーコンピュータ』、1988年、パーソナ
- 「5]名取亮·野寺隆編:『スーパーコンピュータと大型数値計算』、bit臨時増刊、1987年、 共立出版。
- [6] 唐木幸比古: 『スーパーコンピュータと行列計算』、情報処理、第28巻11号、1987年、情報
- 「7〕唐木幸比古:『計算力学と超大型電算機』(基調講演)、第4回CAEDSユーザー研究会 報告書、1987年11月27日、日本アイ・ビー・エム。
- [8] 唐木幸比古: 『日米「超高速コンピュータ」のベンチマーク・テスト』、日経ウォッチャー IBM版、1988年 1月25日号、日経マグロウヒル社。
- [9] 唐木幸比古: 『スーパーコンピュータと大型行列計算』(基調講演)、 日立スーパーコン ピュータ HITAC S-820 が拡げる大規模科学技術計算、1988年 3月11日セミナー、日立製作所。
- [10] J.J.Dongarra: "Performance of Various Computers Using Standard Linear Equations Software in a Fortran Environment,Technical Memorandom No23 Oct.9 1987,Argonne National Lab., U.S.A.; ibid. Aug. 21 1988.
- [11] Yukihiko Karaki: "Analysis of Applicability of Supercomputers on the Basis of Benchmarks", Proceeding of International Conference of Computational Physics, June 1-5, 1988, Beijing, China.
- [12] D. W. Duke, J. D. McCalpin, M. Ramamurthy and D. Sandee: "Initial Benchmark Results from the ETA10 Supercomputer", May 21, 1987, Supercomputer Computations Research Institute , The Florida State University, U.S.A.


付録A. 1 高速コンピュータの性能比較


64ビット演算による性能


	高速コン	CPU	マシン	最高性	乗算	リバモフ	714平均	リンパ	リスト
-	ピュータ 機 種	数	サイクル	最高性 能 (理 論値)	速度	Scalar	Vector	ック 300元	ベクトル速度
C R A Y	CRAY-1 X-MP/1 X-MP/2 X-MP/4 CRAY-2 Y-MP	1 1 2 4 2-4 1-8	nsec 12.5 9.5 8.5 8.1 4.3	MFLOPS 160 210 470 940 1950 2540	MFLOPS 37.5 68.7 * 72.8 NA NA NA	MFLOPS NA NA NA NA NA	MFLOPS 37.9 68.6 * 85.0 351.7 * 58.8 NA	MFLOPS 66 106 161 *140 *129 *173	MFLOPS 3.3 7.0 NA NA NA NA
E T A	Cyber 205(2p) Cyber 205(4p) ETA10-P ETA10-Q ETA10-E (77 K) ETA10-G (77 K)	1 1-2 1-2 1-8 2-8	20. 0 20. 0 24. 0 19. 0 10. 5 7. 0	200 400 333 421 3047 4571	91.6 181.8 NA NA NA *250 e	NA NA NA NA NA	26. 4 40. 3 NA NA NA NA	31 NA * 80 *101 *182 *273 e	27.7 NA NA NA NA NA
F P S	FPS M64/MAX T/100 T/200	1 64 128	176. 0 125. 0 125. 0	341 768 1536	NA NA NA	NA NA NA	NA NA NA	48 e NA NA	NA NA NA
I	IBM3090 VF	1-6	17.2	698	* 10.6	* 7.6	* 15.6	* 18	* 10.7
日立	S-810/20 M-680H IAP S-820/80	1 1 1	14. 0 9. 0 4. 0	857 111 3000	120. 0 52. 2 399. 9	7. 9 20. 1 22. 9	130.6 35.6 417.9	158 NA 440	85. 0 23. 1 400. 0
富士通	VP-100(E) VP-200(E) VP-400(E) VP-2600(1990年	1 1 1	7.0 7.0 7.0 3.0	285 571 1142 4000	61. 7 111. 8 152. 6	8. 9 8. 9 8. 9	78.6 121.2 163.9	139 183 197	23. 7 24. 6 149. 4
NEC	SX-1E(A) SX-1(A) SX-2(A)	1 1 1	7(6) 7(6) 6.0	285 571 1333	NA NA 279. 1	NA 17. 1 19. 5	NA 159. 7 285. 4	147 224 347	NA NA 106. 1
欠	Intel iPSC/2VX	64	62.3e	1028	NA	NA	NA	17 e	NA
空間並	NCube 10	1024	2048. e	500	NA	NA	NA	NA	NA
並列型	Meiko Com.Sur.	1000	1000. e	1000	NA	NA -	NA	NA	NA
	Think Mach. CM	65536		2500	. NA	NA	NA	NA	NA
	FPS-264(M64/60	1	53.0	-38	NA	7.4	10.3	33.0	NA
ミニスーパ	Convex C-1 C-2(210	1	100.0 40.0	20 50	NA NA	1.7 NA	4.2 NA	15.0 41.0	NA NA
	Alliant FX/8 FX/80	8	169. 4 84. 7	94 189	NA NA	2.9 NA	10.7 NA	27. 0 33. 0	NA NA
機	Supertek S-1	1	50.0	40	8.4	NA	10.8	23.6	1.2
	M-280D IAP	1	38. 0	53	6.8	5.6	8.8	NA	1.2
涿	SUN 4/260	1		10MIPS	NA	NA	/	1.1	NA
逐次型	MPS 020-2	2		3MIPS	NA	NA		e 0.3	NA
	DEC VAX11/780	1		1MIPS	NA	NA	/	0.1	· NA

MFLOPS = Million Floating-point Operations Per Second MIPS = Million Instructions Per Second *印:単体性能 / e印:推算値 (# 中では、本中の最高性能 (理論値) は旧モデルのものであり、VP-Fシリーズでは表中の値の 3/2倍になる。同様に、NEC SX-1EA及びSX-1A では、表中の値の 7/6倍になる。乗算速度及びリストベクトル速度は、ベクトル長1000における値である。

リンパック (300X300)

機種(C)	125	250	375		500	MFLOPS
3-820/80	_	T	1	T	₩ 440	:	
SX-2				347		:	
SX-1			₹ 224			:	
JP-400		1	97			:	
/P-200		*************** 183			Ϋ.		in the second
TA10-E(M		182				:	
(-MP		*************** 173					
3-810/20		158		:			
X-1E		*************************************	:	:		:	
-810/10		₩₩ 146			3		
-MP		XXXX 140		:			
P-100		139		:			
RAY-2S		────────────────────────────────────					
-MP/14se		113					
TA10-Q(M		101		. :		:	
P-50	S S	34					
TA10-P(M	80	•				:	
YBER205(71			:			
RAY-1M	69					:	
100 ISP	 			:		:	
	L			. :			
-210	32	:					
090S VF	30						
CS-40	27						
-130	₩ 24		;	:			
090E VF	22	:		:		:	
PS-264	≅ 20					:	
X/80	⊠ 15	:	:			:	
-120	፟ 12			:			
	⊠ 11						
-1	№ 8.9	:				:	
X/40	፟ 8.4						
X/4	2 6.9	,					
PS M64/3	a 5.7					:	
DC170/75	3 5.4						
PS M64/4	§ 5.1			:			
X/80(1pe	4.5					:	
BM370/19	4.4						
X/40(1pe	3.5	:					
X/4(1pe)	2.6			:		:	
BM 3033	2.5		:			:	
X/1	1.8			:		:	
ent.Grap	1.5					:	
UN 4/260	1.1	:		:		:	
AX 8800	.96					:	
				:			
AX11/780	[.11	:	*	:		:	