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Bifurcation ’Analysis of Shilnikov's Chaos

R.Fujimotof, A.Hotta, R.Tokunagat, M.Komurott and T.Matsumotot
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Abstract

Detailed bifurcation analysis is given near homoclinic orbit of a
picewise-linear flow on R3. The significance of the Shilnikov

conditions are studied.

1.INTRODUCTION
Consider the 2-region picewise-linear system in R3

%:AX+%p{I<a,X>-lI+(<a,X>- 1)) (1.1

where
(o)) "(DO 0 P1 1°

A=] oy o9 0 |,p=}| py [,a=]| 0
0 0 v P3 1

which is the normal form devélopcd in [11,[2].
If the following conditions are satisfied (the Shilnikov conditions [3],[4]) :

(a) logl <Y
(b) there exists a homoclinic orbit through the origin,
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then every neighborhood of the homoclinic orbit contains infinitely many periodic orbits of saddle
type. (An orbit which tends to the origin as t—zoo is called homoclinic.)

In fact, the homoclinic orbit is a limit of a family of saddle type periodic orbits. Fig.1 shows
the case in point on the 0;-period space. Fig.2 shows these periodic orbits corresponding to (a)-(d)
in Fig.1.

The purpose of this paper is to study the significance of the Shilnikov conditions in the
bifurcation structures near homoclinicity. In particular, we will study what happens when (a)
and/or (b) is violated.

50.0 5
'@
- |
2
2 © 4
d s ®
s N
(@) ’. S
H;-—-—-—d- ----------------------------------------------------------- d
° o, - | 0-65,

Fig.1 Periodic orbits ‘approach to the homoclinic orbit, (0p=-0.3)
stable or unstable periodic orbit

------ saddle type periodic orbit
s : saddle node bifurcation

d : period doubling bifurcation -
H : Hopf bifurcation
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Fig.2 Periodic orbit changes the shape like a homoclinic orbit.
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2.GEOMETRIC STRUCTURE AND BIFURCATION EQUATIONS
2.1 Geometric Structure

Fig.3 shows the geometric structure of (1.1). At those parameter values we are interested the
system has two equilibrium points, origin O and P. Eigenvalues at O are denoted by ot jo, and
Yo, and eigenvalues at P are denoted by o;% jw; and ;. Note that vector p in (1.'1) is automatically
determined by these six eigenvalues. Throughout this paper, we will fix

=05 , wy=10
'Yl—_——O.S ’ m1=1.0

and study various bifurcations in the (0,,0¢)-space.

2.2 Equations Of Periodic Orbits

Consider point X lying on the boundary V. Let Y and Z lie the points at which the trajectory
starting from X hits V again at positive time s and negative time -t, respectively. Since the system
is linear in each regidﬁ, one has o
Y = eCsX
Z = eMX @.1)
where _

C=A"1BA , B=A+pTa
and Ta indicates transpose of o..

If the orbit is periodic, then Y = Z which is equivalent to

| (e-AteCHX = 0 |

Since ;(,’Yv and i all lie on the boundary_ V,

<oc,)~(> =1, <o,eCs X> = 1, <o,e-At X> =1
Therefore ‘
X = (e;Toe-At + e,ToeCs + e3T @) 1 T(1,1,1) = k(s,t) h - 2.2)

where

e = T(1,0,0) , e;=T(0,1,0) , e3= T(0,0,1) , h = T(1,1,1)
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Consequently, a periodic orbit is characterized by

(e-A:_eCs)k(s,t)li;O M ‘ | ‘ 2.3)

Remark. There are only two (out of three) independent equations in (2.3) because ;{5{ and 2 all

lie on V, a two dimensional subspace.

Fig.3 The Poincaré return map

Notations associated with Fig.3
O : equilibrium point
P equilibrium point

E“(0) : 2-dimensional eigenspace corresponding to complex eigenvalue oyt w,atO

E’(0) : 1-dimensional eigenspace corresponding to real eigenvalue Yo at O

V : boundary



132

2.3 Homoclinic Bifurcation Equations

If a trajectory starting from the point (0,0,1) hits E°(O) on the boundary V, then it is 3
homoclinic orbit through the origin.(Fig.4) The homoclinicity is characterized by

ToeCsles = 1 o 4 » o
Toe;eCs0ey = 0 (2.4)

where s is the timme at which the trajectory hits VNE<(0) starting from T(0,0,1). Of course moré
complicated homoclinicites can also be characterized by equations similar to (2.4).

Fig.5 shows set of point in the (0;,0;)-space where homoclinicity occurs which is called the
homoclinic bifurcation set. Fig.6 shows the trajectories corresponding to points (a)-(e) in Fig.S.
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Fig.5 Homoclinic bifurcation set
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2.4 Bifurcation Equations Of Periodic Orbit

A. Saddle Node Bifurcation Equation
It is shown rigbrously in [1],[2] that e_igenvalues of the Pomcaré return map on V is given by
the eigenvalues of eAteBs, It should be noted that this is not as trivial as it looks because ¢ and s
vary as X varies . One has to use the implicit function theorem. Noté that if X is a periodic Vorbit,
one of the three ‘éigenvalues of eMeBs is always 1. Since a saddle node bifurcation is

characterized by the fact that one of the remaining two eigenvalues is 1, it is characterized by

2-T+D =0
(e-At-eCs)k(s,t)h =0 ' (2.5)
where

T = trace(eAleBs) , D = det(eAteBs) ,

B. Period Doubling Bifurcation Equation
A period doubling bifurcation is characterized by the fact that one of the remaining

eigenvalues being -1:

T+D=0 ‘ ,
(e"At-eC9)k(s,H)h = 0. B »» (2.6)
| 3. BIFURCATIONS NEAR HOMOCLINICITY , .

3.1 leobal kBifurc\ations |

Fig.7(a) (resp.(b)) gives saddle-node (resp. period-doubling) bifurcation set
corresponding to the right most portion of the homoclinic bifurcation set given by Fig.5, on
which (a),(b) and(c) lie. Fig.7(c)(resp. (d)) shows saddle-node(resp. period-doubling) bifurcation
set corresponding to the next portion of Fig.5 on wl}ich points (d) and (e) lie.
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' Fig7(b) Period doubling bifurcation
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~ Fig.7(a) Saddle node bifurcation
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-0.5 U/

1.0 ¢
0 Fig.7(c) Saddle node bifurcation

-0.5

-1.0 _ ‘
Co  Fig.7(d) Period doubling bifurcation
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3.2 Local Bifurcatiohs

A.When the Shilnikov conditions are satisfied.
When the Shilnikov conditions are satisfied, that is

(@) logl <y
(b) there exists a homoclinic orbit through the origin,

then there are infinitely many saddle node bifurcation sets and period doubling bifurcation sets near
homoclinicity. Fig.8 shows a blown up picture of Fig.5 on which Fig.7(a),(b) are superimposed.

This tells us the following:

If the Shilnikov conditions are satisfied, then saddle node
. bifurcation sets and period doubling bifurcation sets accumulate
to homoclinic bifurcation set in pairs.

Next, we show a detail of Fig.8 in Fig.9 which illustrates Hopf bifurcation set of periodic
orbit. This Hopf bifurcation set is the boundary between attractive periodic orbit and repelling
periodic orbit. ’ .

0.25 0.5
- 0 .29 Gl
,r:"?/;ﬂ
/";%V
o
A
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s-b 4—d ,“//,/ \s
//
7 7’
-0.5

(0 . . .
0 Fig.8 Saddle node bifurcation sets and period doubling bifurcation sets

s : saddle node bifurcation set

d : period doubling bifurcation set
h : homoclinic bifurcation set

11
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0.3555 ‘ .
-0.2931 0.3556

-0.2932 &
T Fig.9 Hopf bifurcation set of the periodic orbit
H,, : Hopf bifurcation set of the periodic orbit
s : saddle node bifurcation set
d : period doubling bifurcation set
A : attractive periodic orbit
R : repelling periodic orbit

B.When the Shilnikov condition (a) is violated.
Fig.10 shows the (0,,0¢)-bifurcation diagram when loyl 2 vy while there still exists a
homoclinic orbit. One sees that V

If the Shilnikov condition (a) does not hold then the saddle node
and period doubling bifurcation sets vanish in pairs. Further more
saddle node bifurcation set ends with a cusp point.

In the present situation, therefore, there are only a finite number of periodic orbits near
homoclinicity. o
Remark. Observe that the cusp point of saddle node bifurcation sets accumulate to a point where

homoclinic bifurcation set intersects the line 6y = -Y,.

12
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024 - h 0.3

-0.5

-1.0
Gy Fig.10 Saddle node bifurcation sets and period doubling bifurcation set

s : saddle node bifurcation set
“d : period doubling bifurcation set -
h : homoclinic bifurcation set

C.When the Shilnikov condition (b) is violated.

Consider the case when there is no homoclinic orbit while Ioyl <Yy still holds. First let us
look at the blown up homoclinic bifurcation set given by Fig.11. Note that at 6, = 0], there are
two homoclinic orbits while at 6 = 02, there is no homoclinicity. Fig.12(a)(resp. (b)) shows the
saddle node(resp. period doubling) bifurcation set corresponding to the "right-hand portion" of the
curve given in Fig.11, while Fig.12(c) and (d) give the bifurcations corresponding to the "left-hand
portion". All the pictures are superimposed in Fig.12(e). Our observation is the following:

If the Shilnikov condition (b) is violated, then saddle node
bifurcation sets and period doubling bifurcation sets vanish one
by one. Furthermore,the "fishhook" structure accurmulates toward

the "corner" of the homoclinic bifurcation set.

13 .
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0.15 ‘ 0.6
0.1 [~ s,
- Gy= 002
" Op= 0(;1 ,

- =0.15

"7 Oy Fig.11 If we fixed o at 0!, then we have
two homoclinic orbit. But if we fixed o

at 002, then we have no homoclinic orbit.
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-0.1 _ 0‘661

-0.15 -
Op  Fig.12(a) Saddle node bifurcation
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Gy  Fig.12(b) Period doubling bifurcation
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‘Fig.12(c) Saddle node bifurcation

15

141



142

. 015 06
04 — 5,

— 0 . 1 5 .
C0  Fig.12(d) Period doubling bifurcation
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% - Fig.12(e) "Accumulation of fishhook"
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4. MODEL BIFURCATION SET

" Based on the previous discussions, Fig.13 shows a model bifurcation set describing all the
details. ' o o '
Finally, we remark that there have been previous works on the bifurcations near

homoclinicities. [5]-] 8]

saddle node bifurcation set

period doubling bifurcation set

Fig.13 A schematic picture of global bifurcation

17
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