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On some branched surfaces which admit expanding immersions
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Abstract. We deal with the class of branched surfaces K
such that 1) the branch set S of K is an embedded
circle, 2) all connected components of K S are
orientable and their number is two or threé. We show that
in this class only two topological types admit expanding
immersions. In the proof of the result, the Euler class

of the tangent bundle of K oplays an important role.

0. Introduction

R. Williams [1],[2],[3] introduced the concept of branched
manifolds and expanding immersions in order to study the dynamics of
expanding attractors. Using:his'own tools, he succeeded in
classifying 1'dimensional expanding attractors. OQur final aim is to
study the topological conjugacy classes of 2'dimensional expanding
attractors. As the first step toward it we propose the following
problem:
Find some topological invariants of braﬁched surfaces which admit
expanding immersions,

As an approach to solve this problem, we consider the simplest

class of them i.e. the class of branched surfaces with branch sets a
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circle.

First of all let us give two examples of expanding immersions.
First take a rectangle [0,1]%[0,2] in the coordinate plane, and take
two disks D1 and 5D2 whose radii are 1/10 and centers are
(4/5,4/5) and (4/5,4/5+1) respectively. We define the equivalence
relation among the points in the rectangle; (s,t)~(s',t') &> 1)
(s,t) and (s',t') don't belong to D1 and D2 , and (s-t)=0,

(s'-t')=0 mod 1. 2) (s,t)=(s',t')€D, or D, . We denote the
1 .

2
quotient,épace by this equivalence relation by T* . Then T* is a
branched surface whose branch set is homeomorphic .to a circle. Notice
that there exists a canoniéal projection p:T*->-’I'2 . The dilation by 2
yields a map f:T2->’I>"2 . Clearly f 1lifts to a map f:T*+T* in a way
that f is surjective. Thus T* admits. an expanding immersion.

The second example is as follows. We regard T2 as‘a rectangle
[0,1]%x[0,1], and take two disks D1 and ‘D2 in it whose radii are
1/10 and centers are (1/2,1/4) ahd (1/2,3/4) respectively. We define
the following equivalence relation in T2 ; (s,t)~(s',t") & 1)
(s,t)eD1 and (s',t!)GD2 , OT (s,t)éD2 and (s',t')GD1 , and 2t=2t',
sZs' mod 1. 2) (s,t):(s',t’). We consider the quotient space by this
equivalence relation and denote it by T, . T, 1is a branched surface -
whose branch set is homeomorphic to a circle, too. The dilation by 2,

f:T2->-T2 , projects down to a map f:T,>T, via the natural projection -

T2+T* . This shows that T, admits an expanding immersions.
Suppose a branched surface K has a branch set S homeomorphic

to a circle. Then a neighborhood of S 1is homeomorphic to one of the

following *NO' and N.1 . Take two copies of a .rectangle IXI , where



I=[-1,1] , and identify the subsets IX[-1,0] of them. (See Figure
1-)

..............

Figure 1.
N denotes the quotient space. We take subsets Ia and Ié ‘in N
which are the images of {-1}xI and {1}xI , contained in‘one of two
copies, respectively, and let I, and Ié be the images of {-1}xI
and {1}xI , contained in the other of them, respectively. Then N
is obtained by connecting Ia with I; and Ib with >Ié , Or
connecting I with Ié and ib with I; . We denote the former by

NO and the latter by Nl . We define subsets of NO and N1 as

follows. Let J; and J; be the images in NO of two copies of
Ix{1} in two copies of IxXI respectively, and let J be the image

in N, of Ix{-1} . In N, , let J' and J  be the images of

0
Ix{1} and Ix{-1} .

1 ?

Using N0 and N1 , we define the types of S . S 1is called

untwisted (or twisted) if S has a neighborhood homeomorphic to NO

(or N1 ).

The main resuit of this paper is as follows. We consider the
class of branched surfaces K such that 1) the branch set S of K
is an embedded circle, 2) all connectéd components of K\S are
oriéntable and their number is two or three. In this class, only T*

and" T, admit expanding immersions.
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In 81, after giving definitions ofvbranchedAsurfaces and
expanding immersions, a precise statement of our result is described;
§2 and 33 are devoted to its proof. -

The author thanks the referee for suggesting the use of the
Euler class of the tangent bundle ef K. it makes the proof of the

theorem clear and simple.

1. Defiﬁitions and the statement of the result
In order to deflne branched surfaces, three types of local
nelghborhoods are needed. Let us define:

1) U(l)= IXI , where I is an open interval (—1 1).

1 ' '
2) U,,\=U il ~
) (2) (1) U(l)/ , wh1ch means a quotient space of two copies of

(1) ’ (1) and U(l) , by the equ1valence relation geeerated by

(£,9)~(t',8") € (t,9)€0 1y , (t',s")EV 2 and -1<t=t's0, s=s'.

(1 (1) ,
3) U ,\=U,, UL ~ i

)3 (3)" (2) U(l)/ , wﬁlch means a quotlenr space of the copy
U f . L . .

(1) o | U(l) and U(2) by the equivalence relation generared by

(t,s)~(t",s") & (t s)eU ‘,s')éU(?) and t=ti, ~1<s=s's

(1) Ugay » (¢
0. (See Figure 2.)

v (3)

Figure 2.

CO T Y2y

Here we have natural maps ’n such that

, Uy Vgy and Tyl (3)7)
nilU(i) is a natural 1dent1f1cat10n of the copy U(v) ylrh U(l)
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itself, where i=2 and j=1 or 2, or i=3 and j=1,2 or 3.

Definition 1.[3] A compact Hausdorff space K is called a c’
branched surface if it has a finite family ‘{(Uj,¢j)} satisfying

1) K=U Uj ,
J
2) For each j there exists a homeomorphism .gj:Uj+U(i)(i=l,2 or 3)

h that =T, . \0 8.
such That 057M(1) 8y - |
3) For j and j' such that anUj,z ¢ , there exists a ct map
.20, (U.AU, 4 (U.,nU,) such that T, .e0.=d., .
TvaJ ¢J( i Jv)'*d)Jv( J! J) | J'J d)J d)J"
We call (Uj,¢j) a coordinate neighborhood and {(Uj,¢j)} a
coordinate neighborhood system of K .

S={x€K; x dose not have a neighborhood homeomorphic to an open

disk 52 .} is called the branch set of K .

As in the case of ordinary manifolds, we define the tangent

bundle TK of X as the quotient space of lJ¢;TU(15 by the natural
: J

identification induced by the coordinate change, where ¢§TU(1)
denotes-the pull back of the tangent bundle TU(l) by ¢j . (For
detail, see [3].) For =x€K , p_l(x) is called the tangent space at
x and is denoted by T#K , where p:TK>K denotes the projection
map, which is induced by pj:d;;:TU(l)-)Uj vnaturally. |

A Riemannian metric on K 1is defined as a positive definite
symmetric bilinear form on TK .

Next, we define a Crhap from a branched surface to a branched

o . ' s . .
surface, a C immersion and an expanding immersion.
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Definition 2. Let K and L be C'branched surfaces, and
{(Uj’¢j)} ‘and b{(Vk,wk)} be their coordinate neighborhood systems
respectively. :

1) A map f:K>L is called a Crmap if for any i, j.and k with
f_l(Vk)ﬂU§= ¢ , the composite
i~ .
(o4l £

-1 ‘ i '
_— > -
f (Vk)nt Vk U

Y

(1)
i -1, i

is C', where Ul=g. (U .

e " i 8j ( (m))‘

For a Crmap f:K»L , we can define the differential of f , df:
TK+TL , by using the above local representation of f (See [3]). We
denote df|T_K by df_ .

X X ,
2) A map f:X»L is called a C'immersion if f is a Crmap and
de:TXK*Tf(x)L is injective for any x K .
3) A map f:K+K is called a Crexpanding immersion if it satisfies
i) f is a Crimmersion,
ii) there exist numbers a>0 aﬁd Vv>1 such that for any posotive
integer n and vETxK , udfg(v)ﬂzavnnvu , where W* Il means a

Riemannian metric,

iii) there exists a positiVe integer n such that for any x€K and
some neighborhood U of x , fn(U) is homeomorphic to an open

disk,

iv) the nonwandering set QQ (f) of f is equal to K .

Our branched surfaces are more restrictive than Williams'. His
original definition admits more varied types of neighborhoods. But

Williams himself showed that ours are sufficiently general to study
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expanding immersions.

Theorem. Suppose K is a Clbranched surface,such that

1) K admits an expanding immersion,

2) The branch set S of K 1is homeomorphic to a circle,

3) All connected components of K\S are orientable and their number
is 2 or 3. |

Then K 1is homeomorphic to " or T, .

2. Proof of Theorem (1)

In tﬁis section we deal with the case when the number of
connected components of K\S is equal to 3. We show that in this
case only ’I"’:< admits expanding immersions.‘
0° I.(1

and Kz be connected components of K\S such that KODJ— , Kle;

and KZDJ; . For i=0, 1 or 2, we attach BKi to ki , and denote the

Assume that K admits an expanding immersion f . Let K

obtained space by Ki . (Below, generallyvfor an open subspace XCY ,
we denote the one obtained by attaching the copies of boundary 93X

to X as X" . For example, Ki=ﬁ; )

We construct manlfolds’ M1 and M2 from KO and K1 , and »KO

1 and M2

are embedded in - K by natural inclusions 11:M1+K and 12:M2+K . By

easy calculation, we kndw that HZ(K;Z)EZGZ and is generated by m

and K2 by identifying their boundaries respectively. M

1=
(11)*[M1] and m2=(12)*[M2] , where [Ml] and [M2] are the

fundamental homology classes of M1 and M2 such that they induce

the same orientation on K .



32

Lemma 1. Let
(f2n) m,= O m, + B m (on) m,= Y m, + O _m
*17 "n'l n 2’ 7*¥°27 'nl n 2 °
Then an ’ Bn s Yh' and Gn 2 0 , and both an+Bn and Yh+6n

become large as n becomes large.

Proof. Since £2% is orientation preserving, aﬁ R ‘Bn DYy
and § =z 0.
n
Let w be the volume form on K whose local representation is

Vdet(gij) dxll\dx2 when the local representation of the Riemannian

metric is L g..dx.@dx. . Let us denote the areas of M, , M
O<i. i<2 i3 1 2
=i, js

and K by a(Ml) ,_é(Mé) and ’a(K) respectiﬁely.
We calculate the Kroneéker product of (fzn)*mi and w :
<w,(f2n)*m1>= an<w,m15+3n<w,m2> | |
= aé JMl(ll)*w +8 jMz(lz)*w = o_*a(M;)+8_-a(M,)
On the other hand, we have » J »
‘<w,(f2n)*m1>= <(f2“)*w,ml>= JMl(det szn)0<11)*w

> min det(szn),-a(Ml) ,
pEM1 P
where det (szn)p denotes the determinant of (Don)p for the

orthonormal bases of T K and T n K . Hence we dbtain the
£(p)
following inequality:

. L e2n |
qn-a(M1)+5n-a(M2) P g;&idet(Df )p-a(Ml) .

By Definition 2, 3), ii), the right-hand side of the above inequality
becomes large as n ‘becomes large. Hence we have the desired result

for (xn+Bn .
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For Yn+6n , we can show the lemma in the same way as for
OLH+Bn .
Let e(X) be the Euler 'class of the tangent bundle of K . We
calculate the Kronecker product of e(X) and my i
<e(K) sm1>=<e(K) » ( 11)*[M1 >=<( 1A1)¢e(K) ’ [Ml ]>é<e(Ml) s [Ml I>= X(Ml) .
On the other hand, since (fzn)¢e(K)= e(K) ,
2n,\ % - 2ny
<e(K),m1>=<(f ) e(K),m1>-<e(K),(f )*m1>—_anx(M1)+an(M2) .
Hence we obtain for any n :
Calculating <e(K);m2> , we also have:
X(Mp)= v x(M)+8_x(M,) . (2)
By Lemma 1, for sufficiently large n , OLn+Bn and Yn+<5n are large.
Then from the equalities (1) and (2), we have only the following two
cases: 1° x(M1)=0’ or 'X(M2)=O , 2° X(M1)>O and x(M2)<O‘.
We show that the case 2° cannot occur. I the case 2°, M1 is a

2

the case 2 occurs. First we show that ‘f(Ml) is not equal ‘to M2 .

sphere 82 and M, is the Riemann surface Zg”‘of'génus g22, Assume

If f(M1)=M then fIM1 is a covering map from ‘Sz to X . But it

2 ’
is impossible. So f(Mi)DMl', and it is easy to show (fIMl)_l(M1)=M1 .

Hence f(M1)=M1 . But, since M1=S2 » the degree of the covering map

£|M, is equal to 1. This contradicts Definition 2, 3), ii).

1

In the case 1°, first, we consider the case (a): X(M1)=O and
X(M,)=0 . Next we deal with the case (b): X(M;)=0 and X(M,)=0 .

In the case (a), we can consider two cases: i) KO’&D2 and Klezk
2

and Kf&KzaDz'. We show that the case i) cannot

2 2

T2-D% . 1) KO&TZ—D
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occur. Assume the case i) occurs. As (f]Mi)fl(KO) , for i=l or 2, is
mutually disjoint disks embedded in Mi , Mi\(f|Mi)_1(K0) is
connected. So we have that fZ(M1)=M1 and f2(M2)=M2 , because f is
sur jective. Hence f2(KO)3KO . This contradicts Definition 2, 3), ii).
In the case ii) K becomes T* .

In the case (b), by the equalities (1) and (2) we have an=1
and Yn=0 . Then, since -F:'r‘n2= Gn:mz , we know that f(M2) is equal to
M2 s If, for xEK1 , f(x)ﬁM2 , then x is not a nonwandering point.
Because fn(f(x))éM2 for any integer Vnzl . Hence E?Kl)CKl .
Moreover, since an=1 , fWKl is injective. This contradicts
Definition 2, 3), ii). So, in the case (b), we have no branched

surface which admits expanding immersions. This completes the proof.

3. Proof of Theorem (2)

In this section, we consider the case when the number of
connected components of = K\S is two. In this case, there aré three
types: of branched surfaces, two of which have untwisted branch sets
and oneof which has a twisted branch set.

. First we consider branched surfaces K which have untwisted

branch sets. Let kl and RZ be connected components of K\S . Two

+

types of them are as follows: 1) ﬁ13J1

+ . _ -
and J2 , and KZDJ , 2)

+
2Mg -

In the case 1), we show that only T, admits expanding

ﬁIDJ{ and J  , and K

LN

immersions. Set K1=K1 and’ K2=R§ . We connect K1 with two copies
of K2 by identifying their boundaries naturally, and denote ‘the

obtained space by M . Then M has a differentiable structure such

10



that the natural projection m:M *K becomes an immersion. We
construct a 1ift T:M oM of f:K K as follows. For

1

X€M-T 9f—l(K2) , set f(x)=ﬂ—1-foﬂ(x) . For each connected component

K of ﬂ_lof_l(Kz) , we take a sufficiently small neighborhood I of
R . Then fen(L)  is uniquely lifted to . M so as to be continuously
connecfed with the image of M—ﬂfk f_l(Kz) . It is clear that tf is
aniimmersion; and then f:M »M is a covering map whose degree is

greater than 2, Hence we conclude that M is a torus, and Kz',:D2

in

and kaTzf(ﬁQUﬁz) . By Definition 2, 3), iii), two copies of K2

M have the same image for T . Then K is obtéined from M by
identifyihg two copies of K2 by an orientation preserving
Cldiffeomorphism. It follows that KsT, ..

Next we show that in the case 2) there exists no branched
surface which-admits expanding immersions. Assume KX admits an
expanding immersion f , and we will deduce a contradiction. Set
M=K\K

. Then M is a manifold. Remark that K, - is orientable, but

2 1

M is not necessarily orientable.
Lemma 2., f(M) is equal to M .

Proof. First in the case when M is orientable, we show the:
lemma. We know easily that H2(K;Z)E‘Z and it is generated by
m=1,[M] , where 1, is the induced homomorphism of the inclusion
1:M 2K , and [M] is the fundamental hbmology class.of M . Here we
assumé that “f(M)#M . Then f£(M)=K ..Take xéK2 , and cohsider,the

following commutative diagram:

1)

395
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*

Hy(M32) , > Hy (K D)

i T la

Hy Q1M (0)32) —— Hy(K,K-{x};2)
First we have qef,(m)=0 . Remark that we can define an orientation
on K2 ‘compatible with the orientation of M', and that f is
orientationvpreserviné or reversing. Then f;;p(m)zi(ﬂf—l(x)nM)'Ox ,
where OX is a generator of HZ(K,K—{X};ZD . By the assumption,
#f_l(x)nM¢ O . This is a contradiction. Hence f(M)=M .

" Next we assume M is nonorientable. We take the orienfation
covering of K , m:R #K'. We can construct it in the same way as for
ordinary manifolds. We take a 1ift T¥:K -k of £ . Notice that K
is a branched surfaée whose tangent bundle is orientable and ¥ can
be taken as an orientation preserving immersion satisfying oefeo=f ,
where O is the nontrivial covering transformation of ~m:K +K . Let
ﬁ:ﬂ_l(M) . Then M 4is an orientable manifold.

We know HZ(K;Z)EZQZ, and We take a pair of generators as
follows. We take submanifolds K(i) and K(i) -in K such that
n(K(i))=n(K(%))=M , K(i)UK(%LM and K(i)ﬂK(f)ﬂT_l(S) , and take
Submanifolds K(é) and K(g) such that ~ﬂ(K(é))=n(K(§))=K2 . Set
L1=K(i)UK(§)UK(%) and L2=K(%)UK(;)UK(§) . We choose a pair of
generators »11 and 12 of Hz(Ll;Z) and Hé(Lz;Z) such that
1 +Iz=ﬁ , where Il=(11)*11 , 12=(12)*12 and m=1,[M] , and 15l

1

R, 1y:L, Kk and 1:M »K are inclusions. Then 11 and IZ are
generators of HZ(K;Z) . Let f*ll= a'11+8°12 and f*12= Y'11+6°12 .
Since 0efe0=f , we have =8 and B=y . Then Ff.m= f*11+f*12=

(a+6)°(Il+Iz)=(a+B)'ﬁ . Hence in the same way as the above case, we

R
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obtain that f(ﬁ)#M , and . £(M)=M .

By Definition 2, 3), iii), for some positive integer n and

x€K, sufficiently near S ,_there exists y€M such that

2

fn(x)=fn(y) . Since f(M)M by Lemma 2, for any positive inteéér m ,

fn+m(x)=fn+m(y)€M . This contradicts Definition 2, 3), iv).

Finally we consider the last type, each of which has a twisted

branch set. We also assume that K admits an expanding immersion £ .

Let Rl and ﬁz be connected components of . K\S such that K13J+
and KZDJT , .and let ,KT ‘and _Kg be connected. components of K\ﬁ
N

such that K1 1 2Ky

homeomorphic to N1 . Easily we have HZ(K;ZXEZ, and denoteba

€K, and KNCE \, where N is a neighborhood of S
generator by [K] .

Lemma 3. Set fzn[K]= an'[K] . Then as n becomes large, a

becomes large.

Proof. Consider the following commutative diagram:

P 9 -
0 —+H2(K;Z)———ﬁH2(K?S;ZD , ; ) >H1(S;Z}———f—ﬁH1(K;Z)
[*2 1
H,(K,N;Z) CIl i s H, (N3 Z)
2 . 1
| R | (S
1, (Y, okY; e, (kY SKN-Z)?—I?;LH o pen, (5kY; 2)
2212 T IR 12
N N N N N
Take fundamental homology classes ‘[Kl’aKl] and [K2,8K2]_ of ’Kl
and Kg such that they induce the same orientation on K induced by

[K] . Moreover let [S] be a generator of Hl(S;Z)_ such that [S]=

13
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N N .
rlolloaz[Kz,BKz] . Since r1011°8982(

=0 , we have OJer 912([K1,3K ]+2[K 8K2])=0 . Hence, p[K]l=

[Kﬁ‘,aK§‘1+2[K§,aK§1’>=—2[31+2[s1

N N
r2-12([K1,8K1]+2[K2,3K2]) .

For x€K, such that £2 (x)nS= ¢ , set {yl}k(l) ( )nK
and {y 2 ﬁ(%) n(x)nK2 . We consider the commutative diagram:
2
\ (f n)* ,
H,(K;2)— . > Hy (K5 2)

pl o lpz

k(1) . k(2) (£
=, (KD k(2)
Then (£2%), p, [K]= (fzn)*[ 0+ 20 3 ?] =(e(1)+2°k(2))*0, , since
i=1 j=1

H2(K3K—{x};2)

1 2

N AN oreN AN
p[K]=r2o1 [K1,8K1]+2[K2,8K2]) , where 0, and Oj denote

o
1 2 .
generators of HZ(Kl,Kl—{xi};Z) and H2(K2,K2—{xj};ZD respegtlyely,
and OX denotes a generator of HZ(K,K—{X};Z) . On the other hand,
-2n

P, (£"),[K]= a_0_ . Hence ve have a = k(1)+2k(2)z #£

o (x) . By

Definition 2, 3), ii), the right-hand side of the above inequality

becomes large as n becomes large. So we complete the proof.

We calculate the Kronecker product of [K] and e(K) . First,
since (fzn)*e(K)= e(K) , <e(K),[K]>=<(f2n)*e(K),[K]>
=<e(X), (£*™)4[K]>= a_<e(K),[K]> . By Lemma 3, we have <e(K),[K]>= 0 .
On the other hand, in the same way as the proof of the index theorem
<e(M),[M]>= x(M) for an ordinary manifold M , we calculate
<e(X),[K]> by using a vector field X with finite singularities such
that the indices of XlKl and XlK2 are equal to x(Kl) and X(KZ) .

As p[K]= r,e1 ‘[K1,3K1]+2[K2,3K2]) , we have <e(K),[K]>=

o

4



X(K1)+2X(K2) . Hemnce x(K1)+2x(K2) must be zero, but x(Kl) is odd
since K1 has one boundary circle. It follows that in this case we

have no branched surface which admits expanding immersions.
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