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Fourier hyperfunctions of general type

Yoshifumi Ito ( 4"? %\\% i)

Department of Mathemafics, Tokushima University

In this report, we will show the construction of the theory
of Fourier hyperfunctions of general type studied by the
duality method, namely by the functional analytic method.
The duality method was briginated by L.Schwartz first when
he established the theory of distributions as a generalization
of the concept of functions; Thereby, generalized functions
are realized as elements of the dual space of a cértain
function space and vector valued ones are realized as continuous
linear mappings from a certain function space into a topological
vector épace. |

Among generalized functions, there exist Radon measures,
distributions,Vultfadistributions, infrahyperfunctions,
analytic functionéls,hSato hyperfunctions, Fourier hyperfunc-
tions, modified Fourier hyperfunctions, mixed Fourier hyper-
functions, partial Fourier hyperfunctions, paftial modified
Fourier’hyperfunctions, partial mixed Fourier hyperfunctions
and those ones in vector valued case. Especially, the space
of each type of Fourier hyperfunctions and vector valued
ones has the charécteristic property that it 1s stable under
Fourier transformation when the ground space whose variables

are the ones of Fourier'hyperfunction part is the whole space.
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These types of Sato-Foutier hyperfunctions can be obtained
as specializations of our Fourier hyperfunctions of general
type and are distinguished from each others by the difference
of topologies of their ground spaces. In this sense, the
theory of Fourier hyperfunctions of general type is the unified
theory of those types of Sato-Fourier hyperfunbtions.

We construct the sheaf of Fourier hyperfunctions of
general type by using the generalization of Schapira-Junker
Theorem and prove that this sheaf is flabby. This generali-
zation of the Schapira-Junker Theorem gives the most general
method of constructing flabby sheaves. The’Schapira—Junker
Theorem is the following

Theorem 1 (Schapira-Junker). Let X be a o-compact locally

compact topological space satisfying the second axiom of
countability. Wevassume that, for every compact subset K

of X, there exists a Fréchet space FK such that the following
conditions are fulfilled:

K

(1) For two compact subsets K of X with K1C:K2,

‘]’

there exists a continuous injection i

2

:F _‘)F .
K1,K2 K1 K2 -

() If K;» K, are two compact subsets of X with K,
K2 and each connected component of K2 does meet K1, then
iK1,K2 has a dense image.

(3) For two compact subsets K1 and K2 of X and for every
ueFK1UK2’ there exist u1€FK1 anci ,u2€FK2 so that u=u,tu,
holds, where.,u1 and uz‘a:e considered as.elements of FKTK/KZ
by virtue of (1).
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(4) For every at most countable famlly {K ;i €1} of compact

subsets of X, M Fe =Fy holds, where K= /"\ K, .
iel i i€1
(5) F¢=O-

Then there existé one and only one flabby sheaf S& over X
so that, for every compact sﬁbseteK of X, FK(X,§{)=FK holds.
Using this theorem, we construct the sheaf of Fourier
hyperfunctions of general type in the fellowing way.
For a natural number n, we set CM=D"xiR® and E"= D2n
Here D™ denotes the radial compactification of R™ in the

sense of Kawai and En—D2n denotes the radial compactification

2n

of C" identified with R“™. Then, for a 3-tuple n=(n1,n2,n3)

of nonnegative integers with ]n]=n1+n2+n‘zO, we put k%=

3
n N n ~ n n n
14C ?<E 2 and D™=R 'xD 2xD 2.

c
Then we define the sheaf 67*‘to be the sheafification
of the presheaf { @, (Q);2C K", open}, where the section module
~9;(ﬁ) on an open set & in K" is the space of all holomorphic
functions f on Qf\Cln! such that, for any compact set K in
{2, there exists some positive constant § so that they satisfy
the condition
sup{If(z)[exp(élzl)géé—Kf\Cln|}<W.
If X is a eompact set K in K%, then we endow G, (K) with
the inductive 1limit topology llm 0' , where {U } is a
fundamental system of nelghborhoods of K satlsfylng U :i)Uh+1
and C}C(Um is the Banach space of all functions f(z) which

are holomorphic on Um[\Clni and continuous on U:/']Clni and

satisfy the condition |f(z)]|sCexp(-|z|/m), zé{U:{\C,nl,
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for some positive constant C:

Then ,(K) is a nuclear DFS space.

Now, in this report we assume that E is a Fréchet space.
We put /4*(K%=Cf%(K) and Ji;(K;E)=L(¢4*(K);E) for any compact
set K in En and call the elements of /JQ(K;E) Fourier analytic
linear mappings of general type. Then we have 4 L(K;E)=
A (K)1E.

Then we have the following

Theorem 2. For every compact subset K of Sn we assign
the épace 41 (K;E) of Fourier analytic linear mappings of

general type on K. Then the following are valid.

~

(1) If K, and K, are two compact subsets of D with

1 2
K1CZK2, there exists a continuous injection ip 4 ,4 (K1,E)

1772
—_*/4%(K2;E)°

(2) If K, and K, are as in (1) and each connected component

1 2
of K, does meet K,, then i has a dense image.
2 1 K, K, .
(3) If K1 and K2 are two compact subsets of po then,

for every'tlévdg(K1L/K2;E), there exist u1€,4,ik1;E) and
1%26,4£(K2;E) so that u=u,+u, holds, where u, and u, are
considered as elements of /ig(K LjK ;E) by virtue of (1).

(4) For every at most countable family {K, }16 I of compact
subsets of DY, QA* K;3E)=4 L( )\ K;;E) holds.

(5) 4 L(¢;E)=0 Hel
Then, by virtue of Theorem 1, we have the following

Theorem 3. There exists one snd only one flabby sheaf

~

/b( over ﬁn so that, for every compact subset K of D™
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I (D%, M)= 44 (K;E) holds.

Definition. The sheaf A is said to be ‘the sheaf of

~
~

Fourier hyperfﬁnctions of general type over D" and a section
f of M on an open set Q in D™ is said to be a Fourier hyper-
funétion of general type on Q.

By the specialization of n=(n1,n2,n3), we have the sheaves
(A, )4, 34, 4 Ay 5) A, (6) Apand (1) A,
for the cases (1) n=(n1,0,0), (2) n=(O,n2,O), (3) n=(O,O,n3),
(4) n=(O,n')=(O,n2,n3), (5) n=(n1,n2,0), (6) n=(n1,0,n2)
and (7) n=(n1,n2,n3) respectively. We denote by ’$a any one
of these sheaves. We consider the sheaves /‘u on M" and
‘AB on M. Here M™ and M" are the corresponding ground spaceSs.
Then we have the following isomorphisms

A .
Ao (1)@ AL (X) 1214 (K1) 5 4o (k) 1)z 4 (Kixkm)
for K'C€CM™ and K"CCM™(compacts) and the following isomorphisms
JA ~
Ay (KB AL (K5E))ZA 1o (K1xK";E).
Here E1 and E2 are Fréchet spaces and we put E=E1§hE2 and
w stands for e- or m-topology and'AaBZAQQAB is the direct
tensor product of sheaves Aa and AB'

Now we define the convolution of u 6,4&(MH;E1) and
v GJ&&(Mn;Eh), one of which has a compact support in Rlnl,
in the following way,

5 - n

(s v) (£(x))= (0, @, v, ) (£(g+n)) , for £€A (7).

Now we will define the differentiation of u€ A4 &(K;E) by
the following way:

(Bu/BXj’)(f)=—u(8f/3‘Xj), (j=1 1R 9===) 'nl):
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’for fé/d (K).

a
.Then we have
ou/9x.=1lim ‘l—(T u-u) .
h.'"-h
hjﬂO J
Here we put ejz(sjk)1gk§}n1’ and h=hjej and we define the

translation operator N by the formula

tpf (x)=f(x-h), for £€ 4 (X)),

tul(f)=u(t_yf), for u€ 4! (K;E) and re .4 (K).
For the integration, we have the following

Theorem 4. Let K be a compact set in M" of the type

o B3 | .
K1x-——xKn1xD xD © with Kj—[—aj,aj],(aj>0),(3=1,-——;?1).
Take the natural projection F(X1’_—_’Xlnl)z(x1’_——’xj’_—_’
X|n|) for X=(X1,———,X|n|)€ K[\Rlnl. Here Qﬂ denotes the omission

of X5 Then, for any VGIHIA&(K;E),-there exists u6|nlf4'&(
K;E) such that au/aszv. Such two solutions U, and u, are
different one another by an arbitrary analytic linear mapping
in ]nI—TAo'L(F(K);E)'
Similarly, we can define canonically those corresponding
operations for Fourier hyperfunctions of general type.
By‘the above specialization of n=(n1,n2,n3), we have
the Eheaves of Sato-Fourier hyperfunctions (1) j}? , (2) %}a,
(3) ', (4) Eiy, (5) HBR), (6) L(PA) and (1)
Jbti=Ei(222 ), i=1,2 as the specializations of Af, where E

.
A
and E2 are Fréchet spaces and we put E= E1€hE2. Let both

E_ E
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hyperfunctions over M™ and Mnrespectively. Then we have the

2@7 denote one of the above sheaves of Sato-Fourier

following
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Theorem 5. In the abo#e notations, we have the isomorphism
E(?ﬁﬁj)EE1?ﬁé%E2g7; Namely, for any open sets 91 in M™ and
2, in M", we have by definition ‘

(RO (0,x0,38)= Ko, 58,8 B9

This is an analog of Schwartz' Kernel Theoremf

Now we consider the convolution. If M" is compact,
EZ?&(M“)EjZ(Mn;EZ):,qé(Mn;EZ). Thus, in this case, we have
nothing special to do with convolution products of vector

valued Fourier hyperfunctions of each type.

If M" is not compact, let T 6?(MH;E2) and u € 4" (
E1). We define uxT as follows. Let Qj be an open ball with
center ‘at the origin and with radius j, and

QJA'(Q ;E, |Q T]Q

Here ijQj,denotes the image of the canonical mapping
A&(Q?;Ez)—%ﬁ(ﬂj;Ez). Let k be chosen so that ué& _4'( Q E1)
If j'zj>k, we have

(u*w j IQ (u* @%,)le_k
The sequence (u* T IQJ -k defines a vector valued Sato-Fourier
hyperfunction which we denote by u*wT.

Now let E be a Fréchet space and consider M" and E?{
as in the above. Let Q be an open set in M. If Q is relatively
compact and T € ?{(Q;E), let TéA&(Qa;E) such that T|Q=T.
Then we define E)T/axj as follows:

(aT/ax )| Q= BT/8x;
If @ is not necessarlly relatively compact, we take an arbitrary

open covering {Qj}?

3=0 of Q@ with QjCZ:Qj+1. Then, for any
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T € A(Q;E), let Tj gA&(ﬁj;Ej such that
ijfT]‘szTj.
Then we have »

(a"fj+k/axh)mj=(aTj/axh)lszj, for kz0.

Hence (éTj/Bxh)IQj's define a.vector Valued Sato Fourier hyper-
function which depends only on T and by which we define
aT/axh. That is, we have

(a'T‘j/axh)Iszj=(aT/axh)lﬂj-

As for the integration, we have the following

Theorem 6. We use the above notations. Let Q be an open
set in M". Then, for any TEF%%(Q;E), there exists S€ LA(

Q;E) such that BS/an=T. Such two solutions S, and S, are
different one another by an arbitrary vector valued Sato-
Fourier hyperfunction in F—1(E€£[Mn_e)(9), where F denotes

the natural projection such as F(x1,———,x|n|)=(x1,———,Qj,
"_’xlnl) for x=(x1,———,x|n|)E-Rln| and M" ®denotes the
closure of R'n'—1;F(Rlnl) in M% and Ff1(E€ﬁ|Mn_e) denotes
the inverse image of the restriction of Eiﬁ;to MPC,

At last we will define the Fourier transformation of
Fourier hyperfunctions of general type. We will concern only
with those variables which are related to the Fourier hyper-
function parts. So that we have only to treat the vector
valued mixed Fourier hyperfunctions. We will first define
the Fourier transformation of test functions as follows:

(1) for %€ 4(0"), | 7
( ?a?)(g)=JRneXp(i<x,g>)?(x)dx,
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<X, E>=X £ HmmmtX E
(II) for ¢ A(D"),
(Folp) (€)= qexplacx,e>)9x)ax,
(I11) for ?Eﬂ#(Dn),n=(n1,n2),
(FY) (£)= jR|n|exp<i<x,g>>so<x)dx.
Then we have A=K OF,. Then K ,,F, and £ are topological
automorphism of A4(D"), é(Dn) and /4#(1)“) respectively.
(IV) for T Eg’(Dn;E)=J4#(Dn;E), we define G*T by the
formula
(F*T) (P)=T(FP), for any PEL, (D).
Then we have the following

Theorem 7(Paley-Wiener theorem). Let I be a closed and

strictly convex cone in R|nI and K its closure in D™. For
the sake of simplicity we assume that the vertex of the cone
I be at the origin. Let T € ¥ (D®;E). Then TGA#(K;E) if
and only if

J(g)=TZ(exp(i<z,‘z;>)) 66#(int[Rln|xiF°]a;E)
holds. Here we put <z,;>=z1g1+———+zlnlglnl and F°={g€lenl;
<x,£>20 for any x €T} is the polar set of T and Ey#(int[
Rlnlxira]a;E) denotes the space of E-valued slowly increasing
holomorphic functions on int[RlnIXiP°]a.

In the above theorem, the space C%#(Q) on an open set
Q in FO=G 'xE 2 is defined as follows: @ 7(q) is the space
of all holomorphic functions f(z) on Q(\Clnl such that,for

any €>0 and any compact set K in Q, the estimate sup{|f(z)]|

exp(—slz]);zE-K(\C|n|}<co holds.



_7

Reference

[1] Y. Ito, Fourier hyperfunctions of general type, to appear
in J. Math. Kyoto Univ..

-10-



