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1. Introduction

Let G be a connected semisimple Lie gfoup, o an involutive automor-
phism of G and H an open subgroup of the group of fixed points of o.
Then G/H is called a semisimple symmetric space. Let g be the Lie al-
gebra of G and g = h @ q the decomposition into +1 and —1 eigenspaces
with respect to 0. Choose a maximal abelian subspace a C q consisting
of semisimple elements. Then all such a have the sarme dimension, which
we call the rank of G/H. In what follows, we assume that the rank of
G/H is one. It is clear that q can be identified with the tangent space
at the origin of G/H. Moreover, H acts on q by means of the restriction
of the adjoint representation to g.

If F is a real vector space, we put Ec the complexification of E and
S(Ec) the symmetric algebra of Ec. For any p € S(qc), we define, as
usual, the differential operator d(p) on q. Let B( , ) be the Killing
form on g, and write w(X) = B(X,X) for all X € ¢, the Casimir

polynomial of q, then the polynomial w is an H-invariant nondegenerate
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quadratic form on q. Identifying ¢ with its dual by means of the Kilﬁng
form, O = O(w) can be viewed as an H-invariant constant coefficients
second order differential operator on q. We call [J the pseudo-Laplacian
of q. We set |

(H); = {T € GL(q);w(Tz) = w(z) for all z € q}.

Let (H)o be the identity component of (H);, and § be the Lie algebra
- of (H),, then adq(h) C §.

The dimensions of H-invariant eigendistributioné of O on ¢ is given
by careful considerations to the radial part of pseudo-Laplacian O by
van Dijk [2]. On the other hand by a result of Cerezo [1] we can also
give the dimensions of H-invariant eigenhyperfunction of 0 on q. By
comparison of these results, Kowata introduce the conjecture that every

~ H-invariant eigenhyperfunction of [Jon ¢ is (I} )o-invariant, and he has
shown that this conjecture holds if the eigenvalue of [J is not equal to

Z€ero.

In this paper we give the answer to this conjecture except for the case
of one of the exceptional type Fy4)/Spin(4,5). In §2 we rewrite the
problem in terms of the systems of differential equations (D-modules)
and in §3 we compare these two D-modules related to H and (H), in
the case of the classical type. In §4 we make more precise investigation
by using the H-orbits decomposition of q. We must remark that the
conjecture of Kowata does not hold in one case ( Proposition 18 ).

I express my sincere gratitude to Prof .T.Oshima, whose constant

encouragements and guidances made me write this paper. I would also

like to thank Prof .T.I{obayashi and Prof .N.Tose for many advices.



75

2. Preliminaries

Let H be the subgroup of GL(q) generated by (H )o and Adq(H). Then
H is contained in H and (H), is the identity component of H. Let B
be the sheaf of hyperfunctions on 4.

We define BH(q), BH(q), B (q) and BH(q) for A € C by

B (q) = {f € B(q); f is H-invariant}
B (q) = {f € B¥(q); @ - \)f =0}
B (q) = {f € B(q); f is H-invariant}
B8 (q) = BH(q) n BY(a).

A hyperfunction u € B¥(q) is said to be H-invariant and a hyper-
function u € B(q) is called an invariant spherical hyperfunction. .‘In
general, we have B?(q) C B¥(q) and Bﬁ(q) C BH(q).

Let D be the sheaf of the ring of holomorphic coefficient differential
operators on q¢. For any X € gl(q), define a vector field Dx on ¢ by

(DxNw) = THF)|  weafeo=(a).

=0
Then Dyx is a first order differential operator with polynomial coeffi-
cients on qc. We define the systems of differential equations defining

H -invariants and H-invariants

M= D/I=D/ DDx
Xeh
N=D/J =D/ DDx,

Xeh

and also define
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M =D/I)‘ = D/(I,\ -+ D(D - )\))
Nx=D/Jx=D/(Ixr+ D@~ ).

In general, we have surjective homomorphisms M — N and M, —

N.

In these notations, our problems are written as follows.
- PROBLEM 1. When is Bf(q) = B?(q) ?
PROBLEM II. When is BH(q) = BH(q) 7
PROBLEM III. When is My = Ny 7
PROBLEM IV. Whenis M — N ?

REMARK 1.

(1) If (IV) holds, then (II) and (III) hold. If (II) or (III) hold, then
(I) hold.
(2) Problem III and IV depend only on the complexification (gc, hc)

Of(g7 b)‘ l

Our approach to these problems is case by case calculation. The
following table shows the non-Riemannian semisimple symmetric spaces

G/H of rank one ( [4, Chapter X], [2, § 6.3] ).

4



TABLE 2.

No. G/H

1° S0o(p,q+1)/50(p,9)

2° SO(p, g +1)/S(0(p,q) x O(1))

3° SU(p,q+1)/S(U(p,q) x U(1))

4° Sp(p,q +1)/Sp(p, q) x Sp(1)

5° Fy(—20)/Spin(1,8)

6° | SL(m+1,R)/S(GL4(m,R) x GL(L,R))
7° SL(m + 1,R)/S(GL(m,R) x GL(1, R))

8° Sp(m + 1,R)/Sp(m,R) x Sp(1,R)

9° Fy4y/Spin(4,5)

Herep>1,q>1,m>2.

We sometimes write p + ¢ = m in cases 1°,2°,3°,4°.

In cases 1° and 2°, then we have adq(h) = ?)/, hence Problem IV and
therefore all problems are true. On the other hands, we have adq(h) # [}

in the rest cases, hance the whole problems have meanings.

3. Problem IIT and IV

3.1. The Spaces 6° : G/H = SL(m+1,R)/S(GL4+(m,R)xGL4(1,R)).

Let (z,y) = (1,--+,%m,Y1,---,Ym) be a coordinate system in q =
R2™. We denote the action of T' € GL(q) on (:) € q by left multipli-
cation. The Casimir polynomial is w = z1y; + + - - + Tmym. We realize

b and E as subalgebras of gl(q).

Il

gi(m,R) = {(§ %) : A€ M(m,R)}.

Il

b
b

so(m,m)

{(é'—-l?A) :4,B,C € M(m,R),tB= —B,tC'= —C}

Il

First we deal with Problem IV.

77
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PROPOSITION 3. If m > 3, then M — N.

PrOOF: We write Z and J explicitly on q¢ with the above coordinates

I= Z D(xi0z; — y;0y;)-

i,j=1

J=I+ Z D(2:0y; — 2;0y,) + Z D(yi0z; — y;30s;)-

1,j=1 t,j=1

We will show z;9,;, —z;0,; € Tfor 1 <i<j < m. Since m > 3, there
is an integer k (1 < k < m) such that ¢, j, k are different to one another.

Since the right hand side of the formula

“’iayj — 20y, = (204, — xkay,' )(2:0z, — yi0y;)
+ (zk0y; — 70y, )(2;0z, — ykayj)
+ (a’iayj - xjay})(xkazk — Y0y, )

is contained in Z, then we have z;0,; — z;0,, € Z. Hence Proposition 3

is proved. 1

Next we deal with the case m = 2. We define two left D—Modules

B{z=0}|qC =‘D/D($1,$2,6y“8y2)
B{y:O}IQc = D/D(yl)y2) 6121701:2)7

and two morphisms as left D-Modules

(3.1) Biz=o}jec — M, P+ P(y10;, — 420z,)
(3.2) B{y=0}|qc — M, Pr— P(w10y2 - JIgayl).

6
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By (3.1) and (3.2), we get the complex of left D-modules.
(3.3) 0 — Biz=0}jac ® B{y=0}jgc — M — N — 0.

PROPOSITION 4. The complex (3.3) is exact.

PROOF: It is sufficient to prove the injectivity of the first morphism,

which follows from Proposition 6 below. §

Next we consider Problem III.
- PROPOSITION 5. If m = 2 and )\ # 0, then My — N.

PROOF: Since the pseudo-Laplacian [ is written as O = ) 1o, 0,0y,
by the explicit coordinates, then 0 — A = 9;, 0y, + 0;,0,, — A. We find
that (y10;, — y20z,) € Iy by the formula

ANy10z, = ¥20:,) = —(¥10z, — 20, )(O - A)
+ azl(xla-'ﬂz - y26y1) - 322 (m2821 - ylayz)
- axtazz(mlaﬁ - ylayx) + 821622(“1"2622 - y2ay2)'

- Hence Proposition § is proved. 1
The rest is in case A = 0.

PROPOSITION 6. The following complex (3.4) induced by the complex
(3.3) is exact.

(34) 00— Bz=o}jac ® Biy=o}jjac — Mo — Mo — 0.

PROOF: It is sufficient to prove the injectivity of the first morphism.

First we consider the complex (3.4) outside the origin. We may assume

(f
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y2 # 0 without loss of generality. Then remark that B{y—¢}jqc = 0 on the
open set {y2 # 0}. Moreover the following coordinate transformation

makes sense on the open set {y; # 0} :

(T1 =7 ) (z1 =73 )
- Ty — T1Y1
Ty = T1Y1 + T2Y2 Ty = ——=<—"
(35) S A
Y1 =m0 Y1 =Y
\ ZUZ = Y2 / \ Y2 = 372 y,

We rewrite everything in the new coordinates. Then

B{z:O}lﬂc = D/D(El,’fz, aﬁngfg’aﬂz —-1),
Mo - D/D(agl,652,51851,523i1,a§2§2),

and the morphism (3.1) is the right multiplication by y20z,, which is

the composition of the following two injective morphisms
Y2 o -3z,
B{;:O}ch - D/D(x11x27 6371) 6172) — M.

This implies the complex (3.4) is exact outside the origin, i.e. the kernel
of B{z=0}jac @ B{y=0}|ac — Mo is supported in the origin. Moreover
it follows from the involutivity of the characteristic varieties that the
kernel must be zero. Thus we finish the proof of Proposition 6 and

Proposition 4. §
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3.2. The Spaces 3° : SU(p,q+1)/S(U(p,q) x U(1))

By Remark 1, we can get the following Proposition 7 for spaces 3° as a
corollary of the previous results for spaces 6°. Let m =p +¢q, ¢ = C™.
We take coordinates z = (z1,...,2m) of q and those of q¢c as (z,w) €
C2™ with z,w € C™, q = {(z,w) € qc;z = w}.

PROPOSITION 7.

(1) fm >3, then M= N.

If m = 2, then we have the following exact sequence,
0 — B{:=0}|sc D B{w=0}jgc — M — N — 0.

(2) If m > 3 or A # 0, then M) — Nj.

If m =2 and A = 0, then we have the exact sequence,
0 — B{:=0}jac @ Biu=o}jac — Mo — Mo — 0.

(3) We have an isomorpism Homp (N, B) ~—~» Homp(M, B).
In particular, B%(q) = B (q) and B (q) = BY(q).

PRrOOF: (1) and (2) follow from Proposition 3, 4, 5 and 6.
(3) is led by M’D(B{z=0}lqu) = _E__O_T_E'D(B{wz()}lqc)B) =0.1



82

3.3. The Spaces 8° : Sp(m + 1,R)/Sp(m,R) x Sp(1,R) .

We set Sp(m,R) = {g € SL(2m,R); g (_2’“ 16") tg = (_(1)m 16") } We

take coordinates

Ty T2 .
€ M(2m,2;R)=gq, z1=| : |,z2¥y1,y2 €ER™.
Y1 Y2
Tmi1

In this coodinates, the Casimir polynomial w is written as

m

0 1m
w= t(:) (—lm 0 ) (:: ) ="'z, *Y2 —tyz'-’l?z = z(mklym — Yk1Tk2)-

k=1
The group H = Sp(m,R) x Sp(1,R) acts on q by
(3.6) (4,B)-C=ACB™' (Ae€ Sp(m,R),B e Sp(1,R),C € q).

THEOREM 8. For m > 1, we have M — N.

PROOF: First we consider the problem outside the origin. This step
cqntains rather tedious calculation. We may assume z1; # .0 and the

following coordinate transformation makes sense on the locus {13 # 0} :

Tj1 = Tj1, Yi1 = Y1 (1<5<m)

T12 = T12, Y12 = w(z,y)

~ T12Tk1 ~ T12Yk1

Tgy = Tgp — y Yk2 =Yk2 — (2<k<m).
T11 Ty

10
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We recall the generators of 7 by old coordinates (cf. (3.6)).

((a):
(0):
(c) :

(d):

510z, — yilawz + 2520z, — yi2ayjz (1<4,j<m)
yjlazu + yilaz“ + yj2az,'g + yi26z,'z (1 S ?.,] S m)
leayu + xflayjl + xﬂayiz + xi?ayjz (1 <%, < m)

E(xilazu + yilayu - xizaﬁ:iz - yi2ayi2)

i=1

Z(mil Oz, + yilayiz )

i=1

> (%202, + vi20ys,).

i=1

In new coordinates, we exchange generators of Z:

(e) = ‘7:1165:12) ai'u S
((C)vi =] = 1) = 23:11837111 83711 €1
(37) 4 ((a),z =] = 1) = xuaiu + 1}1265,12 — yuagu, 85“ € I
((C)ai 2> 21j = 1) = ‘7"11817:'1 + xilaﬂu) 83751 el
\ ((a),i >2,5= 1) = 2110z, — yilaﬂu) 0z, € L.
(3.8) (d)=—) (Fa20z,, + Us2051,)
k=2
+ Z(wklai:“ + yklaﬂu) + xllaiu + y113§117
k=2
Z(Elﬂaikz + g’ﬂaﬁkz) S
k=2 -

11
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( ((a),¢ 22,5 22) =T;303,, — ¥i20;, + 10z, — ¥i10y;,,
Tj203;, — Yi20y;, € T.

a0 ((),i 22,7 > 2) =Y;20z;, + ¥i20s;, + yj10z, + ¥i10z;,,

(“ o Y20z, + Yi20z;, € T.

((C)’i 22,52 2) = ‘:Eﬂa.l?-'z + 51'2617:'2 + leaﬁ-‘l + wilaﬁil’

\ 205, + Yi205;, € T.

Since w is H-invariant, then

J C D(03;;,05;;1 <i<m,1<j <2, except for 0y,,).

If we can prove

(3.10)
I > D(0s,,05;;1 <i<m,1<j <2, except for 0y,,),

then T = J. We prepare two Lemmas.

LEMMA 9. Two groups Sp(n,R) C SL(2n,R) act on R®" by left multi-
plication (n > 1). Then the system M, of differential equations defining
Sp(n, R)-invariants equals the system Mg of differential equations defin-
ing SL(2n,R)-invariants.

PrOOF: We set My = D/I;, My = D/I,. We can express I; and I,

12
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in coordinates.

2i0z; —yYj0y; ;3 1Z4,j<m
Ty =D| 20y +2;0,; ; 1<i,j<m
Yi0z; +yj0z;, 3 1<i,j<m
z;0z; —yj0y; ; 1 S ,j<m
I, =D| %;0y;, y;j0; ; 1<4,j<m

xiaz,' ) yiayj ;o 7é J
One after another,
230, = zi(2i0z; — ¥i0y;) + yizi0y, € I

x?ayj = :Z:,'(x,'ayj + xjayi) — xj:l:,'ay,. €.

1 .
z;0y;, = E(az‘xfaw — 0y, 220,;,) € I,, yi0z; € 1.
Lie brackets of these elements in Z; span all genera.-tdrs of 7. 1

LEMMA 10. Let us consider that the group GL4(n,R) acts on R™ by left
multiplication. Then the system of differential equations M; defining

GLy(n,R)-invariants is de Rham system.

PROOF: Weset M; =D/Ty, Iy =51 ._, D(x;0;).

1,j=1
0; = Oizi0; — 0;z:0; € I, (for 1 # j).

Then I; = E;n=1 Do;. 1

Now we return to the proof of (3.10). Applying Lemma 9 to (3.9) and
then applying Lemma 10 to (3.8), we conclude

(3.11) 0500 0. €T  (2<i<m).

13
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(3.7) and (3.11) imply (3.10). Thus M|q_;0} —* N|q—{0}. This isomor-
phism and following Proposition 11 imply M — N. Hence Theorem 8

is proved. |

PROPOSITION 11. Let V be an n-dimensional vector space over R and
Hy C H, C SL(V) be two closed subgroups. Suppose H; and Hj
are reductive in SL(V), by definition *Hy = Hy, *Hy = H,, here *H; =
{th™' € SL(V); h € H;}. Let M; be the system of differential equations

defining H;-invariants (i = 1,2). We assume
(3.12) Milve -0} — Malve—{0},
then M1 --:* Mz.

Proo¥: M; = D/IL;, I; = erh.- DDy, here b; is the Lie algebra of
H; i=1,2).

Let A be a Weyl algebra over V¢ and F' : A — A be the algebra au-
tomorphism defined by z; — —8;, 9; — z; (cf. [5]). By the assumption
(8.12) and Hilbert zero point theorem, there exists a positive integer N
such that (z1,...,2,)NDx C I; for all X € b3, i.e. for any multi-index
a satisfying (|a| > N), there are Pj(z,0) € A,

z*Dx = Y Pj(z,8)Dx;.
X; €Dy

Let P/(z,0) € A be the homogeneous part of P;(z,d) of degree —|a,
here we assign the degree 1 and —1 to the element 0; and z; respectively.

Then

(3.13) z*Dx = Y P;(z,0)Dx;.
X;eh

14



The transform of (3.13) by F'is

(=0)*D_ix = Y Pj(~9,z)D_x;.
X;ehy

Then the left ideal {P € A; PDx € I for any X € b3} of A contains
both (zy,...,2,)Y and (1,...,8,)", but such an ideal must be A itself.
This means that Dx € I; for any X € bhs, hence Proposition 11 is
proved. 1

3.4. The Spaces 4° : Sp(p,q+1)/Sp(p,q) x Sp(1)

As a corollary of Theorem 8 and Remark 1,

THEOREM 12. For p,q > 1, we have M — N. 1

4. Problem I and II

In this section, we treat Problem I and II with the H-orbit decomposition
- of q. Define ¢,y = {z € q;codimgH -z = 1}and S = q—reg, then qrey

- is H-invariant open subset of q. Define w' = w

and w; =w|

q—{0}

reg

15
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4.1.

We quote the following Proposition from [2, § 6.3 ].

'PROPOSITION 13. In cases 3° ~ 9° except for the case 6° and m = 2.

(1) ' : dreg — R gives H-orbit parametrization, by definition,
grad w' # 0 everywhere and w™(t) is H-orbit for any t € R.

(2) S Ccw™Y(0) and S decomposes finite H-orbits.

(3) wy : q— {0} — R gives H-orbit parametrization.

(4) As a consequence,

{ B (reg) = '™ (Br(R))
(4.1)

BH(q— {0}) =wi(Ba(R).

We quote the following theorem due to Cerezo [1].

THEOREM 14. A connected Lie group SOo(p, q) acts on RP*? naturally.
If (p,q) # (1,1), then both
BS0 (9 (RP+e) —; BSOe(P:0)(RPH9 — {0}) and

BSO@.O(RP+9) — BSO@O(RPH — {0}) are surjective. I
Now we prepare Lemma 15 for the proof of Proposition 16.

LEMMA 15. Set F[0] = {u € F(q);supp u C {0}}. Then in case 1° ~
9°,
BH[0] = BH[0].

ProoF: After Fourier transformation, Lemma 15 is easily shown by the
fact that the ring of H-invariant polynomial on q is generated by Casimir

polynomial w. }

16



PROPOSITION 16. In the same case in Proposition 13, if the assumption
(A) : BH(q — {0})[S — {0}] = 0 holds, then we have BH(q) = BH(q).

PRroOF: Take f € B¥(q). For the restriction flq € BH(qyey), there
reg
is a ¢ € B(R) such that flq"’ = gow' by (4.1). For gow; € Bﬁ(q - {0}),

there is an f € Bﬁ(q) such that ﬂq—{o} = gow' by Theorem 14. Then
f = F € BH(a)S). For (f = oy € B (3= {O)IS — {0}], it must

~

be zero by the assumption (A). Then f — feBH [0] = B¥][0], therefore
feBi(q). n

We can check the assumption (A) in some cases.

PROPOSITION 17.

(1) The singular set S = {0} in cases 1°, 2°, 3°, 4° and 5°. In
particular, the assumption (A) is satisfied.

(2) The assumption (A) is satisfied in cases 6°, 7°.

Proor:

(1) This is the definition of isotropic symmetric pairs. [2]
(2) If m > 3, then Theorem 3 implies this. Thus we may assume
m = 2. Since the problem is outside the origin, we adopt the coor-

dinates (3.5). In this coordinates, S = {Z; =% = 0,7, # 0} and

M=D/T = D/D(agt, 652,51651,52051), then Homp(M,T'sB) Cjj

Homp(D/Dflail,I‘{;’l=o}B) =0.1

Summing up the results, we have BH (q) = B¥(q) in cases 3°8° except

for the case 6° and m = 2.

17
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4.2. The Space : SL(3,R)/S(GL4(2,R) x GL4(1,R))

We consider case 6°, m = 2. We adopt the notations in § 3.1. We
introduce an element f € I'(R* — {0}, B)

(8(z1y1 + 22y2){Y (21)Y (32)+Y (22)Y (1)}

€ I'({z1 # 0 or y2 # 0}, B)
8(z1y1 + 2252 {Y (22)Y (—v1) + Y (—22)Y (11)}
| € I'({z2 # 0 or y; # 0},B)

Then f is H-invariant, (Of =0, and

(xlayz - m2ay1)f = S(y) = 6(y1ay2)
(Y102, — Y20z, )f = 6(z),

thus f is not H-invariant. Let § = 10z, + :cga,;z + y10y, + y20,,, then
(0 +2)f = 0. We take f € B(R*) such that flp,_ ) = f. Since
the mapping (6 + 2) : B[0] — BJ[0] is bijective, there is a unique g €
B[0] such that (6 +2)g = (6 + 2)f. We define fo = f — g € B(q),
then (6 +2)fs = 0. For any X € b, [Dx,60] = 0 implies that (6 +
2)Dx fo=Dx(0+2)fo =0, then Dx fo =0,1i.e. fy € BH(q). Moreover
Ofo € B[0] is homogeneous of degree —4, then Ofy = ¢é(x,y) by some
constant ¢ € C. The relation (Ofp)(—z1,z2,y1,—y2) = —Ofo(z,y)
and cb(—z1,x2,y1,—y2) = cb(z,y) imply Ofy = 0. Therefore fo‘ €
BE(a), fo ¢ BH(q) and supp(fo) = Ny = {(z,v) € R%u(z,y) =
0, z1y2 —z2y; > 0}. Conversely an element B (q— {0}) whose support
is contained in Ny — {0} is a constant multiple of fo|q— {0}
Unfortunately w' : qre;, — R does not give H -orbit parametriza-

tion because w'~1(0) has two connected components Ny = {(z,y) €

18



R*; w(z,y) =0, £(z1y2 — z2y1) > 0}, Therefore Proposition 13 must be
modified in this case. Let R’ be the non-Hausdorff manifold obtained
by taking copies of R, say Ry, R_, and sticking together the positive
parts of Ry and R_ and the negative parts of those [1]. Let R" -+ R
be the canonical map and define Brr = p~!BR, the sheaf of hyperfunc-
tions on R'. We define a real analytic mapping w" : gr¢y — R’ by
w"71(t) = w'"1(t) for any t € R* and w""1(0%) = (N4).

dreg C q—{0} C g
Wl W' e Sw
R” — R

P

Then w" : q,.g — R’ gives H-orbit parametrization, and therefore
(42) BH(4reg) = w"*(Bre(R")).

PRrROPOSITION 18. Retain the above notation.

(1) BH(q) = ij(q)eeCfo.
(2) BE(q) = B(q) @ Cfo.

Proor: (1) Take f € BH(q). For flq.., € BH(dre,), there is a g €
B(R') such that f|q,,, = gow" by (4.2). For g|lg_ € Br(R-) = Br(R),
(g9lr_ )ow; € Bﬁ(q-—-{O}), then thereisan f € Bﬁ(q) such that ﬂq—{o} =
(g9|r_ )ew; by Theorem 14. Then f—fe BH(q)[N]. For (f—f)lq_{o} €
BH(q—{0})[N+—{0}], there is a constant ¢ € C such that (f—f)lq_{o} =
cfo. Then (f — F — cfo) € BH[0] = BH([0]. Therefore f € BH(q) & Cfo.
(2) It is obvious from (1) because f, € BE. 1 "
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Because fj is a distribution and tempered, the table in [2, § 6.3 ] must
be corrected : case 7, m = 3 and A = 0, in his notation, then

dimD’A,H(q) =3, and dij’,\,H(q) = 3.

HH [8] T Lk sv 055, =2a §42 = MITIFFIE
B, wEd, ECF 22052 FY3T. R LTITELET,
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