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Regularisation in 3D BIE for Anisotropic Elastodynamic Crack Problems
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Kyoto University

1. Introduction

‘Let T be a smooth piece of curved surface in R3, having a smooth edge 8. The
elastodynamic crack problem is formulated as follows: Find functions u;(x) and 7;;(x)

which satisfy the field equations

(1) Tij.g + pw?u; =0 ' ~
3(vij +uji) = Dijturir in R\ T

boundary condition

+
Tinj=t%t onl

regularity condition

[ui] =0 on oI
and the radiation condition, where D;;; is a positive constant tensor which satisfies
Dijxi = Djixi = Diaij

p and w are positive constants, and ¢; is a function given on I'. Also, n; stands for the
unit normal vector to T, superposed + and —, respectively, indicate the limit from the

side of I into which n points and the limit from the other side, ; = 9/0z;, and



In physical terms u;,7ij, p,w and D represent the displacement, stress, density, fre-
quency and elastic compliance, respectively.

The double layer potential approach for this problem uses an ‘integral’ equation

6) =t [ Siulx - ¥Insom()fi(y)dS,, x €T
r
where fi(= [u;]) is the unknown vector function on I, and ¥ is a kernel function which

satisfies
(2)  Zikabki(X) + Djkabki(X) + 200 DjjiSian(x) = —pw?(8iabjp + 6i6ja )6(X)
with Dirac’s delta §(x). With f, one computes 7;; by

Tij(x) = /Pzijkl(x - Y)nk(x)fl(Y)dSy

and u; by using (1).

A difficulty inherent to the numerical anaiysis based on this approach is the strong
singularity of X(x), which is of the order of |x|™® as |x| — 0. This singularity is
usually removed with the help of the “regularisation”, or integration by parts in other
words[1]{2]. In [1] Nishimura & Kobayashi have shown that this regularisation is carried

out in an automatic manner, once one finds a decomposition of the form
(3) Z,’ju(x) = (curl ),-(éurl )j(éurl )k(curl )I(D_W(X) + \Il,-jkz(x)

where @ and ¥ are kernels which behave essentially as O(|x|) and O(|x|™?!) as |x| — 0,
respectively. ® is called the stress function for X.

In this note we shall derive explicit formulae for ® and ¥ in the general case
of anisotropic elastodynarﬁics. Also, ﬁe shali discuss ‘th:e relation between Nédélec’s
regularisation technique and the present formulation. -

2



2.‘N0tation and Preliminaries .
(a) Fundamental Solution
We now intrbduée the folloWiﬁg notation:
711 — Tlv‘ T22 Q‘Tz T33 — T3

T3 =1y 731 2 T5 712 — T6

Di111 = D11 Dii22 = Dia 2Dg317 — Dy 2D3111 — Dsy
4D3323 — Day 4D1212 — Degs etc.

21111 — Y11 Yii22 — iz Y2311 — L4 13111 — Ust
Y2323 — Yaa ' s Yi2i2 — Zss . etc. :

With this convention (2) is easily seen to transform into

o2 0103 010,
o2 0203 .. 0109
| Bg 82 83 81 83 2 . 2
(4) { 0,0, 8,0, B2+ 80 a9 |THDE=-pLl
0103 0,05 0102 8% + 83? 0,05
58y 010, 0103 0,05 312 + 3%

The F.T. of (4) is written as

(K - psz)fl = pw?1,
where “ indicates the F.T. with respect to x (x — £) and K is the matrix obtained by

replacing J; in the first matrix in (4) by the Fourier parameter £;. Obviously one has

o e anni1 o {cof(K - pw?D)T

(b) Some Matrices

In statics where w = 0,  has a stress function representation given by

Tij = imk€intém&nPri, C e d
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~ where ¢ is the stress function. This relation is transformed into .

T &3 £ —26¢3 1
I & & =264 b2
3| _ & & ' —261& b3
T, | | —&& —& £162 183 P4
Ts —&361 &16 &3 €263 b5
T / \ —61&e 63 €283 —£3 b6
namely, | o
T =B(1 C)¢

in the matrix form, where

& ; G a4

gaz §2 12 ‘ §2§3” ga gz

_ 2 1 — | %2 s2 0 %2
B=1 —&263 €= & & €1
—&6 ’ b & &

~&16 ’ &2 & L

A direct calculation shows that
(6) KB=0

holds. As a matter of fact, K is of rank 3, and the 3 columns of B span ker K.

We now introduce
(7) F=(B A),
where A 1s an arbitrary (6 X 3) ma,trix‘ s.t.
® o detF = 1.

We then have the following results:

' T r_ (0 0}
(9) ¢ K,:=FKF _<0 K)



38

where K, is a (3 x 3) matrix. K, satisfies

1

(10) ‘ ‘ . det Ko = Z%—gg

Proof

We use (6) and (7) to have

T (O 0
FKET = (0 arya )

which means K, = ATKA.
Let bi(z = 1 ~ 3) be a set of orthonormal base vectors for ker K. Also, let
a; (i =1 ~ 3) be such that (b;,a;) forms a system of orthonormal base vectors for R®.

Then B and A are written as
B = (bl,bz,b;;)B, A= (al,ag,ag)]&+(b1,b2,b3)]§',

where B, B’ and A are (3 x 3) matrices. Also, we have from (6)~(8)

B B

K=Z"5iai®ai, 1=detF.=l(0 A

K1
ATKA = AT K2 A,

which imply

)l = det Bdet A,

1

© (det B)?

KR1KoKg.

This result shows that the value of det ATKA is independent of the choice of A. Hence
we may put
0
(26566)'7"7 )
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for example. This choice gives

1
det ATKA = ——.
E263¢3

3. Computation of £
We shall compute ¥ in several steps.
(a) Computation of det(K — pw?D)

o det(K — pw?D) = i di(pw?)i*?, where d; are polynomials of f
i=1 S
Proof
It is clear from the definition that this determinant is a 6th order polynomial of
pw? whose coefficients are polynomials of £. Hence it is sﬁfﬁcient to show that the
coefficients of the Oth ~ 2nd powers of pw? vanish. But one immediately shows this

from the following calculation:

det(K — pw?D) = det(pw?*FDFT — K,)

_ 2 T 0 0
_det(pw FDF —-(0 Ko>>

= (pw?) det (FDFﬁ,l_,s) det K, + O ((pw?)*)
(pw?)? det(BTDB) .
= 2£2£2 T
3 52537

where we have used (7)~(10). This calculation also shows

det(BTDB)
(1) h="amg
L dl -‘,é 0.
Proof
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Suppose det(BTDB) = 0 (see (11)). This means that there exists a nonzero vector
a s.t.

aTB’TDBa'= 0

But this implies Ba = 0 since D is positive. Hence the definition of B gives a =0,
which is a contradiction. O

Finally we note that d; is a polynomial (of £) of degree 8 — 2i.
(b) Computation of cof (K — pw?D)

(12) o  cof (K — pw?’D)T = FTlcof (K, — pw? FDFT)TF.
Proof

Since

(K'—F pw2D)_1 — {F—-IF(K _ prY)FTF—l}—l;

o _ FT(KO _fpw2FDFT)—1F’
we divide the both sides of the above equation by

det(K — pw’D) = det(K, — pw?’FDFT)

to obtain (12).- 0O

4 .
o cof(K— pw?D) = ) (pw?)*+!S;, where S; is a matrix whose components are poly-

=1

nomials of €.
Proof

Since o s J
cof (K, — p?FDFT) = cof Kg 1_2 ) _ pw"'FDFT]
f(BTDB)detK, 0 2
= (oot (< BTOD K 0 4 (),
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we use (12) to obtain the required result. 0O @ -

The explicit expression for S; is obtained without difficulty. Indeed, we have

(13) | SI;FT(ﬁ g)Fz(B A)(g g) (§§)=BSBT,‘
where
(14) _ «of(B"DB)

S
Since S is written explicitly as
1
Sij = =555 Cipe€irsBapDapBprBcyDcpBps,
2616363

we use (13) and (14) to have

ejrsB1;BBrBps

16263

l eiquIiBAp

(15) (Sa)rr = 2 16283

B "
% DssDep

Finally we note that S, is a polynomial (of €) of degree 8 — 2:.
(c) Stress Function
From (15) and the “quotient law” one expects that

- BriBjjBkreijk

€1626s

is a tensor of the 6th order. Indeed, an “experiment” shows that the (:j) — I,(st) —

J,(mn) — K component of the above expression is given as follows:

1
Zeipkequgpﬁq[(‘ska&m =+ '6km61‘9)etun + (‘Sktélm + 6km611)esun

.+ (6k361n + éknéls‘)et’um’ + (6kt61‘n + 6kn61t)esum]€u
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Therefore the general expression for the F.T. of the stress function (see (3)) is

$ppis = (8ksbim + Skmb1s)(biadjc + Sicbja)etunesoabuloDotab Dmnea
N | 2[det(K — pw?D)/(pw?)?]
_ (DrtivDinja + DuisDinja + Ditjv Dinia + DitjpDinia)etunebvalulo
= 2[det(K — puw?D)/(po2) ‘

(16)

Example : Isotropy. In this case the compliance tensor D is given in terms of the

Lamé’s constants (A, ) as

1 2
Dijri = o <5ik5jt + bk — m&ﬁkz) .

This gives

(4/1)2Dstamencdetunebvd‘fugv' = etunfuebvdgv

2A 2
6.90.5 53 6 a __63 6:1 6mc6n md¥Unc — —'—6mnéc
X( tb + 65501 T2 b)( 6nd + Omad 33+ on d)
22
= 6sa5mc57w ‘6sa ucCbvm — SN T & YsaCbumCbuc
[2 + €bucth AT 2“5 €hum€d
+ €aud€svdOme + Cauct 2A e
aud€svd9me auc€svm 3)\+2ueaum sve
2) 2) 22\’
— ax 1 o Csudtav 5mc T ar 1 a Csuctavm oY 1 o sumCavec|Subv
X oy udCavd 3t o e +(3,\+2u> €sumave] §u
2A
~ |§|2 [26sa6mc + 6sa5cm - m6sa6cm + 6a36mc
22 2
6a350m - 5 m‘scs — ax 1 o 6a36mc - 6ac5ms - ——'6sa6mc
+( am®es) 3/\+2u( ) 3\ +2u

27
T3+ 24

2\
3\ +2u

2
(5sa67nc - é\sm‘Sca) + ( ) (6sa6mc - 6306ma )] )

where ~ indicates an equality modulo terms proportional to either &, or &, or ,, or £..

The symmetrisation (6 terms) in (16) transforms the § terms in the above formula into

0sabme — 2(Okib1; + Okj0ir)
8scbma — 2(6kibij + xjbir)

0smOca — 40k10;; .
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Hence the stress function for this case is

EN [€]? (A + 2p)(8kibij + Okjb1i) + 2X6x10;;
BT (3 + 2p) det(K — pw?D)/(pw?)? '

4. Remarks

=

(V]

Teo

It is not difficult to evaluate d; in terms of tensor components. Indeed,

det BTDB 1 eiémBjiBKkBMmD | DurD €jinB1;BriBnn
== ITJV/ KLY MN
£36563 6 16283 £1€263
2 .
= §eipceaqmekre6jsdebt'neluf€p§q§1'£s§t§uDiaijkcldDmenf-

It is noted that the present formulation transforms the “cofactor” in (5) only. In

addition the stress function is given in a form of

polynomials in €
det(K — pw?D)/(pw?)?.

Hence this process does not introduce anything artificial to the final results in that
the functions ® and ¥ maintain the correct causality in the time domain.

In general the regularisation process goes as follows: i) Write

(17) S p— eil’aejqbekrcelsdsoabcdﬁpéqgrgs + sz’/’ijkl
N det(K — pw?D)/(pw?)?

where ¢ is the ‘stress function’ part of the cofactor. Notice that ¢ and i are

polynomials in £. ii) Compute the Fourier inversions given by

o= (o) U (@)

and use the regularisation techniques proposed elsewhere[1].
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4 Nédélec’s technique is interpreted as follows: One uses an identity -

|§I25ij =,—¢ipqeq1"j§p§q + &ié;
to have

(18) o

Yijk = I—EI—46iPQ§PelABEAeQRsﬁReBCDﬁ(JESjkD

1 . B . ‘ . R i A ' .
TR (eiPQ§P6QRS§R5125th§D + ejaBéaeBcpécéiXsjkpés — &‘fzzsj‘wﬁsép)

Since f),-jkl&& O(l/[ﬁ[) as one shows frorﬁ (17), the expression in the (--)in (18)
gives an integrable kernel. In order to show that the 1/|¢|* does not destroy the
correct causality in the time domain, however, one would havg to show that the un-
derlined parts in (18)x det(K — pw?D) could be factored out by |£|*. Unfortunately,

this is not always the case. To see this we use (17) ane (18) to have

$ 1 eirgépeiaBfa{léltejqperrcborpQoca + pw’eqrsérescplcysjkn}
S det(K — pw?D)/(p?)?
_ pw? eip@épeqrsérEiYsiknép + etapéaeponlclivsiknés — Li&isikpEsép
€1 det(K — pw?D)/(pw?)?

This shows that it is impossible to eliminate the 1 /I€]* factor except in the static
case. A possible femed}; for this artificialty is to use Nédélec’s technique to the
® term only. This method Will,‘giv.e exactly the same result as does the technique
mentioned in 3 t. When bne 1s interesfed 6n1y in a time harmonic analysis for a
particular w, however, the artificialty of the original Nédélec formulation may not

cause numerical problems. In addition, the original Nédélec formulation works in

7

; statics regardless of the material symmetry.

t Notice, however, that the present proof that “{p’is?'a ‘polyn;omial"’ is necessary to

claim that the modified Nédélec formulation is free of artificialty.
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