負曲率閉曲面の測地流に対応する Anosov 微分同相写像について

東大理 橋口 徳一 Norikazu HASHIGUCHI

1. INTRODUCTION.

ここでは、 負曲率をもつ有向閉曲面の測地流に対応するBirkhoff's section と その上の Anosov 微分同相写像について論する。

Birkhoff は、[B]において、Lagrange の運動方程式の解の位相的な性質を研究する中で、surface of section (= Birkhoff's section)を定義した。その後 [F]において、Friedが、負曲率をもつ閉曲面の測地流に対する Birkhoff's sectionを構成し、この section についての first return map から 測地流を再構成する方法を示した。最近になって Ghys がこの first return map が hyperbolic toral automorphism と半女役であることを示し、更にその行列の trace を計算している。ここでは、その行列の 艾役類を決定し、Friedの方法を用いて測地流をその行列から具体的に構成する。

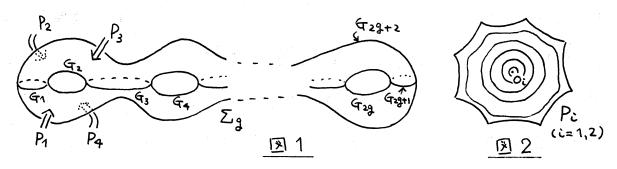
2. BIRKHOFF'S SECTION.

∑g: 種数 g(≥2)の 有向閉曲面で 負曲率をもつ metric を決めておく

 $F_{\star}: T_{\iota} \Sigma_{g} \longrightarrow T_{\iota} \Sigma_{g} \quad (\star \in \mathbb{R})$: formetric ι= πιτο测地流 $(T_{\iota} \Sigma_{g} : \sharp \text{ is } \mathring{\#} \text{ ℓ} \mathring{\#} \text{ ℓ} \text{ ℓ}$

FriedはFxについてのBirkhott's sectionを以下のように構成した。

G1,G2,--, G2g+2 を図1に示す 単純開測地線とあく。



これらの測地線によって Σ_g は 4つの 2g+2 角形 に分割される。図1のように P_1 , P_2 , P_3 , P_4 と呼ぶ。更に P_1 , P_2 上に図2のような 1個だけ特異点を持つ、凸で滑らかな単純閉曲線の弦 C_1 , C_2 を考える (特要点を O_1 , O_2 とする。) 今、

S={C1,C2の各 閉曲線に接 3を ± 1の √7 +1し}の Ti Σg に かける 閉包

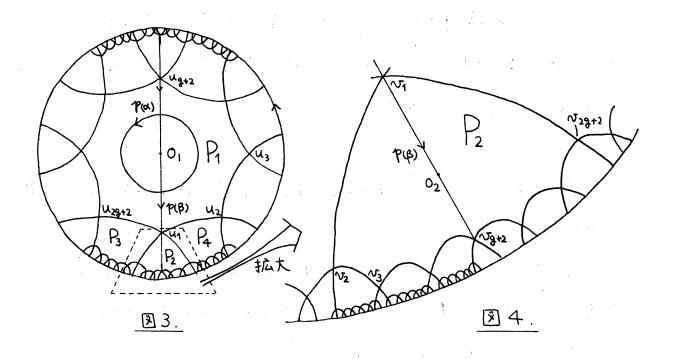
と定義する。Sは次のような小生質を持っている。

1. S は滑らかな有向曲面で、F* の関軌道からなる 境界を持っている。 49+4個の

- 2. S の内部 $S \setminus \partial S$ は F_t と横断的に交わり、first return map $F: S \setminus \partial S \longrightarrow S \setminus \partial S$ は S の 微分同相写像 $\widehat{F}: S \longrightarrow S$ へ拡張する。
- 3. So Euler 変には (49+4)である。

従って Sは、2次元ト-ラス T²から 4g+4個の開円板 を取り除いた曲面と1級分同相である。

定める。 $S_{i\pm}$ を S_{i} の境界成分で $C_{i\pm}$ の境界に対応しているものとする。 $S_{i\pm}$ は あり関連地線 G_{k} の T_{i} D $T_$



 \hat{S}_{i} を S_{i} の各式 を \hat{A}_{i} を \hat{A}_{i} を \hat{A}_{i} を \hat{A}_{i} に \hat{S}_{i} \rightarrow [0,1] \times 書 (0,2) \times (

 \hat{S} も S の 各境界成分を 1 点にっぷして得られる 2次元トーラス てし $\hat{F}: \hat{S} \longrightarrow \hat{S}$ は \hat{F} から 得られる \hat{S} の 同相写像とする。 この 時 G hys は λ た たした。([G])

Theorem A. Fit Ryperbolic toral automorphism と位相 共役である。

すなわち $Ag \in SL(2,Z)$ $l + race <math>Ag \mid > 2$ があって、 更に 同相写像 $H: T^2 = \mathbb{R}^2/\mathbb{Z}^2 \longrightarrow \hat{S}$ (=5,7) $\hat{Ag} = H^{-1} \circ \hat{F} \circ H$

と書ける。(ここで \widehat{Ag} は Ag が $T^2=R^2/Z^2$ へひきかこす彼欠 分同相写像である。)

筆者はAgのSL(2,2)における共役类員を決定した。 (注) Ghys は Agのtrace をも計算しているか、SL(2,2)の 共役類はtraceでは決まらない。([S-F]) TheoremB. Soba basis の下で Agid 次の形に書ける。

$$A_{g} = \begin{pmatrix} 2g^{2} - 1 & 2g(g - 1) \\ 2g(g + 1) & 2g^{2} - 1 \end{pmatrix} = \begin{pmatrix} -\begin{pmatrix} g & g - 1 \\ g + 1 & g \end{pmatrix} \end{pmatrix}^{2}$$

3. Theorem B. の証明のあらすじ

 A_g の成分を求めるには、次の事を行う。 T^2 の basis $\langle \widetilde{a'}, \widetilde{eta'} \rangle$ を $\pi \cdot (T^2)$ の生成元となる単純閉曲線の組とする。 $\widehat{A_g}$ の $\pi \cdot (T^2)$ への作用を $\widehat{A_g}_*$ とするとき

Âg*[Z] = a[Z] + &[B]

 $\hat{A}_{g*}[\tilde{\beta}] = c[\tilde{\alpha}] + d[\tilde{\beta}]$ $a, \ell, c, d \in \mathbb{Z}$ ([3],[8] は \tilde{a} , $\tilde{\beta}$ の代表する π .(T^2)の元)

と書けているならば、Agは次の株になる。

$$Ag = \begin{pmatrix} a & c \\ e & d \end{pmatrix}.$$

まず \hat{S} の basis を決める。初めに、 C_{1+} の元で、 O_{1} の近く の単紀開曲線 を選び、 その T_{1} Σ_{g} への I_{1} f_{1} を d とおくと d は S N_{2} S の中の単紀開曲線 である。 P_{1} \times P_{2} の頂点を図 S N_{3} N_{4} I_{1} I_{1} I_{2} I_{3} I_{4} I_{1} I_{1} I_{2} I_{4} I_{1} I_{1} I_{2} I_{4} I_{1} I_{1} I_{2} I_{4} I_{1} I_{1} I_{2} I_{4} $I_$

のTi Σ_g への Γ_i f + を β と π_i Γ_i Γ

Lemma. 2, B II S o basis E to d.

① $d \times \beta$ は $S \setminus AS$ にかいて 横断的に ただ 1度だけ たかっている。 \mathcal{L} , \mathcal{G} そ \mathcal{S} に かいて 同様 のこと を満たし 従って \mathcal{L} , \mathcal{G} は $\pi_{\ell}(\mathcal{S})$ の 生成元 を表している。/

常を得るともに、 $S_1 \times S_2$ の $V_{11}^{\perp} \times V_{11}^{\prime} \times E$ はり合わせて S をつくり ∂S の各成分を 1 点に つぶす 操作を行った。従って 順序を逆にして $\hat{S}_1 \times \hat{S}_2 \times E$ それるの境界 \hat{S}_{i+1} ではり合わせても \hat{S} を得ることができる。 \hat{M}_i を \hat{G}_{i+1} に割 限すると、 \hat{S}_1 の向もを保つ同相写像とがるか、これによって $\hat{G}_{i+1} \times \hat{G}_1$ のはり合わせの 写像は、 ∂D の同相写像と見ることができる。 \hat{S}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 のはり合わせの 写像は、 ∂D の同相写像と見ることができる。 \hat{S}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{G}_1 、 \hat{S}_1 、 \hat{S}_1 (\hat{G}_1) の \hat{S}_1 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_1 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_1 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_2 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_1 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_1 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_2 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_1 の \hat{S}_1 、 \hat{S}_1 、 \hat{S}_1 (\hat{S}_1) の \hat{S}_1 の $\hat{$

であるので、 k: $\hat{S} \longrightarrow S' = [0,2]/0~2 なる写像を$ $<math display="block">\hat{k}(x) \times \epsilon \hat{S}(x)$ $\hat{k}_{2}(x)+1 \times \epsilon \hat{S}_{2}$

て定義できる。というということははいいといいとなる。

Ci の 単紀 開曲線 は 凸 なので mi を に に 原 (た 字像 mi l a は 向 更 を 保 つ 同相 字像 で ある。 又, β は $S = h \cdot 1$ かいて、 σ_{1+} の 点 を 出発 し、 $\rho^{-1}(\sigma_{1})$, $\sigma_{1-} = \sigma_{2+}$, $\rho^{-1}(\sigma_{2})$ $\sigma_{2-} = \sigma_{1+}$ を 横 切 る。 $\rho(\beta)$ は $\sigma_{3-} = \sigma_{3-}$ を 横 的 に 交 わる の で、 $\sigma_{3-} = \sigma_{3-}$ を $\sigma_{$

い以上のことからな次のなとからかる。

 $[\delta] = \alpha[\widetilde{A}] + \&[\widetilde{\beta}] \quad \alpha, \& \in \mathbb{Z}$

が成立している、シャと以下は同値である。

まず k(8) が S' = [0,2]/0~2 を む回巻いている。(ここで S' = [0,2]/0~2 には自然な向きを与えては。) 次に S' を \hat{S} ,の閉曲線で、 π .(\hat{S}) にかいて [8] ー $\ell[\beta]$ を 表しているものとすると、 \hat{M} .(S') は $S' = \partial D$ を の回巻いている。

(==では れ、(分) と free homotopy class [S', 分] とも圧別していない。) この手順に従って f(x) ,f(β) がπ(s)の元として どのように表されるかを求めることができる。実際に計算 してみると

 $\hat{F}_{*}[\mathcal{X}] = (2g^{2}-1)[\mathcal{X}] + 2g(g+1)[\tilde{\beta}]$ $\hat{F}_{*}[\tilde{\beta}] = 2g(g-1)[\tilde{\chi}] + (2g^{2}-1)[\tilde{\beta}]$ $\times 5$. = 47 Theorem B. $(\bar{x}, \pm 4, \pm 2)$

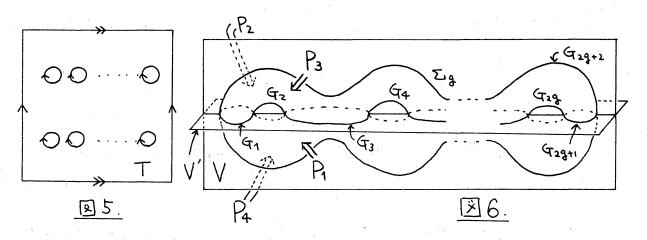
4. Ft の 再構成。

Fried は ある条件を満たす 擬 Anosov 字像から、3次元開 分様体上の +ransitive なAnosov 流を構成した。ここでは、 彼の方法を用いて Ag から 測地流 Ftを 具体的に構成す る。

- i) 1番目の生成元(は meridian $m \in H_1(x_i^*)$ で、 $f_*^*|_{x_i^*}$ の 閉軌道のしつが代表している。
 - ii) 2番目の生成元 it longitude $\ell \in H_1(x^*)$ 7 mapping torus $M^* \longrightarrow S^1$ の fibre の t 気界に時計 回りの向きを与えた 閉曲線 か 代表している。(図5)

 χ^{*} は、 $\phi_{\star}^{*}|\chi^{*}$ の全ての軌道と横断的に交わり $H_{1}(\chi^{*})$ に あいて m+l を代表する S^{1} を葉とする f_{0} li ationを持ている。この f_{0} li ation の各葉 を | 点にっぷすことによって新しい f_{0} い ϕ_{\star} : $M \rightarrow M$ が得られ、実はこの ϕ_{\star} は 列地流 F_{\star} と位相共役である。このように (て $\chi_{1},\chi_{2},...,\chi_{4g+4}$ を うまく遅かは F_{\star} が 位相的に再構成されるのである。

(注) 位相的に考えれば、Mit Âg a mapping torus に 4g+4回 (1,1) - Dehn surgery を行って得られた。



そこで、432-4個あるÂgの固定点の中から X1, x2,..., X4g+4 を選び出す。そのためには、Ag が Bg = $\begin{pmatrix} -g - (g-1) \\ -(g+1) & -g \end{pmatrix}$ の2 乗の形をしている理由を知ることが、有効である。Vを図6 に示す様な、G2, G4, -.., G2g+2 を含む平面とする。 Vにつ いての対称変換 て: ∑g → ∑g とか(。て(Pi)=P4, て(P2)=P3 となっている。P3、P4の単紀閉曲系泉の方矢をちれぞれ C3=て(C2), C4=て(C1)で定義する。 C1, C2の時と同様に が得られ Sí= SaUS4 は Ft に対する Birkhoff's sectionとなる。SとS'(まをいの境界部分が貼り合わちて S U S' は 閉曲面であり F': S U S' → S U S' を F*に対 する "first return map"から得られる写像とする。Ci (i=1,2,3,4) の閉曲線は凸だったので、F'(S)=S', F'(S')=S であり、 F=(F'|s')。(F'|s)が成立する。てが単位をベクトル東へ誘導 する写像を Tit: Tizg→Tizg とかくと (Tiz)o(Tiz)=idTizg, Tit(S)=S'を満たす。 測地流Ft と Tit は、Vをうまく取 れば、可模なので、次が成立する。

Lemma. F' と Tit は 可換である。すなわち F'o(Tit)=(Tit)of!

後、て F'|s' = (Tiz|s') · (F'|s) · (Tiz|s) -1 = (Tiz|s') · (F'|s) · (Tiz|s').

F = (F'|s') = (Tit|s') = (Tit|s')

 \hat{S}' も \hat{S}' の経界成分 を 1 点にっぷ: して得られる 2 次元トーラスとし 元(\hat{S}')、 \hat{F}' (\hat{S}) を \hat{T} で \hat{S}' , \hat{F}' (\hat{S}) を \hat{T} で \hat{S}' (\hat{S}')。(\hat{F}' (\hat{S})) ななる。 後、 すると、 上の事から \hat{F} = $\{(\hat{T}_{1})\hat{S}'\}$ 。(\hat{F}' (\hat{S})) ななる。 後、 て \hat{B}_{g} を \hat{B}_{g} か $\hat{T}^{2} = R^{2}/22$ へ ひきかこす紙分同相写像と すると、 $\{H^{1}$ 。(\hat{T}_{1}) (\hat{T}_{1}) 。(\hat{F}' (\hat{S})。 H^{2} = \hat{A}_{g} = (\hat{B}_{g}) か 成立するので、 次は容易にわかる。

Proposition. $H^{-1} \circ (\widehat{T}_{1} z | \widehat{S}') \circ (\widehat{F}' | \widehat{S}) \circ H = \widehat{B}_{g}$.

V'を図6に示す様な、 G_1,G_3 , G_2g_{11} を含む平面として: $\Sigma_g \to \Sigma_g$ を V'についての計称変換 $T_i \tau': T_i \Sigma_g \to T_i \Sigma_g$ を τ' から得られる写像、 $f_1 \tau' \mid \hat{S}'$ は $T_i \tau' \mid S'$ か…詩庫する 写像とする。 $\hat{B}_g(\frac{1}{2},\frac{1}{2})$ を P_{1} とすると P_{1} のの $\frac{1}{2}$ か… $T^2 = P_{1}$ なる 普遍被覆に $\mathbb{R}^2 \to \mathbb{T}^2$ の下で、上て同様にして次が示すれる。 H^{-1} の $(\hat{T}_1 \tau' \mid \hat{S}')$ の $(\hat{F}' \mid \hat{S})$ の $H = \hat{B}_g(\frac{1}{2},\frac{1}{2})$.

閉測地線 Gi は、2通りの向きを持ち得るので、TiΣgへの litt は 2通りあるか"それを + Gi, - Gi と書く。{χ,χ₂,···,χ₄g+4} は S の境界に対応する \hat{S} の点である \hat{S} \hat{S}

 $\{x_1, x_2, ..., x_{4g+4}\} = Fix(Bg) \cup Fix(Bg(\frac{1}{2}, \frac{1}{2}))$ $= \{\pi(\frac{\alpha}{2(g+1)}, \ell); \ell = 0, \frac{1}{2} \alpha = 0, 1, 2, ..., 2g+1\}.$ 従って

Theorem.C. 行列Agから測地流Ftを構成するためには次のことを行えば良い。

- 1. It Ag a suspension flow & 1F3.
- 2. 次に $\int \pi \left(\frac{\alpha}{2(9H)}, \alpha \right) \in T^2; \alpha = 0, \frac{1}{2}, \alpha = 0, 1, 2, \dots, 2g+1$ に対応する、suspension flow の 閉軌道 ニコいる.

Fried の (1,1) - Dehn surgery を行う。

こうしてできた3次元閉列模体上のflow は週地流Fx2位相共役である。

References

- [A] Anosov, D.V., Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature, Proc. Steklov Inst. Math. 90,1-235(1967).
- [B] Birkhoff, G.D., Dynamical Systems with Two Degrees of Freedom, Trans. Amer. Math. Soc. 18,199-300(1917).
- [F] Fried, D., Transitive Anosov Flows and Pseudo-Anosov Maps,
 Topology vol. 22, no. 3, 299-303(1983).
- [G] Ghys, E., Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier 37,59-76(1987).
- [S-F] Sakamoto, K. and Fukuhara, S., Classification of T^2 bundles over T^2 , Tokyo J. Math. vol. 6, no. 2,311-327(1983).