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Abstract

A neural network model composed of neurons with chaotic dy-

namics is proposed by considering some properties of real neurons.
The model possesses not only complex dynamics with abundant

spatio-temporal chaotic patterns implying applicability to neuro-
computing but also simplicity enough to be easily implemented in

an electronic curcuit.

1 INTRODUCTION
$-$

It is nowadays well recognized that chaotic phenomena are ubiquitous in many
fields1). It is also reported in the field of neuroscience that there exists chaotic dy-

namics not only in neurons but also in neural networks and $brains^{6- 7)}$ . Moreover,

possible roles of chaos are discussed from the viewpoint of biological information
$processing^{6,8- 10)}$ .

In order to clarify significance of the chaos in neural information processing,
it is an important approach to analyse dynamical characteristics of artificial neu-
ral networks composed of neurons with chaotic dynamics theoretically. We have

proposed a simple mathematical mode1 of “chaotic neurons” from this view-
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point. In this paper, we review our framework of chaotic neural networks12) and

demonstrate the network dynamics.

2 CHAOTIC DYNAMICS IN REAL NERVE
MEMBRANES

It has been clarified experimentally with squid giant axons that real nerve mem-

branes in the resting state respond to stimulation of periodic pulses not only syn-

chronously but also chaotically according to the values of amplitude and period

of the stimulating pulses5). Fig. l(a) is an example of the chaotic response in

squid giant axons. The response characteristics of squid giant axons can be de-

scribed quantitatively with the Hodgkin-Huxley $equations^{13)}$ and qualitatively with

the FitzHugh-Nagumo $equations^{14- 15)}$ . Fig. l(b) and (c) show the corresponding

chaotic responses of the nerve equations. Moreover, approximately l-dimensional

return mappings have been obtained with stroboscopically plotting of the chaotic

responses as shown in Fig. 2.

3 MODELING CHAOTIC RESPONSES

The Hodgkin-Huxley equations and the FitzHugh-Nagumo equations are too com-

plicated for analyses of artificial neurocomputing. In this section we explain a

simple neuron model which can reproduce the chaotic responses of real nerve mem-

branes qualitatively12).

In 1971, Nagumo and Sato proposed an interesting neuron $mode1^{16)}$ based upon

the Caianiello’s neuronic equation17). They assumed that the influence of the re-

fractoriness due to a past firing decreases exponentially with time16). Eq.(l) shows

the Nagumo-Sato $mode1^{16)_{;}}$

$x(t+1)=u(A(t)- \alpha\sum_{d=0}k^{d}x(t-d)-\theta)$ (1)

where
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$x(t+1)$ : the output of the neuron at the descrete time $t+1$ which takes either

1 (firing) or $0$ (non-firing),

$u$ : the unit step function such that $u(y)=1$ (for $y\geq 0$) and $=0$ (for $y<0$),

$A(t)$ : the strength of the input at the discrete time $t$ ,

$\alpha$ : a positive parameter,

$k$ : the damping factor of the refractoriness which takes a value between $0$ and 1,

$\theta$ : the threshold for the all-or-none firing of the neuron.

By defining a new variable $y(t+1)$ corresponding to the internal state of the

neuron as follows

$y(t+1)=A(t)- \alpha\sum_{d=0}^{p}k^{d}x(t-d)-\theta$ , (2)

eq. (1) can be simplffied as eqs. (3) and (4) :

$y(t+1)=ky(t)-\alpha u(y(t))+a(t)$ (3)

$x(t+1)=u(y(i+1))$ (4)

where

$a(t)=A(t)-kA(t-1)-\theta(1-k)$ . (5)

In particular, when the input stimulation is composed of periodic pulses with

the constant amplitude $A,$ $a(t)$ of eq. (5) is temporally constant as follows

$a=(A-\theta)(1-k)$ . (6)

Responses of eqs. (3) and (4) have been analysed in detail and clarified that al-

most all the responses of eqs. (3) and (4) are periodic, forming complete devil’s
$staircases^{16,18,19)}$ ; that is, the equations have chaotic solutions only at a self-similar

Cantor set of the values of the bifurcation parameter $a$ with zero Lebesgue mea-

sure. Fig. 3(a) shows an example of the response characteristic with changing the
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value of the bifurcation parameter $a$ where the average firing rate, or the excitation

number $\rho$ , is defined as follows:
$\rho=\lim_{narrow+\infty}\frac{1}{n}\sum_{t=0}^{n-1}x(t)$ (7)

Although almost all the solutions of eqs. (3) and (4) are periodic, the chaotic re-

sponses of real giant axons of squid can be easily observed with the experiment that

the nerve membrane is stimulated by periodic pulses with the constant amplitude5)

as demonstrated in Figs. 1 and 2. This desagreement between the model and the

experiment requires a modification of eq. (1).

Physiological experiments on responses of nerve membranes to current stimula-

tion are usually conducted under a space-clamp condition. The process of generat-

ing action potentials by a single pulse current does not obey the so-called all-or-none

law under the space-clamp $condition^{14,20)}$ . In other words, the stimulus-response

property of the nerve membrane is described not by an discontinuous step function

such as the function $u$ in eq. (1) but by a continuously increasing $function^{14,20)}$ .
Moreover, the actual situation that action potentials are triggered at aliinited por-

tion of a real neuron, or an axon hillock is similar to the space-clamp condition.

Accordingly we replace the unit step function $u$ in eq. (1) by a continuous function

$f$ as follows

$x(t+1)=f(A(t)- \alpha\sum_{d=0}^{t}k^{d}g(x(t-d))-\theta)$ (8)

where

$x(t+1)$ : the output of the neuron, or a graded action potential generated at the

time $t+1$ , which takes an analog value between $0$ and 1,

$f$ : a continuous output function, which is the logistic function $f(y)=1/(1+$

$\exp(-y/\epsilon))$ with the steepness parameter $\epsilon$ in this paper,

$g$ : a function describing the relationship between the analog output and the

magnitude of the refractoriness to the following stimulation. The function $g$
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is kept to be the identity function $g(x)=x$ for the sake of simplicity in this

paper.

As is the case with the Nagumo-Sato model, defining the internal state $y(t+1)$

by

$y(t+1)=A(t)- \alpha\sum_{d=0}^{t}k^{d}g(x(t-d))-\theta$ (9)

reduces eq. (8) to the following eqs. (10) and (11) ,

$y(t+1)=ky(t)-\alpha g(f(y(t)))+a$ (10)

$x(t+1)=f(y(t+1))$ . (11)

Fig. 4 shows examples of periodic and chaotic solutions to eq. (10) with the

graphs. Fig. 5 shows the response characteristics of eqs. (10) and (11) with the

bifurcation parameter $a$ . The excitation number $\rho$ is defined here as follows

$\rho=\lim_{narrow+\infty}\frac{1}{n}\sum_{t=0}^{n-1}h(x(t))$ (12)

where $h$ is a function which describes waveform-shaping dynamics of the axon with

a strict threshold for propagating action potentials and assumed to be $h(x)=1$

(for $x\geq 0.5$) and $=0$ (for $x<0.5$). It should be noted that unlike the space-clamp

condition, an all-or-none law holds for the propagation of action potentials along

the axon if the length of the axon is sufficiently $1ong^{14,20- 21)}$ . The response charac-

teristics in Fig. 5 qualitatively reproduce alternating periodic-chaotic sequences of

responses experimentally observed in squid giant $axons^{4- 5)}$ . Fig. 6 shows classifica-

tion of solutions to eq. (10) in the parameter space a $x\epsilon$ . Shaded regions in Fig. 6

correspond to chaotic solutions.

4 A MODEL OF CHAOTIC NEURAL NET-
WORKS

The neuron model with chaotic dynamics explained above can be generalized as an

element of neural networks which we call “chaotic neural networks12). Generally
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speaking, we need to consider two kinds of inputs, namely feedback inputs from

component neurons such as Hopfield networks22) and externally applied inputs

such as back-propagation networks23), in order to design arbitrary architectures

of artificial neural networks.

The dynamics of the ith chaotic neuron in a neural network composed of $M$

chaotic neurons can be modeled as eq. (13) .

$x_{i}(t+1)=f_{1}( \sum_{j=1}^{Af}V_{ij}\sum_{d=0}^{t}k_{\epsilon}^{d}A_{j}(t-d)$

$+ \sum_{j=1}^{N}W_{j}\sum_{d=0}^{t}k_{f}^{d}h_{j}(x_{j}(t-d))-\alpha\sum_{d=0}^{t}k_{f}^{d}g_{i}(x.(t-d))-\theta_{i})$ (13)

where

$x_{i}(t+1)$ : the output of the ith chaotic neuron at the discrete time $t+1$ ,

$f_{i}$ : the continuous output function of the ith chaotic neuron,

$M$ : the number of the externally applied inputs,

$V_{*j}$ : the connection weight from the $jth$ externally applied input to the ith cha.otic

neuron,

$A_{j}(t-d)$ : the strength of the $jth$ externally applied input at the time $t-d$,

$N$ : the number of the chaotic neurons in the network,

$W_{ij}$ : the connection weight from the $jth$ chaotic neuron to the ith chaotic neuron,

$h_{j}$ : the transfer function of the axon for the propagating action potentials in the

$jth$ chaotic neuron,

$g$; : the refractory function of the ith chaotic neuron.

$k_{e},$ $k_{j}$ and $k_{r}$ are the decay parameters for the external inputs, the feedback inputs

and the refractoriness, respectively.
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Eq. (13) is the neuron model with the following three properties: (1) the con-

tinuous output function, (2) the relative refractoriness and (3) the spatio-temporal

summation of both extemal inputs and feedback inputs.

We can deal with eq. (13) in a reduced form by letting the terms in the paren-

theses of function $f_{:}$ be $\xi_{1}(t+1)+\eta_{i}(t+1)+\zeta_{i}(t+1)$ sintilar to the previous section

as follows:

$\xi_{i}(t+1)=\sum_{j=1}^{M}V_{i_{J}}\cdot A_{j}(t)+k_{e}\xi_{1}(t)$ (14)

$\eta_{i}(t+1)=\sum_{j=1}^{N}W_{1j}h_{j}(x_{j}(t))+k_{f}\eta_{i}(t)$ (15)

$\zeta_{i}(t+1)=-\alpha g_{i}(x_{t}(t))+k_{r}\zeta_{1}(t)-\theta_{i}(1-k_{f})$ (16)

$x_{i}(t+1)=f_{i}(\xi_{*}(t+1)+\eta,(t+1)+\zeta_{1}(t+1))$ (17)

where $\xi_{i},$
$\eta$; and ($i$ are defined as

$\xi_{i}(t+1)=\sum_{j=1}^{M}V_{1\dot{g}}\sum_{d=0}^{t}k_{e}^{d}A_{j}(t-d)$ (18)

$\eta_{i}(t+1)=\sum_{j=1}^{N}W_{jj}\sum_{d=0}^{t}k_{f}^{d}h_{j}(x_{j}(t-d))$ (19)

$\zeta_{l}(t+1)=-\alpha\sum_{d=0}^{t}k_{f}^{d}g;(x_{i}(t-d))-\theta:$. (20)

Equations (14)-(17) represent some of discrete-time neural network models, such as

the McCulloch-Pitts $mode1^{25)}$ and the back-propagation $network^{23)}$ ; i.e. our mod-

eling of chaotic neurons is a natural extension of the former models for producing

chaotic dynamics and is easy to adjust to these neuron models.

When $k_{e}=k_{f}=k_{r}\equiv k$ , eqs. (14)-(17) are simplified to eqs. (21) and (22)

$y;(t+1)=ky_{i}(t)+ \sum_{j=1}^{M}V_{ij}A_{j}(t)+\sum_{j=1}^{N}W_{tj}h_{j}(f_{j}(y_{\dot{J}}(t)))-\alpha g_{i}(f_{i}(y_{i}(t)))-\theta_{i}(1-k)(21)$

$x_{i}(t+1)=f_{i}(y_{i}(t+1))$ (22)

where $y_{i}(t+1)=\xi_{1}(t+1)+\eta_{i}(t+1)+\zeta_{i}(t+1)$ .
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Examples of dynamical behavior in simple chaotic neural networks are shown

in Fig. 7 and 8 where all of $g$. $s$ and $h_{i}’ s$ are assumed to be the identity functions.

Fig. 7 demonstrates a chaotic spatio-temporal pattern with positive Lyapunov

exponents. Fig. 8 shows the dynamical behavior of the chaotic neural network

composed of 100 neurons with feedback interconnections corresponding to super-

posed autocorrelation matrixes of t.he four patterns shown in Fig. $8(a)^{24)}$ . When

the mutual interactions are stronger than the refractory effect, the network dy-

namics is similar to content addressable $memory^{22)}$ as shown in Fig. 8(b). On the

other hand, when the mutual interactions are weaker than the refractory effect,

the network produces chaotic temporal sequences of patterns stored by the auto-

correlation matrixes in advance as shown in Fig. 8(c) because the network can’t

stay around any equilibrium states due to the accumulating refractoriness. $Sinlilar$

memory dynamics has been reported in a neural network composed of stochastic

$neurons1)$.

5 DISCUSSION

We have proposed a neural network model composed of the neurons with chaotic

$dynamics^{12,24)}$ . The neurons have the properties of the continuous output function,

the relative refractoriness and the spatio-temporal summation of fan inputs. Since

the chaotic neuron model is simple, it can be easily implemented by an electronic
$circ\iota lit^{26)}$ . Fig. 9 shows examples of strange attractors in the chaotic neural network

electronically implemented.

Although it is still an open problem to explore applicability of chaotic dynamics

in neurocomputing, our framework of the chaotic neural networks at least makes

it possible to introduce functions of the deterministic chaos into artificial neural

networks whenever necessary.

$S$
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a

$b$

$c$

Fig. 1

Chaotic responses in a single neuron. (a) Squid giant axon, (b) the Hodgkin-

Huxley eqs. and (c) the FitzHugh-Nagumo eq.
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Fig. 2

Approximately l-dimensional return mappings by stroboscopically plotting of

the chaotic responses. (a) Squid giant axon, (b) the Hodgkin-IIuxley eqs. and (c)

the FitzHugh-Nagumo eqs.
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a
Fig. 3

Response characteristics of eqs. (3) and (4) with the bifurcation parameter $a$ of

eq. (6) where $k=0.6,$ $\alpha=1.0$ and $y(0)=0.1:(a)$ the bifurcation diagram, (b) the

Lyapunov exponent $\lambda$ and (c) the average firing rate $\rho$ .
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a

$b$

Fig. 4

(a) Periodic and (b) chaotic solutions to eq. (10) with the graphs, where $k=0.7$ ,

$a=0.6288$ and $\epsilon=0.01$ in (a) and $k=0.7,$ $a=0.3968$ and $\epsilon=0.01$ in (b).
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a
Fig. 5

Response characteristics of eqs. (10) and (11) with the bifurca.tion parameter

$a$ where $k=0.6,$ $\alpha=1.0,$ $f(y)=1/(1+\exp(-y/0.015)),$ $y(0)=0.1$ and $g$ is the

identity function. (a) the bifurcation diagram, (b) the Lyapunov exponent A and

(c) the average fring rate $\rho$ .

/s-



i60

Classification of solut.ions to eq. \langle 10) in the parameter space a $x\epsilon$ . Fig. 6(b) is

an enlargement of a part of Fig. 6(a). While each number $k$ designates a region of

periodic solutions with the period $k$ , shaded regions correspond to chaotic solutions.
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Fig. 7

An example of the dynamical behavior of the chaotic neural network composed

of ten neurons. The size of each sqll are is proportional to the strength of the output.

The Lyapunov spectra are (0.38, 0.12, 0.02, $-0.02,$ $-0.06,$ $-0.10,$ $-0.16,$ $-0.19,$ $-0.26$ ,

$-0.29)$ .
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a

$b$

$c$

Fig. 8

An example of chaotic pattern dynamics. (a) Patterns stored with autocorre-

lated weight-matrix. (b) Dynamics with attraction to the nearest stored pattern $(k_{f}$

$=0.5$ and $k_{f}=0.6$) . $(c)$ Chaotic wondering around the cross, triangle and star-like

patterns stored by aurocorrelation weight-matrix($k_{f}=0.2$ and $k_{r}=0.9$).
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a $b$

$C$ $d$

Fig. 9

Strange attractors in the chaotic neural network electronically implemented.
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