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Chaotic Advection by a Point Vortex in a Semidisk

HISASHI OKAMOTO1 AND YOSHIFUMI KIMURA2

\S 1. Introduction. We consider the motion of a particle which is advected by a
point vortex in a semi-disk. The purpose of this paper is to show how the motion
of the advected particle changes from a periodic one $t_{rightarrow r1}^{\tau}$

) chaotic one. We actually
present an alternative perspective to what is observed in [1], where it is shown, by
numerical computations, that two point vortices in a semi-disk behave chaotically
if the energy of the orbits are sufficiently high, while they move quasi-periodically if
the energy is low. One of the points in [1] is : even two vortices give rise to chaos if
they are confined in a semi-disk, while three vortices are necessary to cause a chaos
in the case of a full-disk and four vortices necessary in the case of the whole plane.

In this paper, we present a mathematical framework which we believe to $gi$ve
a clearer understanding of the dynamical system governing two vortices. In this
framework, we obtain differential equations which depend on a certain parameter $\alpha$

$\in[-1,1]$ . The differential equation studied in [1] is the one given here with $\alpha=-1$ .
It is therefore important to understand the structural change of the phase portrait
as $\alpha$ runs in [-1, 1]. As a first step toward this, we consider in this paper the case
where $\alpha=0$ . Our method is classical: the Poincar\’e map. We study the transition
from periodic motions to chaotic ones.

\S 2. The equation and it $s$ nondimensionalization. In this section we write the
governing equation and suitably nondimensionalize it. We put

$D_{R}=\{z\in \mathbb{C};|z|<R, {\rm Im}(z)>0\},$.

which is an open semidisk of radius $R$ in the complex plane. Suppose that there
are two point vortices $z(t)$ and $w(t)$ $(-\infty<t<\infty, z, w\in D_{R})$ . Let $\kappa_{1}$ and $\kappa_{2}$

denote the intensity of the vortices $z$ and $w$ , respectively. Then the motion of these
two vortices in $D_{R}$ are governed by the following (2.1,2) (see [1]) :

(2.1) $\dot{z}=\frac{-i}{2\pi}[\frac{\kappa_{1}}{\overline{z}-z}+\frac{\kappa_{1}}{\overline,z-\frac{R^{2}}{z}}-\frac{\kappa_{1}}{\overline,z-\frac{R^{2}}{\overline{z}}}-\frac{\kappa_{2}}{\overline{z}-\overline{w}}+\frac{\kappa_{2}}{\overline,z-\frac{R^{2}}{w}}+\frac{\kappa_{2}}{\overline{z}-w}-\frac{\kappa_{2}}{\overline{z}-\frac{R^{2}}{\overline{w}}}]$,
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(2.2) $\dot{w}=\frac{-i}{2\pi}[\frac{\kappa_{2}}{\overline{w}-w}+\frac{\kappa_{2}}{\overline,w-\frac{R^{2}}{w}}-\frac{\kappa_{2}}{\overline,w-\frac{R^{2}}{\overline{w}}}-\frac{\kappa_{1}}{\overline{w}-\overline{z}}+\frac{\kappa_{1}}{\overline,w-\frac{R^{2}}{z}}+\frac{\kappa_{1}}{\overline{w}-z}-\frac{\kappa_{1}}{\overline,w-\frac{R^{2}}{\overline{z}}}]$ ,

where the dot means differentiation with respect to time $t$ . We change the variables
to nondinensional ones by $zarrow Rz$ , $warrow Rw$ , $tarrow 2\pi R^{2}t/\kappa_{1}$ . Then we
have

(2.3) $\dot{z}=\frac{-i}{\overline{z}-z}+\frac{-i}{\overline,z-1/z}+\frac{i}{\overline,z-1/\overline{z}}+\frac{\alpha i}{\overline{z}-\overline{w}}+\frac{-\alpha i}{\overline,z-1/w}+\frac{-\alpha i}{\overline{z}-w}+\frac{\alpha i}{\overline,z-1/\overline{w}}$ ,

(2.4) $\dot{w}=\frac{-\alpha i}{\overline{w}-w}+\frac{-\alpha i}{\overline{w}-1/w}+\frac{\alpha i}{\overline,w-1/\overline{w}}+\frac{i}{\overline{w}-\overline{z}}+\frac{-i}{\overline,w-1/z}+\frac{-i}{\overline{w}-z}+\frac{i}{\overline,w-1/\overline{z}}$ ,

where $\alpha=\kappa_{2}/\kappa_{1}$ . These are the equations which we wish to analyse. Note that
the phase space of this dynamical system is $(D_{1}\cross D_{1})\backslash \{(z, w);z=w\}$ and that
the only $\alpha$ appears as a nondimensional parameter running from-oo $to+\infty$ .

Remark 1. It is enough to consider only $-1\leq\alpha\leq 1$ . For, if $G(\alpha, z, w)$ denotes
the right hand side of (2.3), then the right hand side of (2.4) is $\alpha G(1/\alpha, w, z)$ . This
implies that the dynamics of $(\alpha, z, w)$ is the same as $(1/\alpha, w, z)$ , if we change the
time scale.

In [1] orbits of (2.3,4) are numerically computed in the case of $\alpha=-1$ . Some of
them with a high energy are chaotic, i.e., they have continuous power spectra. On
the other hand, as far as the authors know, no chaotic motion has been found if $\alpha$ is
positive. Accordingly it is important to consider the structural change of the phase
portrait as $\alpha$ runs from-l $to+1$ . For instance, we should determine where in the
parameter space chaotic motions appear and where they do not. In this paper we
consider the case of $\alpha=0$ , which enables us to use a mathematical theory. When
$\alpha=0$ , we have

(2.5) $\dot{z}=\frac{-i}{\overline{z}-z}+\frac{-i}{\overline,z-1/z}+\frac{i}{\overline{z}-1/\overline{z}}$

and

(2.6) $\dot{w}=\frac{i}{\overline{w}-\overline{z}}+\frac{-i}{\overline,w-1/z}+\frac{-i}{\overline{w}-z}+\frac{i}{\overline,w-1/\overline{z}}$ .

The meaning of this system is that the intensity of $w$ . is infinitely small compared
with that of $z$ . Therefore $z$ moves irrelevantly to $w$ , while the motion of $w$ is
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$i$nfluenced by $z$ . Note that (2.5) is independent of $w$ . We may alternatively say
that $w$ moves as a passive particle in a vector field created by $z$ . We now prove
some elementary properties of (2.5,6). We introduce Hamiltonians

$H(z)= \frac{1}{2}\log\frac{|1-z^{2}|}{|1-z\overline{z}||z-\overline{z}|}$ and $\tilde{H}(w,t)=\frac{1}{2}\log\frac{|w-z(t)||w-1/z(t)|}{|w-\overline{z(t)}||w-1/\overline{z(t)}|}$ .

Then (2.5,6) are written as the following Hamiltonian systems, respectively:

(2.7) $\dot{z}=2i\frac{\partial H}{\partial\overline{z}}$ ,

(2.8) $\dot{w}=2i\frac{\partial\tilde{H}}{\partial\overline{w}}$ .

PROPOSITION 1. The system (2.7) is completely integrable and has a unique
$eq$uilibrium:

(2.9)
$z=i\sqrt{\sqrt{5}-2}$

Other orbits of (2.7) are periodic ones which surroun$d$ this $equ$ilibrium, see Figure
1.

PROOF: The essential part of the proof is given in [2]. We, however, give a complete

proof in our framework. Let us use the polar coordinates (I, $\sigma$ ) defined by $\sqrt{2I}e^{i\sigma}=$

$z$ . Then, by the definition of the Hamiltonian, we have

(2.10) $e^{-4H}= \frac{(1-2I)^{2}8I\sin^{2}\sigma}{4I^{2}+1-4I\cos 2\sigma}$ .

We now introduce some symbols. We put

$A=e^{-4H}$ , $\xi=1-2I$ , $f(\xi)=-4\xi^{3}+(4-A)\xi^{2}+4A\xi-4A$ .

Then (2.10) is rewritten as:

(2.11) $\cot\sigma=\frac{\sqrt{f(\xi)}}{\sqrt{A}\xi}$
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Thi$s$ equation defines a family of closed curves in $D_{1}$ . If we regard the right hand
side of (2.10) as a function of (I, $\sigma$ ), then we see that it has one and only one

maximum at $\sigma=\pi/2,$ $I=(\sqrt{5}-2)/2$ . At this point $A$ takes it maximum value

$10\sqrt{5}-22$ . If $0<A<10\sqrt{5}-22$ , then (2.11) defines a closed curve enclosing
the point (2.9) inside it. On these curves, the motion of $z$ is described as follows.
Taking the real part of (2.5) multiplied by 7, we have

(2.12) $\dot{I}=\frac{1}{2}\cot\sigma-\frac{4I\sin\sigma\cos\sigma}{4I^{2}+1-4I\cos 2\sigma}$

By (2.11,12) we have $\dot{\xi}=(A-\xi^{2})\sqrt{f(\xi)}/(\sqrt{A}\xi^{3})$ . This equation defines the time
evolution of the vortex $z(t)$ on the closed curves given by (2.11). We can solve this
equstion by means of elliptic functions and see that the solutions are periodic. I

By the periodicity of $z$ , the equation (2.8) is a system whose Hamiltonian depends
periodically on $t$ .

PROPOSITION 2. The differential equation (2.6) is definable on the $bo$undary
of $D_{1}$ . The $bo$un $d$ary of $D_{1}$ is invariant with respect to the flow given by (2.6).
$w=1,$ $-1$ are unsta$bleeq$uilibria.

PROOF: The right hand side of (2.6) is equal to the following

(2.13) $\frac{i(\overline{z}-z)(1-|z|^{2})(1-\overline{w}^{2})}{\{\overline{w}^{2}-(z+\overline{z})\overline{w}+|z|^{2}\}\{\overline{w}^{2}|z|^{2}-(z+\overline{z})\overline{w}+1\}}$

It is clear from (2.13) that $w=-1,$ $+1$ are equilibria. On the boundary cir-
cumference, we have $w=e^{i\gamma}$ $(0\leq\gamma\leq\pi)$ . In this case, (2.13) is equal to
$c(e^{2i\gamma}-1)=2c\sin\gamma ie^{i\gamma}$ , where $c\in R$ . This means the vector field is tangent to the
boundary. Similarly it is tangent in the case of $w\in[-1,1]$ , since (2.13) $\in R$ when
$w\in R$ . Therefore the boundary of $D_{1}$ is an invariant set. :

Thus the equation (2.5,6) has nice properties which (2.3,4) with $\alpha\neq 0$ does not
share. Notice that (2.4) can not be defined on the boundary for $\alpha\neq 0$ . Although
(2.5,6) are simpl\‘e, it is connected through $\alpha$ to the equation considered in [1].

Since a similar problem is considered in Aref and Pomphrey $[5,6]$ , we would like
to mention our motivation here. In $[5,6]$ , they consider the motion of a passive
vortex stirred by three identical vortices. Since this problem is a special case of
three vortices with different intensities, it seems to us that our problem is simpler
than theirs. Note that the vortex $z$ by which the motion of $w$ is take place, can
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move periodically or stationary and there is no motion of other kind. On the other
hand, three vdrtices can move with more varieties, e.g., they can collide ([7]).

Suppose that $z$ is the equilibrium (2.9). Then (2.8) is independent of time, which

implies that the Hamiltonian $\tilde{H}$ is constant along individual orbits. Consequently
(2.8) is completely integrable and the orbits of (2.8) consist only of closed Jordan

$t$

curves defined by $\tilde{H}(w, i\sqrt{\sqrt{5}-2})=$ constant. Furthermore, they occupy the
whole phase space of (2.8) except for the boundary (see Figure 2). If the initial
position of $z$ is placed slightly apart from (2.9), then $z$ moves on a small closed

curve surrounding the equilibrium. In this case $\tilde{H}$ is no longer independent of time
and complicated orbits may appear. Let $T$ be the period of $z$ . Then we can obtain
a Poincar\’e map in a usual way:

(2.14) $f:w(0)arrow w(T)$ .

We give in APPENDIX a theorem by which the map (2.14) becomes well-defined

in $\Omega\equiv\overline{D_{1}}\backslash \{z(0)\}$ . This is equivalent to saying that

if $w(O)\neq z(O)$ , then $w(t)\neq z(t)$ for all $t$ .

If this is proved, it is clear that the map (2.14) is one-to-one, onto and continuous.
Furthermore it preserves the area. Although our “proof” is not complete, we think
the account in APPENDIX is a strong evidence of the correctness of the theorem.

We now examine the properties of the Poincar\’e map. It is enough to consider the

case where $z(0)=iq+i\sqrt{\sqrt{5}-2}$ $(0<q<1-\sqrt{\sqrt{5}-2})$ . Let the mapping be

denoted by $f_{q}$ when $z(O)=iq+i\sqrt{\sqrt{5}-2}$ . Several orbits are drawn on each figure$s$

$3- 8$ . Figure 3, $\cdots,$
$8$ correspond to $q=0.O1,0.05,0.1,0.25,0.3,0.4$ , respectively.

It should be noticed that there is a fixed point in a lower part of the imaginary
axis and that it is enclosed by a layer of closed curves. This shows that there is
a periodic orbit which has exactly the same period as that of $z(t)$ and that it is
stable. Some topological argument shows that there must be an unstable fixed
point. Figure 1 shows that the unstable fixed point is on the upper side of the
imaginary axis and that the stable fixed point are connected to the unstable one
by a homoclinic orbit. We can observe that the region occupied by the invariant
circles reduces and the islands grows up in accordance with the increase of $q$ . We
also notice that, even in the case of a large $q$ , there are KAM tori around the point
$z(O)$ . The reason is that, when $w(O)$ is close to $z(O)$ , the interaction of $w$ with the

$)$ boundary is negligibly small compared with the interaction between $w$ and $z$ (see
the definition of $F_{0}$ in the APPENDIX).
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Conclusion. Our equation (2.6), despite its simple appearance, exhibits chaotic

orbits. It seems to the authors that ours is one,of the simplest equation among the
$chaos-displaying$ vortex systems. As is shown in [4], streamlines of a stationary 3-D
Euler flow can be chaotic. Our example shows that 2-D time-periodic Euler flow
may.have chaotic trajectories of particles.

APPENDIX 1. Here we prove:

THEOREM A. For any tu $b$ular neighborhood $N$ of $O=\{(z(t),t);0\leq t<T\}$ ,
there is an invariant torus such that it $li$es in $N$ and that $O$ lies inside it

The precise meaning of this theorem is as follows: The phase space of (2.8) is

$\bigcup_{0\leq t\leq T}(\overline{D_{1}}\backslash \{z(t)\})$ , where the sections $t=0$ and $t=T$ are identified. Therefore it

is homeomorphic to $(\overline{D_{1}}\backslash \{z(0)\})\cross S^{1}$ , where $S^{1}$ is a circle. Note that $\{z(O)\}\cross S^{1}$

corresponds to the orbit of $z$ . The above theorem asserts that all the neighborhood
of $\{z(0)\}\cross S^{1}$ has an invariant torus which contains $\{z(0)\}\cross S^{1}$ inside.

FORMAL PROOF OF THEOREM $A$ : Let us introduce $U+iV=u+iv-z(t)$ where
$u+iv=w$ . Then (2.8) is rewritten as

(A.3) $\dot{U}=-\frac{\partial K}{\partial V}$ , $\dot{V}=\frac{\partial K}{\partial U}$ ,

where we have put

$K(U, V,t)= \frac{1}{2}\log\frac{|U+iV||U+iV+z-1/z|}{|U+iV+z-\overline{z}||U+iV+z-1/\overline{z}|}+V{\rm Re}(\dot{z})-U{\rm Im}(\dot{z})$ .

Note that the right hand side depends on $t$ through $z=z(t)$ . If we define $K_{0}(U, V)$

and $K_{1}(U, V,t)$ by $K_{0}(U, V)= \frac{1}{4}\log(U^{2}+V^{2})$ , $K_{1}(U, V,t)=K(U, V, t)-$

$K_{0}(U, V)$ then, $K_{1}$ is continuous on $\overline{D_{1}}$, the closure of $D_{1}$ . Note that the orbits

of $\dot{U}=-\frac{\partial K_{0}}{\partial V}$ , $\dot{V}=\frac{\partial K_{0}}{\partial U}$ , are simply the circles about the origin. We attempt to
apply the KAM theory to the Hamiltonian system (A.3). Let $\epsilon>0$ be a small pa-

rameter. We introduce canonical variables $(p, q)$ by $p= \frac{U^{2}+V^{2}}{2\epsilon^{2}}$ , $q=\arg(U+iV)$ .

We further change $t$ to $\epsilon^{2}t$ . Then (A.3) becomes:

$(A.4)$ $\dot{p}=-\frac{\partial F}{\partial q}$ , $\dot{q}=\frac{\partial F}{\partial p}$ ,
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where we have put

$(A.5)$ $F=F_{0}(p)+F_{1}(p, q,t, \epsilon)$ , with $F_{0}(p, q,t, \epsilon)=\frac{1}{4}\log p$ ,

$F_{1}(p, q,t, \epsilon)=\frac{1}{2}\log\frac{|\epsilon\sqrt{2p}e^{iq}+z(\tau)-1/z(\tau)|}{|\epsilon\sqrt{2p}e^{iq}+z(\tau)-\overline{z(\tau)}||\epsilon\sqrt{2p}e^{iq}+z(\tau)-1/\overline{z(\tau)}|}$

$+\epsilon\sqrt{2p}\sin q{\rm Re}(\dot{z}(\tau))-\epsilon\sqrt{2p}\cos q1m(\dot{z}(\tau))$ ,

where $\tau=\epsilon^{2}t$ . These are defined on $q\in R/2\pi Z$ and $p\sim 1$ . In this setting we wish
to use Theorem 2 in Arnold [3]. Thi $s$ theorem garantees the existence of invariant
tori for $\epsilon>0$ which is close to unperturbed torus $p=p_{0}(\in[1/2,2])$ where $p_{0}$

is sufficiently incommensurable. There is, however, one difficulty that the slowly
changing parameter is $\epsilon t$ in [3], while it is $\epsilon^{2}t$ in (A.5). We hope that this diffuiculty
is overcome if we follow the method of [3] in detail. Accordingly we are satisfied by
the form (A.4) and stop here rather than pursuing rigorous proof, which seems to
require a formidable calculation. I
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Figure 1. Orbits of $z(t)$

Fifure 2. Orbits of $w(t)$ when $z$ $\equiv$
$\sqrt{\sqrt{5}-2}i$

$\delta$
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Figure 3. Poincar\’e map: $q=$ 0.01

Figure 4. Poincar\’e map: $q=0.05$
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Figure 5. Poincar\’e map : $q=0.1$

Figure 6. Poincar\’e map: $q=$ $0$ $25$
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Figure 7. Poincar\’e map: $q=0.3$

Figure8. Poincar\’e Map: $q=$ 0.4
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