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Chaotic Advection by a Point’Vortex in a Semidisk
Hisasat OKAMOTO! aND YosHiFuMI KIMURA?

§1. Introduction. We consider the motion of a particle which is advected by a
point vortex in a semi-disk. The purpose of this paper is to show how the motion
of the advected particle changes from a periodic one /. @ chaotic one. We actually
present an alternative perspective to what is observed in [1], where it is shown, by
numerical computations, that two point vortices in a semi-disk behave chaotically
if the energy of the orbits are sufficiently high, while they move quasi-periodically if
the energy is'low. One of the points in [1] is : even two vortices give rise to chaos if
they are confined in a semi-disk, while three vortices are necessary to cause a chaos
in the case of a full-disk and four vortices necessary in the case of the whole plane.

In this paper, we present.a mathematical framework which we believe to give
a clearer understanding of the dynamical system governing two vortices. In this
framework, we obtain differential equations which depend on a certain parameter «
€ [-1,1]. The differential equation studied in [1] is the one given here with a = —1.
It is therefore important to understand the structural change of the phase portrait
as a runs in [—1,1]. As a first step toward this, we consider in this paper the case
where a = 0. Our method is classical: the Poincaré map. We study the transition
from periodic motions to chaotic ones.

§2. The equation and its nondimensionalization. In this section we write the
governing equation and suitably nondimensionalize it. We put

Dr={z€C; |z| < R, Im(z)‘> 0},

which is an open semidisk of radius R in the complex plane. Suppose that there
are two point vortices z(t) and w(t) (—oo <t < oo, z,w € Dg). Let x; and
denote the intensity of the vortices z and w, respectively. Then the motion of these
two vortices in Dp are governed by the following (2.1,2) ( see [1] ) :
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where the dot means differentiation with respect to time t. We change the variables

to nondimensional ones by z — Rz, w — Rw, t — 2rR%t/k;. Then we
have
- -1 1 at —at —a at
(2. ; ,
(2.3) 2 E—z.~+E——-1/z +E——1/E+E—Tu‘+'z‘—1/w t e +2—1/zu"

(2:4) b = —az'+ —at + at + 1 + —1 + —1 + 1
| w"w—w v—1l/w w-1l/w w-2z2 w-1/z W—2z w-1/7’

where a = k3/k1. These are the equations which we wish to analyse. Note that
the phase space of this dynamical system is (D; x Dy) \ {(z,w);z = w} and that
the only a appears as a nondimensional parameter running from —oo to +ooc.

Remark 1. It is enough to consider only —1 < a < 1. For, if G(a, z,w) denotes
the right hand side of (2.3), then the right hand side of (2.4) is «G(1/a, w, z). This
implies that the dynamics of (@, z,w) is the same as (1/a,w, z), if we change the
time scale.

In [1] orbits of (2.3,4) are numerically computed in the case of & = —1. Somie of
them with a high energy are chaotic, i.e., they have continuous power spectra. On
the other hand, as far as the authors know, no chaotic motion has been found if « is
positive. Accordingly it is important to consider the structural change of the phase
portrait as a runs from —1 to +1. For instance, we should determine where in the
parameter space chaotic motions appear and where they do not. In this paper we
consider the case of a = 0, which enables us to use a mathematical theory. When
a = 0, we have

. —1 —1 7
(2:5) Z—7~—z+5—1/z+'5—1/’2
and
(2.6) W= — - !

wW—%z w-—1/z +w—z w—1/7

The meaning of this system is that the intensity of w.is infinitely small compared
with that of z. Therefore z moves irrelevantly to w, while the motion of w is
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influenced by z. Note that (2.5) is independent of w. We may alternatively say
that w moves as a passive. particle in a vector field created by z. We now. prove
some elementary properties of (2.5,6). We introduce Hamiltonians

L =2 w1 e s(d)lhe - 1)
H(z) - §log = and » H(w)t){— —2'10g i’w _ ;(t-)”w _ 1/2@‘ .

11— 27|z -7

Then (2.5,6) are written as the following Hamiltonian systems, respectively:

(2.7) | P =2i%§,
(28) | W :2%% ’

PROPOSITION 1. The system (2.7) is completely integrable and has a unique

equilibrium:

(2.9) z:iv\/g__g

Other orbits of (2.7) are periodic ones which surround this equilibrium, see Figure
1.

PROOF: The essential part of the proof is given in [2]. We, however, give a complete

proof in our framework. Let us use the polar coordinates (I, o) defined by v/2Ie*” =
z. Then, by the definition of the Hamiltonian, we have

_sn _ (1—2I)8Isin’c
412 +1 —4Icos20”

(2.10)

We now introduce some symbols. We put A
A=etH, E=1-2I, f(€) = —4€% + (4 — A)E? 4 4A¢ — 4A.

Then (2.10) is rewritten as :

(2.11) ‘ ' cot o = ===



This equation defines a family of closed curves in.D;.’ If we regard the right hand
side of (2.10) as a function of (I,0), then we see that it has one and only: one

maximum at o = 7%/:2; I — (\/5 — 2)/2 At this point A takes it maximum value

10v5—=22. 0 < A < 10/5 — 22, then (2.11) defines a closed curve enclosing
the point (2.9) inside it. On these curves, the motion of z is described as follows.
Taking the real part of (2.5) multiplied by z, we have

519 o 1 oto — 4Jsingcoso
(2.12) 2C ; 412+1—4Ic0820

By (2.11,12) we have £ = (A - £2)/f(€)/(VAE?). This equation defines the time
evolution of the vortex z(t) on the closed curves given by (2.11). We can solve this
equstion by means of elliptic functions and see that the solutions are periodic. I

By the periodicity of z, the equation (2.8) is a system whose Hamiltonian depends
periodically on ¢t.

PROPOSITION 2. The differential equation (2.6) is definable on the boundary

of D,. The boundary of D, is invariant with respect to the flow given by (2 6).
w = 1, —1 are unstable equilibria.

PROOF: The right hand side of (2.6) is equal to the following

1(Z = 2)(1 = |2|*)(1 —@*)

2.13 .
(213) @~ G+ amt PP =+ 9w + 1)
It is clear from (2.13) that w = —1,4—1 are equilibria. On the boundary cir-
cumference, we have w = €7 (0 < 4 < ). In this case, (2.13) is equal to

c(e?" — 1) = 2csinyie'?, where ¢ € R. This means the vector field is tangent to the
boundary. Similarly it is tangent in the case of w € [—1,1], since (2.13) € R when
w € R. Therefore the boundary of D, is an invariant set. i

Thus the equation (2.5,6) has nice properties which (2.3,4) with a # 0 does not
share. Notice that (2.4) can not be defined on the boundary for a # 0. Although
(2.5,6) are simple, it is connected through a to the equation considered in [1] .

Since a similar problem is considered in Aref and Pomphrey [5,6], we would like
to mention our motivation here. In [5,6], they consider the motion of a passive
vortex stirred by three identical vortices. Since this problem is a special case of
three vortices with different intensities, it seems to us that our problem is simpler
than theirs. Note that the vortex z by which the motion of w is take place, can
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move periodically or =st’ationaryviand there is no motion of other kind. On the other
hand, three vortices can move with more varieties, e.g., they can collide ( [7]").
Suppose that z is the equilibrium (2.9). Then (2.8) is independent of time, which

implies that the Hamiltonian H is constant along'individual orbits. Consequently
(2.8) is completely integrable and the orbits of (2.8) consist only of closed Jordan

curves defined by ;I (w,ivVV/5 —2) = constant. Furthermore, they occupy the
whole phase space of (2.8) except for the boundary ( see Figure 2 ). If the initial
position of z is placed slightly apart from (2.9), then z moves on a small closed

curve surrounding the equilibrium. In this case H is no longer independent of time
and complicated orbits may appear. Let T' be the period of z. Then we can obtain
a Poincaré map in a usual way:

(2.14) B £1w(0) = w(T).
We give in APPENDIX a theorem by which the map (2.14) becomes well-defined
in Q=D \ {2(0)}. This is éQuivalent to saying that

if  w(0) # 2(0), then w(t)# 2(t) for all .

If this is proved, it is clear that the map (2.14) is one-to-one, onto and continuous.
Furthermore it preserves the area. Although our ”proof ” is not complete, we think
the account in APPENDIX is a strong evidence of the correctness of the theorem.

We now examine the properties of the Poincaré map. It is enough to consider the

case where 2(0) = ig +iv/v/5—2 (0 < ¢ <1-—1/v/5—2). Let the mapping be

denoted by f, when 2(0) = ig+iv/+/5 — 2. Several orbits are drawn on each figures
3-8. Figure 3, - - -, 8 correspond to ¢ = 0.01,0.05,0.1,0.25, 0.3, 0.4, respectively.

It should be noticed that there is a fixed point in a lower part of the imaginary
axis and that it is enclosed by a layer of closed curves. This shows that there is
a periodic orbit which has exactly the same period as that of 2(t) and that it is
stable. Some topological argument shows that there must be an unstable fixed
point. Figure 1 shows that the unstable fixed point is on the upper side of the
imaginary axis and that the stable fixed point are connected to the unstable one
by a homoclinic orbit. We can observe that the region occupied by the invariant
circles reduces and the islands grows up in accordance with the increase of ¢. We
also notice that, even in the case of a large ¢, there are KAM tori around the point
z(0). The reason is that, when w(0) is close to z(0), the interaction of w with the
" boundary is negligibly small compared with the interaction between w and z ( see

the definition of Fy in the APPENDIX ).
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Conclusion. Our equation (2.6), despite its simple appearance, e).chib,its chaotic
orbits. Tt seems to the authors that ours is one-of the SlIIlpl(?St equation among the
chaos-displaying vortex systems. As is shown in [4], streamlines of a stationary 3-D
Euler flow can be chaotic. Our example shows that 2-D time-periodic Euler flow

may.have chaotic trajectories of particles.
APPENDIX 1. Here we prove :

THEOREM A. For any tubular neighborhood N of O = {(z(t),t);0 < t < T},
there is an invariant torus such that it lies in N and that O lies inside it

The precise meaning of this theorem is as follows: The phase space of (2.8) is

Us<s<(D1\{2(#)}), where the sections ¢ = 0 and ¢ = T are identified. Therefore it

is homeomorphic to (Dy \ {2(0)}) x §*, where S is a circle. Note that {2(0)} x S*
~ corresponds to the orbit of z. The above theorem asserts that all the neighborhood
of {2(0)} x S! has an invariant torus which contains {z(0)} x S* inside.

ForMAL PROOF OF THEOREM A: Let us introduce U +:V = u+iv — 2(t) where
u +tv = w. Then (2.8) is rewritten as

- 0K . 0K
(A.3) U=—7 V=35

where we have put

U +iV||U +iV + 2 — 1/2]
U+iV+z—2U+iV+2z—1/z]

K(U,V,t) = -;- log + VRe(2) — Ulm(3).

Note that the right hand side depends on ¢ through z = z(t). If we define Ko(U, V)
and K (U,V,t) by Ko(U,V) = log(U? + V?),  Ky(U,V,t) = K(U,V,t) -
Ko(U,V) then, K, is continuous on _D_I,, the closure of D;. Note that the orbits

of U = ——%Q, V= %ﬂ, are simply the circles about the origin. We attempt to
apply the KAM theory to the Hamiltonian system (A.3). Let € > 0 be a small pa-

rameter. We introduce canonical variables (p, q) by p = lzilvr?, g = arg(U + V).

We further change ¢ to €2t. Then (A.3) becomes :

(A4) p:_'é_v q= _a?,



where we have put

.‘ 1
(A5) F =Fg(p) + Fl (pa q, ta E)v with FO(pv q, t) 6) = Z logp)

evBpeit +2(r) =1/
|ev/2peit + 2(7) — 2(r)llev/Zpets + 2(7) = 1/2(7)

. .
Fl(p7 qata 6) =_2' 10g

+ e\/.‘g) sin gRe(2(7)) — 6\/2; cos glm(2(7)),

where T = €2t. These are defined on ¢ € R/27Z and p ~ 1. In this setting we wish
to use Theorem 2 in Arnold [3]. This theorem garantees the existence of invariant
tori for € > 0 which is close to unperturbed torus p = po(€ [1/2,2]) where py
is sufficiently incommensurable. There is, however, one difficulty that the slowly
changing parameter is et in [3], while it is €2¢ in (A.5). We hope that this diffuiculty
is overcome if we follow the method of [3] in detail. Accordingly we are satisfied by
the form (A.4) and stop here rather than pursuing rigorous proof, which seems to
require a formidable calculation. |

REFERENCES

o

. Y. Kimura and H. Hasimoto, J. Phys. Soc. Japan 55 (1986), 5-8.

. Y. Kimura, Y. Kusumoto and H. Hasimoto, J. Phys. Soc. Japan 53 (1984),
2988-2995. \

. V.I. Arnold, Soviet Math. Dokl. 3 (1962), 136-140.

. V.I. Arnold, “Mathematical Methods of Classical Mechanics,” Springer Verlag,
New York, Heidelberg, Berlin, 1978.

. H. Aref and N. Pomphrey, Proc. R. Soc. London A 380 (1982), 359-387.

. H. Aref and N. Pomphrey, Phys. Lett. A 78 (1980), 297-300.

. H. Aref, Ann. Rev. Fluid Mech. 15 (1983), 345-389.

[NV

> W

~J O Ot

Keywords. point vortex, homoclinic orbit, Chaos



Figure 1. Orbits of z(t)

Fifure 2. Orbits of w(t) when z =V /5 - 21
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