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Nonstandard representations of heat kernels

on compact Riemannian manifolds

BEAX I WU W& ( Hiroshi AKIYAMA )

In this note we show applications of nonstandard analysis
to heat kernels on compact Riemannian manifolds. As our
framework of nonstandard analysis, we adopt the nonstandard set
theory UNST presented by T. Kawai [7]. In 81, we give some
notational preliminaries together with the axioms of UNST.
Section 2 concerns nonstandard construction of a‘Brownian
motion on a compact Riemannian manifold. Its each sample path
will be obtained as the standard part of the projection of the
solution of a certain (internal) differential equation on the
nonstandard extension of the bundle of orthonormal frames over
the manifold. Then in 83, we get a nonstandard probabilistic
representation of the heat kernel for a heat equation for
functions on a compact Riemannian manifold.. More generally, in
84, we obtain a nonstandard probabilistic representation of the
heat kernel for a heat equation for differential forms with
values in a‘Riemannian vector bundle. We mention here that
sections 3 and 4 are motivated by S. Watanabe's work [13]

giving probabilistic expressions of heat kernels by using the
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Malliavin calculus (cf. [5], (6], (141, [11).
Basically, the material (except the preliminary section 1)

of this note is taken from [2; §2 and 8§41.

1. Preliminaries

We shall adopt T. Kawai's nonstandard set theory UNST
({71), which is a conéervative extension of ZFC. The language
of UNST is given by adding three constant symbols %, # and *
to the language of ZFC. If a€ll [resp. a€fl], a is called
usual [resp. internall. For a formula ¢ in ZFC (that is, a
formula in UNST without %, # and %), uw [resp. ym] denotes
the relativisation of ¢ to U [resp. £]1. We recall the
axioms of UNST, the following (1)—(9):

(1) If ¢ 1is an axiom of ZFC, then ﬂw is an axiom of UNST.
(2) Each axiom of ZFC different from the axiom of regularity
is an axiom of UNST..
(3) (Axiom of regularity in a restricted form)
VA [AZ0 A AN$=0 — Ix€A [xNA=0]1. (0=¢: the empty set.)
(4) * : 4 — % (map). When a€ll, we write *a for #%(a).
(56) (Transitivity of %) VA VB [A€EB A BES — A€S].
(6) (Transitivity of %U) VA VB [A€B A BeY — A€l].
(7) VA VB [AcB A BEU — A€fll].
(8) (Transfer principle) Let 'Q(xl,...,xn) be an n-ary

formula in ZFC (the free variables of ¢ are among
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X vees X ). Then
) N

1’ . )

: U F % 4 %
VR eeo s X €U [7Q(X 500X ) & QO X, 000y X )1

(9) (Saturation principle) Define (D : U-size) = 3IF (map)
[F : %4 — D (onto)l. Let Q(a,b,xl,...,xh) be an
(n+2)-ary formula in ZFC (the free variables of ¢ are

among‘ a, b, x ' xn). Then

1r ot
¥YD: U-size Vxl,...,xnef
Vd€f [d is finite A dcD

— JIb€F VYa€d }w(a,b,x , X))

1000 Xy

—» IBE# VAEDNS ~"qo(A,B,xl,...,xn>

It is known that the following hold in UNST:

(Extension principle)

VAES VBEF Va Vf
acA A a . %YU-size A f : a — B (map)

— 3F€$ [F : A — B (map) A Vx€a [F(x) = £f(x)11].

Bylthe transfer prinbiple; the map * : 4 — ¢ 'is
injective. For a€ll, we often identify a iwith *a (and use
a instead of *a) when we do not need to take account of the
set—structuré of a. (For example, each reéR is idehtified
with *r. Then Rg"™R.) If f : A— B is a map with A, B,

%

€ U, we have “f : A — B and F(tx)) = *£(*x) for all x

€ A; we often write f : "A — B rather than *f : ‘A — ¥B.

When a 1is a point of a topological space X and x €



Mon(a) (= the monad of a), we write ima. (If x, y € *Rn
with neN-{0} and. Ix=yl is infinitesimal where |:| denotes
Euclidean norm in *Rn, We write Xxsy.)- If X 1is a Hausdorff{
space and rxe*x is near-standard, the standard part of X is
denoted by °'x (cf. [73, [101, [111).

Now we prepare a hyperfinite random wark in *Rn, where
0 < neN. Let K€'™N-N and put K = K,! (factorial in "N,
Set @ = (-1, ™", Then @ is a hyperfinite set and each o €

8 is expressed as

Let 4 be the internal algebra of all infernal subsets of Q.
Define an internal probability méasure v ¢ 4 —**[0,1] (= {x é
;3 0<x< 1)) by v(A) = |AI/1Q] for all A € 4, where

|1 denotes internai cardinality; that is, v is thé
normalized cbunting measure on (Q, 4). Let {e1 $009s en} be
*ph

the canonical basis of Rn (and thus of ). Define a

hyperfinite random walk

w i F[0,11 X Q 3 (t,0) — w(t,0) = v, (@) € *RD,

w(t,n) =
o

wa(m)e s

n
- t o

1

by
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[Kt] |
o I o - «
vi(e) = /g( , Cils) K m”?‘f’muu)’

n M=

i

where [Kt] stands for the greatest hyperinteger not exceeding
Kt. The internal process W, may be called Anderson’s

n-dimensional process.

As is well known, the saturation principle implies that
the finitely additive measure °v : 4 3 A Hﬁko(v(A)) € [0,1]1 (=
{x € R; 0 < x < 1}) is countably additive on o and is
extended uniquely to a probability measure G on the
o-algebra o(d) generated by 4. The completion (Q, L(d),

vL) of the probability space (R, o(d), 3) is called the
(uniform) Loeb probability space of (Q, 4, v) (see [9]1, [101],
[(111).

Proposition 1.1 ([31). Set

b(t,0) = ba(t,m)ea)= °(w(t,m)), (t,o) € [0,1]1 x Q.

nmMs

=1

%, = “w®(t,0)), (t,0) € [0,11 X Q.)

Then b(t,®) 1is continuous in t and finite for almost all

®, and (a continuous and finite version of) (b(t’m))tEEO,ll

is a Brownian motion, called Anderson’s Brownian motion.
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We refer to [31, [10] for applications of Anderson's

Brownian motion to stochastic integrals.

2. Brownian motion on a compact Riemannian manifold

— nonstandard approach —

Let (M, g) be a compact, connected, Coo Riemannian
manifold of dimensi0n4 n (0 <ne€N), and let 7w : OM) — M
be the bundle of orthonormal frames for TM over M. Then
O(M) is compact. Moreover, it is endowed with the connection
induced naturally from the Riemannian metric g. For £ € Rn,
the basic vector field on O(M) corresponding to £ is
denoted by B(£); for r € O(M), B(§) € T O(M) is the
horizontal lift of rg € Tn(r)M‘ Here r£ is the tangent
vector at n(r) whose components with respect to r are just
the components of £. It is a fundamental fact that if C is
the integral curve of B(£) through r€0(M) then n(C) is
the geodesic to which r& is tangent ([81). ‘

Let %X(O(M)) be the space of ¢® vector fields on O(M).

Then we have the map- B : R" 3 £ — B(Z) € L(O(M)), so that

*B . *R" 3 £ — *B(g) € *(X(OM))). As stated in §1, for £ €
*Rn, we write B(£) instead of *B(E).

For each o € Q, consider the following (internal) .

ordinary . differential equation on *(O(M)):
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dr. . o R : _— ; S
£ _ o f(dw(t.e)
t C B( dt )rt , | (2.1)

o

n
where dw(t,e0)/dt = 2 (dwy

(w)/dt)e. . Since w(-,0) is
a=1 «

"hyper"-piecewise smooth, the egquation (2.1) has a correct

meaning. The solution of (2.1) with the condition rO =71 €

*(Q(M)),bis denoted by r _(r,e) or rt(r) (with ® missing).

t

More precisely, r is the continuous-curve (in . *(O(M)))

t
starting from r at time: t = 0 and satisfying (2.1) for each
time-interval (k/K, (k+1)>/K) ¢ ¥[o,13, k = 0, 1, ---, K-1.

Since M and O(M) are poth compact, r,(r,0) and n(rt(r,m))

t
are both near-standard, and it holds that

°n(rt(r,w)) = n(r (r,0)).
Note that n(rt(r,m)) is a (¥-)broken geodesic in *M. We put
X, (r,@ = “mr (r,@) = n’r (r,0).

t t

Let [E[+]1 denote expectation and Ag be the Laplace-Beltrami

operator. Then we have the following:

Lemma 2.1. Let h : M — R be a C. function. Then

u(t,x) = E[h(Xt(r,m))],

. I @
t € (0,1), X €M, T € O(M), m(r) = x,

-7 -
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is well-defined and is the solution of the heat equation

Qu _ 1 . oy = :
at = 2 A u, lim u(t,*) = h. (2.3)

g t40

Proof. ([21.

_ ) . _ ,
Corollary 2.2 The stochastic process (Xt(r))teto,ll

reoO(M), is a Brownian motion on (M, g) such that XO(r) =

n(r); that is, (Xt(r)5. is a diffusion process on M with

geneérator (1/2)Ag.

Thus we have the following diagram:

(r,o) 2 » °r. (r,n)
rt r,n > rt r,o
solution of (2.2) stochastic moving frame
(=" n
(cf. 81)
(T, (r,0)) : X, (r,e)

(k-)broken geodesic in *M Brownian motion on M
t € (0,11, r € O(M), © € Q.
3. Nonstandard representation of the heat kernel for (2.3

Let (M, g) be as in 82, and IAl(M) the C” real line

- 8 -
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bundle of densities (of order one) over M (cf. [4]). VWe

denote both I and *f simply by f . ‘Let dv_ €
M *M g

cCIAl (M)) (= (C” sections of I|AI(M)} = {C densities (of
order one) on M}) be the Riemannian volume density (the
volume density of the Riemannian metric g, cf. [12, Chapter 3,
§31); it is a positive density. Then there exists a

non-negative gdv € *(Cm(MxM)) such that
4

h(x) =~ f 84, (X,h dv, = f 84, (*»Xh dv,
g &g
for every C function h : M — R and x € M, where C° (MxM)
is the space of R-valued c” functions on MxM. Let Xt(r) be
as in §2. |
We note that the map C (M) 3 h = E[h(X,(r))] € R is in
% <(see §1). Thus we have the map

%

% o ~ 2 *
(C (M) 3 5dv (*,2) — E[édv (Xt(r)’z)] € "R, =z € "M.

g g

Now we give a nonstandard representation of the heat

kernel of the heat equation (2.3) with respect to dvg.

Theorem 3.1. For t € (0,1) ¢ R, x, vy € M, and r € O(M)

with n(r) = x, the quantity E[gdv (Xt(r),y)l is
g

near-standard and the heat kernel eO(t,x,y) Wwith respect to

dvg for the equation (2.3) is given by
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e (b, X,y) = E[§dv (X

(ry,y)l,
0 g |

t
t E (0,1), x ,vy € M, r € O(M), n(r) = Xx.
(Therefore the solution of the heat equafion (2.3) is given by
ult,x) = f "EL8,, (X,(r),y)1h(y) dv_(y),
M cdv t

g g

t € (0,1), X ,vy €M, T € OM), nt(r) = x.)

Proof. Let t € (0,1), X, vy € M, r € O(M), n(r) = x.
By Lemma 2.1 and Corollary 2.2, the solution of (2.3) is

u{t,x)

° A
E[h(Xt(r))] = E[f 6dvg(Xt(r),')h dvg]

[ ~ )‘,
I E[&dv (Xt(r)’ )1h dv

g g

This shows that if E[de'(xt(r>,y)] is near-standard then its
g

standard part is the heat kernel with respect to dvg for the
equation (2.3). '‘But in differential geometry the heat kernel
eO(t,x,y) is known to exist, and so we have

]E[5dvg(xt(r),3f)] = J. advg(t,y)eoct’x’.)dvg P eO(t,X,y).

This means that E[gdv (Xt(r),y)] is near-sténdard; moreover,
F:4
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it holds that 'E[3

dv (X{(r),y)] = eo(t,XsY)-

g

4. Nonstandard representation of a heat kernel for differential

forms with values in a Riemannian vector bundle

In this section we will give nonstandard representation of
the heat kernel of a heat eqﬁationifdr differential forms with
values in a Riemannian vector bundle. First we need sﬁme
preliminaries.'

For a C_ real vector bundlé nE : E— M over a c”

. . F 3 .
compact manifold M, we denote by T og o E — M the dual
E

*
vector bundle of E. Let n be an E -valued random variable

defined on a complete probability space, and put F ==& %°7,
E

which is an M-valued random variable. We write the evaluation
* 3

between E [resp.‘*E }] and E ([resp. *E] as the

multiplication sign " O "; for example, if o € c”(E), then

na(oek) (= 4(n, 0oF) ) is a real-valued random variable. We
E E :

assume E[lnO(oeF)|] ¢ « for all o € Cm(E). As before, we

denote both f and *I simply by I
- dn *M

If we take up a positive dénsify p € CG(IAI(M))} then

A

there exists a non—negative Sp € *(Cm(MXM)) such that

h(x) = Ilép(x,~)hp = f 69(~,x)hp
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for every ¢® function h : M — R and X € M, where

is the space of R-valued C~ functions on M X M.

Lemma 4.1. Let n, F, p, and 3p

Let E[ |F=-1 denote conditional expectation under

Then for o € C (E),
FE[nu(aoF)]vx‘fE[gé(F,;)]E[nD(OoF)|F=-]O;
?foof. This is shown as follows:
EfnO(oeF)] =~ E[f'ﬁp(F,-)E[nn(ooﬁ)lF=-1p1

= f E[gp(F,')]E[nn(ooF)|F=-]p .

be as above.

€7 (MxXM)

Now, let (M, g) be as in 8§82, and let Q be a C.

Riemannian vector bundle of rank £ € N-{0} over M,

so that

Q@ 1is endowed with a Riemannian fiber metric a and a metric

Q

linear connection ¥ X

where X(M) denotes the space of Cco vector fields on

Recall that VQ satisfies the following conditions:

(1) V% g is. Cm(M)-linear in X and R-linear in
(2) Vg(fa) = (Xf)o + fV%o, f e,

C¥(Q) X TM) 3 (0, %) — V2 o e ¢CT(Q),

M.

g,
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s , . s Q_ - Q L = A
(3) X(a(ol,oz)) = a(vxol,az) + a(ol’vXOZ)’ 01, 02 € C (Q).

1}

¢ . » i 5 *
Consider the vector bundle ng : E ® (A" T M)®Q
. g L m=0 .

o * %
(Whitney sum) — M, where T M = (TM) (

the cotangent bundle
over M). Then Cw(E) ' = {C°° sections of E} = {Q-valued c”

%
differential forms on M}. Let vE and - gl MOE denote linear

K
connections in E and T M®E, respectively, induced naturally

from the Levi-Civita connection and the given connection VQ

in Q, and let "Trace"™ denote the trace operator with respect
to the fiber metric in T*M®T*M®E induced naturally from g
and the given fiber metric a in Q.

We consider the following heat equation for Q-valued

differential forms:

®
o2 - % A0 (:= % Trace (v' MOE VEO)), t € (0,1),

(4.1)

ti0

As in 8§83, we denote by dvg € ¢T(|A|(M)) the Riemannian volume

density; it is a positive density. Let gdv ~ be as in §3.
g

Let OM) — M [resp. 0(Q) — M1 be the

oMy o)

bundle of orthonormal frames for TM [resp. Q] over M,

Denote by P the fiber product of and that is,

TowQ)?
(ry)}. Let

To M)

P = {p = (rl, r2)‘e O(M) X 0(Q) nO(M)(rl) = KO(Q)
KI and ~n2‘ denote the projections from P onto O(M) , and

- 13 =
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0(Q), respectively. Then P .is a principal fiber bundle over
M wiih étruéture group O0(n)xXO0(L) and projection % =
nO(M)onl,:qnd :E is associated with .P. Sincel M is gompact,
so is P. As ﬁsual; we‘regard eachr‘b e‘P as a dfffédmorphism
oftthg standard fiber of P onto E, or onto E:'; where x =
(D). |

Let L [résb. Yz] be the connection form on O{(M)

[resp. 0(Q)1. Define a connection'fdrm Y and an Rn—valued

1-form ‘8 on P, respectively, by

* E ‘
Y = n1Y1~9 nzvz TP — o(n)®o(l) (Lie algebra),
_ .-1 ~ n » _
8(Y) = p, (meY) € RY, YE€TP, p€FP, p =mnp,

¥
where nivi = ViO(ni)*, i=1,2. Then for each & € Rn there
exXxists uniquely a Coo vector field ﬁ(ﬁ) on P such that
Y(B(&)) = 0, 0(B(&)) = £. Thus ﬁ(&)p € T,P, p € P, is the

holizontal lift of plﬁ €T, M with p,
n(p)

£ € *Rn, we write B(Z) instead of *ﬁ(ﬁ).

= no(M)(p). For

Consider, for each o € Q (see §1), the following ordinary

differential equation on *P

(4.2)

apy _ ﬁ(dw(t,m))
t - dt P,

For t € %[0,1], let pt(p, ®) be the solution of (4.2)

starting from p € *P at time t = 0. Set, for p € P and

_14 -
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t € [0,11,
o~ ~ O .
Xt(p, 0) = (n(pt(p, w))) = n(_pt(p, W) ),

(Since both of P and M are compact, pt(t, w) and

E(pt(p, ®w)) are both near-standard.) Henceforth we omit o.

. _° on_ 1 . | ,
For t € (0,1), deflne.‘tt = pt(p) P : EX = KE (x)y — EXt(p)
d - % -1 E* — h _ N(;) b € P
an tt = pt P : Eg Xt(p), where x = n(p), p .
We see that the stochastic process (Xt(p)) is a

t€fo,11

Brownian motion (starting from ﬁ(p) at time t=0) on M, and

t ;] definés the siochastic parallel displacement of

% , : :
fibers of E [resp. E 1 along the Brownian curve (X (p)).

T [resp. T

Then we obtain the following lemma (cf. [2]).
Lemma 4.2. The solution of (4.1) is given by
ot,x) = E[r;100<xt(p))1, pen Ll(x), xeM, t€(0,1). (4.3)

(Here E[t;loo(x (p))] does not depend on the choice of p €

t
7 1(x) and thus (4.3) is well-defined.)

We note that the map c”(E) 3 oy [E[tzloo(xt

is in U (see 81). Using Xt(p), we rewrite Theorem 3.1 as

(p))1 € EX
follows:

Theorem 4.3 . The heat kernel eo(t,x,y) with respect to

- 15 -



54

dvg for the equation (2.3) is given by

e

t € (0,1), x ,y € M, p € P, R(p) = x.

We will now apply the previous results to the problem of
getting a nonstandard representation of the heat kernel with

respect to dvg for the equation (4.1).

Theorem 4.4. The heat kernel with respect to dvg for

the heat equation (4.1) is given by

e(t,x,y) = ‘E8, (X,(m,y1-Elt 11X, (pr=yl
av, X ¢ 1%y

_ -1 .
(= eo(t,x,y)E[tt lXt(p)-y]),
t € (0,1), X ,y €M, p € P, R(p) = x,

where the map E[tzllxt(p)=y] E,Hom(Ey,Ex) is defined in such

a way that
Erc;lix, (py=ylo (v) = Eit lo (v X, (p)=y]
Elry 1X (e 0 t o 1Ky

_ -1 _ o
= E[rt OO(Xt(p))lxt(p)~y] € E, ., g, € C (E),



and thus e(t,x,y) € Hom(Ey,Ex) for each =t € (0,1).

(Note that
°Et3(k;(p),§)3 - eo(t;x,y),
E[tzllxt(p)=y] € Hom(E,E), 0,(y) € E_,
SO
"EL8 (X, (p),y)IELT, X, (p)=y] € Hom(E_,E,),
°E[8(xt(p),y)1E[r;1Ixt(p)=yloo(y) evﬁx '

o ~ -1 s
IM IE[&(Xt(p),y)]lE[tt lXt(p)—y]oO(y) dvg(y) € EX.)

Proof. Using the fiber-wise norms defined by the induced

X
metrics in E and E , we have

E[ltt§uao(xt(p))ll < E['tt§|E¥, -Ioo(xt(p))IE 1
Xt(p) Xt(p)
< $2§ Ioo(y)lE -E[IrtglE* 1 = ?Zﬁ Ioo(y)lE 'IglE* ( =
, S Xt(P) y X

*' ~ - i © ‘
for ¢ € E.,.PETN ¥(x), x €M, t € (0,1), 0, € C (E). Fixing

t, x and p, we regard X (p), tzg and dv respectively,

g 9
as F, n and p. Apply Lemma 4.1. Then we have

goo(t,x) = El(r§)00, (X, (p))] by (4.3)1

..'117_
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‘,‘ I~ ) § ” . . -
~ | E[adv (X, (p), )]E[(ttg)nao(xt(p))IXt(p)— 1 dv

g g

N
_ 2 . -1 _.
= E[adv (X, (p), )](;nE[tt OO(Xt(p)|Xt(p)- 1) dv

g

g

. . A . ..1 X N
gu(f E[édvg(xt(p), )]lE[tt |Xt(p)— ]oo dvg )
Thus we obtain

- or 4 -1 _ '
o(t,x) = fM ]E[&dvg(xt(p),y)]lE[tt IXt(p)-y]oo(y) dvg(y).

This proves the theorem.

For further applications of nonstandard analysis, see [21.
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