<table>
<thead>
<tr>
<th>Title</th>
<th>Invariant Hyperfunctions of a Rank One Semisimple Symmetric Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>OCHIAI, HIROYUKI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1990, 712: 73-92</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1990-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/101696</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Invariant Hyperfunctions on a Rank One Semisimple Symmetric Space

HIROYUKI OCHIAI

Department of Mathematics
Rikkyo University

1. Introduction

Let G be a connected semisimple Lie group, σ an involutive automorphism of G and H an open subgroup of the group of fixed points of σ. Then G/H is called a semisimple symmetric space. Let g be the Lie algebra of G and $g = \mathfrak{h} \oplus \mathfrak{q}$ the decomposition into $+1$ and -1 eigenspaces with respect to σ. Choose a maximal abelian subspace $a \subset \mathfrak{q}$ consisting of semisimple elements. Then all such a have the same dimension, which we call the rank of G/H. In what follows, we assume that the rank of G/H is one. It is clear that \mathfrak{q} can be identified with the tangent space at the origin of G/H. Moreover, H acts on \mathfrak{q} by means of the restriction of the adjoint representation to \mathfrak{q}.

If E is a real vector space, we put E_C the complexification of E and $S(E_C)$ the symmetric algebra of E_C. For any $p \in S(q_C)$, we define, as usual, the differential operator $\partial(p)$ on q. Let $B(\quad, \quad)$ be the Killing form on g, and write $\omega(X) = B(X, X)$ for all $X \in \mathfrak{q}$, the Casimir polynomial of \mathfrak{q}, then the polynomial ω is an H-invariant nondegenerate
quadratic form on q. Identifying q with its dual by means of the Killing form, $\square = \partial(\omega)$ can be viewed as an H-invariant constant coefficients second order differential operator on q. We call \square the pseudo-Laplacian of q. We set

$$(\tilde{H})_1 = \{ T \in GL(q); \omega(Tx) = \omega(x) \text{ for all } x \in q \}.$$

Let $(\tilde{H})_0$ be the identity component of $(\tilde{H})_1$, and \mathfrak{h} be the Lie algebra of $(\tilde{H})_0$, then $\text{ad}_q(\mathfrak{h}) \subset \mathfrak{h}$.

The dimensions of H-invariant eigendistributions of \square on q is given by careful considerations to the radial part of pseudo-Laplacian \square by van Dijk [2]. On the other hand by a result of Cerezo [1] we can also give the dimensions of \tilde{H}-invariant eigenhyperfunction of \square on q. By comparison of these results, Kowata introduce the conjecture that every H-invariant eigenhyperfunction of \square on q is $(\tilde{H})_0$-invariant, and he has shown that this conjecture holds if the eigenvalue of \square is not equal to zero.

In this paper we give the answer to this conjecture except for the case of one of the exceptional type $F_{4(4)}/\text{Spin}(4,5)$. In §2 we rewrite the problem in terms of the systems of differential equations (\mathcal{D}-modules) and in §3 we compare these two \mathcal{D}-modules related to H and $(\tilde{H})_0$ in the case of the classical type. In §4 we make more precise investigation by using the H-orbits decomposition of q. We must remark that the conjecture of Kowata does not hold in one case (Proposition 18).

I express my sincere gratitude to Prof. T.Oshima, whose constant encouragements and guidances made me write this paper. I would also like to thank Prof. T.Kobayashi and Prof. N.Tose for many advices.
2. Preliminaries

Let \tilde{H} be the subgroup of $GL(q)$ generated by $(\tilde{H})_0$ and $\text{Ad}_q(H)$. Then H is contained in \tilde{H} and $(\tilde{H})_0$ is the identity component of \tilde{H}. Let \mathcal{B} be the sheaf of hyperfunctions on q.

We define $B^H(q), B^H_\lambda(q), B^{\tilde{H}}(q)$ and $B^{\overline{H}}_\lambda(q)$ for $\lambda \in \mathbb{C}$ by

$B^H(q) = \{ f \in \mathcal{B}(q); f \text{ is } H\text{-invariant} \}$

$B^H_\lambda(q) = \{ f \in B^H(q); (\Box - \lambda)f = 0 \}$

$B^{\tilde{H}}(q) = \{ f \in \mathcal{B}(q); f \text{ is } \tilde{H}\text{-invariant} \}$

$B^{\overline{H}}_\lambda(q) = B^{\tilde{H}}(q) \cap B^H_\lambda(q)$.

A hyperfunction $u \in B^H(q)$ is said to be H-invariant and a hyperfunction $u \in B^H_\lambda(q)$ is called an invariant spherical hyperfunction. In general, we have $B^{\tilde{H}}_\lambda(q) \subset B^H_\lambda(q)$ and $B^{\overline{H}}(q) \subset B^H(q)$.

Let \mathcal{D} be the sheaf of the ring of holomorphic coefficient differential operators on $q_{\mathbb{C}}$. For any $X \in gl(q)$, define a vector field D_X on q by

$$(D_X f)(y) = \frac{d}{dt} f(e^{-tX}y) \bigg|_{t=0} \quad (y \in q, f \in C^\infty(q)).$$

Then D_X is a first order differential operator with polynomial coefficients on $q_{\mathbb{C}}$. We define the systems of differential equations defining H-invariants and \tilde{H}-invariants

$$\mathcal{M} = \mathcal{D}/\mathcal{I} = \mathcal{D}/ \sum_{X \in \mathfrak{h}} \mathcal{D}D_X$$

$$\mathcal{N} = \mathcal{D}/\mathcal{J} = \mathcal{D}/ \sum_{\sim, X \in \mathfrak{h}} \mathcal{D}D_X,$$

and also define
\[\mathcal{M}_\lambda = \mathcal{D}/\mathcal{I}_\lambda = \mathcal{D}/(\mathcal{I}_\lambda + \mathcal{D}(\Box - \lambda)) \]
\[\mathcal{N}_\lambda = \mathcal{D}/\mathcal{J}_\lambda = \mathcal{D}/(\mathcal{J}_\lambda + \mathcal{D}(\Box - \lambda)). \]

In general, we have surjective homomorphisms \(\mathcal{M} \to \mathcal{N} \) and \(\mathcal{M}_\lambda \to \mathcal{N}_\lambda \).

In these notations, our problems are written as follows.

Problem I. When is \(B^H_\lambda(q) = B^{\tilde{H}}_\lambda(q) \)?

Problem II. When is \(B^H(q) = B^{\tilde{H}}(q) \)?

Problem III. When is \(\mathcal{M}_\lambda \stackrel{\sim}{\to} \mathcal{N}_\lambda \)?

Problem IV. When is \(\mathcal{M} \stackrel{\sim}{\to} \mathcal{N} \)?

Remark 1.

1. If (IV) holds, then (II) and (III) hold. If (II) or (III) hold, then (I) hold.
2. Problem III and IV depend only on the complexification \((\mathfrak{g}_C, \mathfrak{h}_C)\) of \((\mathfrak{g}, \mathfrak{h})\).

Our approach to these problems is case by case calculation. The following table shows the non-Riemannian semisimple symmetric spaces \(G/H \) of rank one ([4, Chapter X], [2, § 6.3]).
TABLE 2.

<table>
<thead>
<tr>
<th>No.</th>
<th>(G/H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>(SO_0(p,q+1)/SO_0(p,q))</td>
</tr>
<tr>
<td>2°</td>
<td>(SO(p,q+1)/S(O(p,q) \times O(1)))</td>
</tr>
<tr>
<td>3°</td>
<td>(SU(p,q+1)/SU(p,q) \times U(1))</td>
</tr>
<tr>
<td>4°</td>
<td>(Sp(p,q+1)/Sp(p,q) \times Sp(1))</td>
</tr>
<tr>
<td>5°</td>
<td>(F_4(-20)/Spin(1,8))</td>
</tr>
<tr>
<td>6°</td>
<td>(SL(m+1,R)/S(GL_+(m,R) \times GL_+(1,R)))</td>
</tr>
<tr>
<td>7°</td>
<td>(SL(m+1,R)/S(GL(m,R) \times GL(1,R)))</td>
</tr>
<tr>
<td>8°</td>
<td>(Sp(m+1,R)/Sp(m,R) \times Sp(1,R))</td>
</tr>
<tr>
<td>9°</td>
<td>(F_4(4)/Spin(4,5))</td>
</tr>
</tbody>
</table>

Here \(p \geq 1, q \geq 1, m \geq 2 \).

We sometimes write \(p + q = m \) in cases 1°, 2°, 3°, 4°.

In cases 1° and 2°, then we have \(\text{ad}_q(\mathfrak{h}) = \tilde{\mathfrak{h}} \), hence Problem IV and therefore all problems are true. On the other hands, we have \(\text{ad}_q(\mathfrak{h}) \neq \tilde{\mathfrak{h}} \) in the rest cases, hence the whole problems have meanings.

3. Problem III and IV

3.1. The Spaces 6°: \(G/H = SL(m+1,R)/S(GL_+(m,R) \times GL_+(1,R)) \).

Let \((x, y) = (x_1, \ldots, x_m, y_1, \ldots, y_m)\) be a coordinate system in \(q \cong R^{2m} \). We denote the action of \(T \in GL(q) \) on \(\begin{pmatrix} x \\ y \end{pmatrix} \in q \) by left multiplication. The Casimir polynomial is \(\omega = x_1y_1 + \cdots + x_my_m \). We realize \(\mathfrak{h} \) and \(\tilde{\mathfrak{h}} \) as subalgebras of \(\mathfrak{gl}(q) \).

\[
\begin{align*}
\mathfrak{h} &= \mathfrak{gl}(m,R) \cong \left\{ \begin{pmatrix} A & 0 \\ 0 & -^tA \end{pmatrix} : A \in M(m,R) \right\}. \\
\tilde{\mathfrak{h}} &= \mathfrak{so}(m,m) \\
&= \left\{ \begin{pmatrix} A & B \\ C & -^tA \end{pmatrix} : A, B, C \in M(m,R), \begin{array}{c} 'B = -B, 'C = -C \end{array} \right\}.
\end{align*}
\]

First we deal with Problem IV.
PROPOSITION 3. If \(m \geq 3 \), then \(\mathcal{M} \sim \mathcal{N} \).

PROOF: We write \(\mathcal{I} \) and \(\mathcal{J} \) explicitly on \(q_{\mathbb{C}} \) with the above coordinates

\[
\mathcal{I} = \sum_{i,j=1}^{m} \mathcal{D}(x_i \partial_{x_j} - y_j \partial_{y_i}).
\]

\[
\mathcal{J} = \mathcal{I} + \sum_{i,j=1}^{m} \mathcal{D}(x_i \partial_{y_j} - x_j \partial_{y_i}) + \sum_{i,j=1}^{m} \mathcal{D}(y_i \partial_{x_j} - y_j \partial_{x_i}).
\]

We will show \(x_i \partial_{y_j} - x_j \partial_{y_i} \in \mathcal{I} \) for \(1 \leq i < j \leq m \). Since \(m \geq 3 \), there is an integer \(k \) (\(1 \leq k \leq m \)) such that \(i, j, k \) are different to one another. Since the right hand side of the formula

\[
x_i \partial_{y_j} - x_j \partial_{y_i} = (x_j \partial_{y_k} - x_k \partial_{y_j})(x_i \partial_{x_k} - y_k \partial_{y_i})
+ (x_k \partial_{y_i} - x_i \partial_{y_k})(x_j \partial_{x_k} - y_k \partial_{y_j})
+ (x_i \partial_{y_j} - x_j \partial_{y_i})(x_k \partial_{x_k} - y_k \partial_{y_k})
\]

is contained in \(\mathcal{I} \), then we have \(x_i \partial_{y_j} - x_j \partial_{y_i} \in \mathcal{I} \). Hence Proposition 3 is proved.

Next we deal with the case \(m = 2 \). We define two left \(\mathcal{D} \)-Modules

\[
B_{\{x=0\}|q_{\mathbb{C}}} = \mathcal{D}/\mathcal{D}(x_1, x_2, \partial_{y_1}, \partial_{y_2})
\]

\[
B_{\{y=0\}|q_{\mathbb{C}}} = \mathcal{D}/\mathcal{D}(y_1, y_2, \partial_{x_1}, \partial_{x_2}),
\]

and two morphisms as left \(\mathcal{D} \)-Modules

\[
(3.1) \quad B_{\{x=0\}|q_{\mathbb{C}}} \to \mathcal{M}, \quad P \mapsto P(y_1 \partial_{x_2} - y_2 \partial_{x_1})
\]

\[
(3.2) \quad B_{\{y=0\}|q_{\mathbb{C}}} \to \mathcal{M}, \quad P \mapsto P(x_1 \partial_{y_2} - x_2 \partial_{y_1}).
\]
By (3.1) and (3.2), we get the complex of left \(\mathcal{D} \)-modules.

\[
(3.3) \quad 0 \longrightarrow B_{\{x=0\}|q_\mathbb{C}} \oplus B_{\{y=0\}|q_\mathbb{C}} \longrightarrow \mathcal{M} \longrightarrow \mathcal{N} \longrightarrow 0.
\]

PROPOSITION 4. The complex (3.3) is exact.

PROOF: It is sufficient to prove the injectivity of the first morphism, which follows from Proposition 6 below.

Next we consider Problem III.

PROPOSITION 5. If \(m = 2 \) and \(\lambda \neq 0 \), then \(\mathcal{M}_\lambda \longrightarrow \mathcal{N}_\lambda \).

PROOF: Since the pseudo-Laplacian \(\square \) is written as \(\square = \sum_{i=1}^{m} \partial_{x_i} \partial_{y_i} \) by the explicit coordinates, then \(\square - \lambda = \partial_{x_1} \partial_{y_1} + \partial_{x_2} \partial_{y_2} - \lambda \). We find that \((y_1 \partial_{x_2} - y_2 \partial_{x_1}) \in \mathcal{I}_\lambda \) by the formula

\[
\lambda(y_1 \partial_{x_2} - y_2 \partial_{x_1}) = -(y_1 \partial_{x_2} - y_2 \partial_{x_1})(\square - \lambda)
+ \partial_{x_1}^2(x_1 \partial_{x_2} - y_2 \partial_{y_1}) - \partial_{x_2}^2(x_2 \partial_{x_1} - y_1 \partial_{y_2})
- \partial_{x_1} \partial_{x_2}(x_1 \partial_{x_1} - y_1 \partial_{y_1}) + \partial_{x_1} \partial_{x_2}(x_2 \partial_{x_2} - y_2 \partial_{y_2}).
\]

Hence Proposition 5 is proved.

The rest is in case \(\lambda = 0 \).

PROPOSITION 6. The following complex (3.4) induced by the complex (3.3) is exact.

\[
(3.4) \quad 0 \longrightarrow B_{\{x=0\}|q_\mathbb{C}} \oplus B_{\{y=0\}|q_\mathbb{C}} \longrightarrow \mathcal{M}_0 \longrightarrow \mathcal{N}_0 \longrightarrow 0.
\]

PROOF: It is sufficient to prove the injectivity of the first morphism. First we consider the complex (3.4) outside the origin. We may assume
\(y_2 \neq 0 \) without loss of generality. Then remark that \(B_{\{y=0\}|q_C} = 0 \) on the open set \(\{y_2 \neq 0\} \). Moreover the following coordinate transformation makes sense on the open set \(\{y_2 \neq 0\} : \)

\[
\begin{align*}
\tilde{x}_1 &= x_1 \\
\tilde{x}_2 &= x_1 y_1 + x_2 y_2 \\
\tilde{y}_1 &= y_1 \\
\tilde{y}_2 &= y_2
\end{align*}
\]

\((3.5) \)

\[
\begin{align*}
x_1 &= \tilde{x}_1 \\
x_2 &= \frac{\tilde{x}_2 - \tilde{x}_1 \tilde{y}_1}{\tilde{y}_2} \\
y_1 &= \tilde{y}_1 \\
y_2 &= \tilde{y}_2
\end{align*}
\]

We rewrite everything in the new coordinates. Then

\[
B_{\{z=0\}|q_C} = D/\mathcal{D}(\tilde{x}_1, \tilde{x}_2, \partial_{\tilde{y}_1}, \tilde{y}_2 \partial_{\tilde{y}_2} - 1),
\]

\[
\mathcal{M}_0 = D/\mathcal{D}(\partial_{\tilde{y}_1}, \partial_{\tilde{y}_2}, \tilde{x}_1, \tilde{x}_2, \partial_{\tilde{x}_1}, \partial_{\tilde{x}_2}^2),
\]

and the morphism \((3.1)\) is the right multiplication by \(\tilde{y}_2 \partial_{\tilde{x}_1} \), which is the composition of the following two injective morphisms

\[
B_{\{z=0\}|q_C} \xrightarrow{\tilde{y}_2} D/\mathcal{D}(\tilde{x}_1, \tilde{x}_2, \partial_{\tilde{y}_1}, \partial_{\tilde{y}_2}) \xrightarrow{\partial_{\tilde{x}_1}} \mathcal{M}_0.
\]

This implies the complex \((3.4)\) is exact outside the origin, i.e. the kernel of \(B_{\{z=0\}|q_C} \oplus B_{\{y=0\}|q_C} \longrightarrow \mathcal{M}_0 \) is supported in the origin. Moreover it follows from the involutivity of the characteristic varieties that the kernel must be zero. Thus we finish the proof of Proposition 6 and Proposition 4. \(\blacksquare \)
3.2. The Spaces $3^\circ : SU(p, q + 1)/S(U(p, q) \times U(1))$

By Remark 1, we can get the following Proposition 7 for spaces 3° as a corollary of the previous results for spaces 6°. Let $m = p + q$, $q = C^m$.

We take coordinates $z = (z_1, \ldots, z_m)$ of q and those of q_C as $(z, w) \in C^{2m}$ with $z, w \in C^m$, $q = \{(z, w) \in q_C; z = \bar{w}\}$.

PROPOSITION 7.

(1) If $m \geq 3$, then $\mathcal{M} \xrightarrow{\sim} \mathcal{N}$.

If $m = 2$, then we have the following exact sequence,

$$0 \longrightarrow B_{\{z=0\}|q_{\mathbb{C}}} \oplus B_{\{w=0\}|q_{\mathbb{C}}} \longrightarrow \mathcal{M} \longrightarrow \mathcal{N} \longrightarrow 0.$$

(2) If $m \geq 3$ or $\lambda \neq 0$, then $\mathcal{M}_{\lambda} \xrightarrow{\sim} \mathcal{N}_{\lambda}$.

If $m = 2$ and $\lambda = 0$, then we have the exact sequence,

$$0 \longrightarrow B_{\{z=0\}|q_{\mathbb{C}}} \oplus B_{\{w=0\}|q_{\mathbb{C}}} \longrightarrow \mathcal{M}_0 \longrightarrow \mathcal{N}_0 \longrightarrow 0.$$

(3) We have an isomorphism $\underline{Hom}_{\mathcal{D}}(\mathcal{N}, B) \xrightarrow{\sim} \underline{Hom}_{\mathcal{D}}(\mathcal{M}, B)$.

In particular, $B^H(q) = B^H(q)$ and $B^\overline{H}_{\lambda}(q) = B^H_{\lambda}(q)$.

PROOF: (1) and (2) follow from Proposition 3, 4, 5 and 6.

(3) is led by $\underline{Hom}_{\mathcal{D}}(B_{\{z=0\}|q_{\mathbb{C}}}, B) = \underline{Hom}_{\mathcal{D}}(B_{\{w=0\}|q_{\mathbb{C}}}, B) = 0$. \[\square\]
3.3. The Spaces $8^0 : Sp(m+1, R)/Sp(m, R) \times Sp(1, R)$.

We set $Sp(m, R) = \{ g \in SL(2m, R); g \left(\begin{array}{ll} 0 & 1_m \\ -1_m & 0 \end{array} \right)^t g = \left(\begin{array}{ll} 0 & 1_m \\ -1_m & 0 \end{array} \right) \}$. We take coordinates

$$\left(\begin{array}{l} x_1 \\ x_2 \\ y_1 \\ y_2 \end{array} \right) \in M(2m, 2; R) \cong q, \quad x_1 = \left(\begin{array}{l} x_{11} \\ \vdots \\ x_{m1} \end{array} \right), \quad x_2, y_1, y_2 \in R^m.$$

In this coordinates, the Casimir polynomial ω is written as

$$\omega = t \left(\begin{array}{l} x_1 \\ y_1 \end{array} \right) \left(\begin{array}{ll} 0 & 1_m \\ -1_m & 0 \end{array} \right) \left(\begin{array}{l} x_2 \\ y_2 \end{array} \right) = t x_1 \cdot y_2 - t y_2 \cdot x_2 = \sum_{k=1}^{m} (x_{k1}y_{k2} - y_{k1}x_{k2}).$$

The group $H = Sp(m, R) \times Sp(1, R)$ acts on q by

$$(3.6) \quad (A, B) \cdot C = ACB^{-1} \quad (A \in Sp(m, R), B \in Sp(1, R), C \in q).$$

Theorem 8. For $m \geq 1$, we have $M \sim N$.

Proof: First we consider the problem outside the origin. This step contains rather tedious calculation. We may assume $x_{11} \neq 0$ and the following coordinate transformation makes sense on the locus $\{ x_{11} \neq 0 \}$:

$$\begin{align*}
\tilde{x}_{j1} &= x_{j1}, \\
\tilde{y}_{j1} &= y_{j1} \\
\tilde{x}_{12} &= x_{12}, \\
\tilde{y}_{12} &= \omega(x, y) \\
\tilde{x}_{k2} &= x_{k2} - \frac{x_{12}x_{k1}}{x_{11}}, \\
\tilde{y}_{k2} &= y_{k2} - \frac{x_{12}y_{k1}}{x_{11}}
\end{align*}$$

(1 $\leq j \leq m$, 2 $\leq k \leq m$).
We recall the generators of \mathcal{I} by old coordinates (cf. (3.6)).

\[
\begin{align*}
(a) & : \ x_j (i, j) - y_j (i, j) + x_j (i, j) - y_j (i, j) \\
(b) & : \ y_j (i, j) + x_j (i, j) + y_j (i, j) + y_j (i, j) \\
(c) & : \ x_j (i, j) + x_j (i, j) + x_j (i, j) + x_j (i, j) \\
(d) & : \ \sum_{i=1}^{m} (x_i (i, j) + y_i (i, j) - x_i (i, j) - y_i (i, j)) \\
(e) & : \ \sum_{i=1}^{m} (x_i (i, j) + y_i (i, j)) \\
(f) & : \ \sum_{i=1}^{m} (x_i (i, j) + y_i (i, j)).
\end{align*}
\]

In new coordinates, we exchange generators of \mathcal{I}:

\[
\begin{align*}
(e) & = x_1 \partial_{\overline{x}_{12}}, \\
((c), i = j = 1) & = 2x_1 \partial_{\overline{y}_{11}}, \\
((a), i = j = 1) & = x_1 \partial_{\overline{z}_{11}} + x_1 \partial_{\overline{y}_{11}} - y_1 \partial_{\overline{y}_{11}}, \\
((c), i \geq 2, j = 1) & = x_1 \partial_{\overline{y}_{11}}, \\
((a), i \geq 2, j = 1) & = x_1 \partial_{\overline{z}_{11}} - y_1 \partial_{\overline{y}_{11}},
\end{align*}
\]

(3.7)

(3.8) \quad (d) = - \sum_{k=2}^{m} (\overline{x}_{k2} \partial_{\overline{y}_{k2}} + \overline{y}_{k2} \partial_{\overline{y}_{k2}})

+ \sum_{k=2}^{m} (x_k \partial_{\overline{z}_{k1}} + y_k \partial_{\overline{y}_{k1}}) + x_{11} \partial_{\overline{z}_{11}} + y_{11} \partial_{\overline{y}_{11}},

\sum_{k=2}^{m} (\overline{x}_{k2} \partial_{\overline{y}_{k2}} + \overline{y}_{k2} \partial_{\overline{y}_{k2}}) \in \mathcal{I}.
Since ω is \mathcal{H}-invariant, then

$$\mathcal{J} \subset D(\partial_{\bar{x}_{ij}}, \partial_{\bar{y}_{ij}}; 1 \leq i \leq m, 1 \leq j \leq 2, \text{except for } \partial_{\bar{y}_{12}}).$$

If we can prove

$$\mathcal{I} \supset \mathcal{D}(\partial_{\bar{x}_{ij}}, \partial_{\bar{y}_{ij}}; 1 \leq i \leq m, 1 \leq j \leq 2, \text{except for } \partial_{\bar{y}_{12}}),$$

then $\mathcal{I} = \mathcal{J}$. We prepare two Lemmas.

Lemma 9. Two groups $Sp(n, \mathbb{R}) \subset SL(2n, \mathbb{R})$ act on \mathbb{R}^{2n} by left multiplication ($n \geq 1$). Then the system \mathcal{M}_1 of differential equations defining $Sp(n, \mathbb{R})$-invariants equals the system \mathcal{M}_2 of differential equations defining $SL(2n, \mathbb{R})$-invariants.

Proof: We set $\mathcal{M}_1 = D/I_1$, $\mathcal{M}_2 = D/I_2$. We can express I_1 and I_2
in coordinates.

\[
\begin{align*}
\mathcal{I}_1 &= \mathcal{D} \left(x_i \partial_{x_j} - y_j \partial_{y_i} ; \ 1 \leq i, j \leq m \right) \\
\mathcal{I}_2 &= \mathcal{D} \left(x_i \partial_{y_j} \ y_j \partial_{x_i} ; \ 1 \leq i, j \leq m \right) \\
\end{align*}
\]

One after another,

\[
\begin{align*}
x_i^2 \partial_{x_i} &= x_i(x_i \partial_{x_i} - y_i \partial_{y_i}) + y_i x_i \partial_{y_i} \in \mathcal{I}_1. \\
x_i^2 \partial_{y_j} &= x_i(x_i \partial_{y_j} + x_j \partial_{y_i}) - x_j x_i \partial_{y_i} \in \mathcal{I}_1. \\
x_i \partial_{y_j} &= \frac{1}{2}(\partial_{x_i} x_i^2 \partial_{y_j} - \partial_{y_j} x_i^2 \partial_{x_i}) \in \mathcal{I}_1, \ y_i \partial_{x_j} \in \mathcal{I}_1.
\end{align*}
\]

Lie brackets of these elements in \(\mathcal{I}_1 \) span all generators of \(\mathcal{I}_2 \).

Lemma 10. Let us consider that the group \(GL_+(n, \mathbb{R}) \) acts on \(\mathbb{R}^n \) by left multiplication. Then the system of differential equations \(\mathcal{M}_1 \) defining \(GL_+(n, \mathbb{R}) \)-invariants is de Rham system.

Proof: We set \(\mathcal{M}_1 = \mathcal{D}/\mathcal{I}_1, \mathcal{I}_1 = \sum_{i,j=1}^{n} \mathcal{D}(x_i \partial_j). \)

\[
\partial_j = \partial_i x_i \partial_j - \partial_j x_i \partial_i \in \mathcal{I}_1 \quad (\text{for } i \neq j).
\]

Then \(\mathcal{I}_1 = \sum_{j=1}^{n} \mathcal{D} \partial_j. \)

Now we return to the proof of (3.10). Applying Lemma 9 to (3.9) and then applying Lemma 10 to (3.8), we conclude

(3.11) \(\partial_{x_{i2}}, \ \partial_{y_{i2}} \in \mathcal{I} \quad (2 \leq i \leq m). \)
(3.7) and (3.11) imply (3.10). Thus $\mathcal{M}|_{q-\{0\}} \sim \mathcal{N}|_{q-\{0\}}$. This isomorphism and following Proposition 11 imply $\mathcal{M} \sim \mathcal{N}$. Hence Theorem 8 is proved.

PROPOSITION 11. Let V be an n-dimensional vector space over \mathbb{R} and $H_1 \subset H_2 \subset SL(V)$ be two closed subgroups. Suppose H_1 and H_2 are reductive in $SL(V)$, by definition $^tH_1 = H_1$, $^tH_2 = H_2$, here $^tH_i = \{^t h^{-1} \in SL(V); h \in H_i\}$. Let \mathcal{M}_i be the system of differential equations defining H_i-invariants ($i = 1, 2$). We assume

$$
(3.12) \quad \mathcal{M}_1|_{V_{\mathbb{C}}-\{0\}} \sim \mathcal{M}_2|_{V_{\mathbb{C}}-\{0\}},
$$

then $\mathcal{M}_1 \sim \mathcal{M}_2$.

PROOF: $\mathcal{M}_i = \mathcal{D}/\mathcal{I}_i$, $\mathcal{I}_i = \sum_{X \in \mathfrak{h}_i} \mathcal{D}D_X$, here \mathfrak{h}_i is the Lie algebra of H_i ($i = 1, 2$).

Let A be a Weyl algebra over $V_{\mathbb{C}}$ and $F : A \to A$ be the algebra automorphism defined by $x_i \mapsto -\partial_i$, $\partial_i \mapsto x_i$ (cf. [5]). By the assumption (3.12) and Hilbert zero point theorem, there exists a positive integer N such that $(x_1, \ldots, x_n)^N D_X \subset \mathcal{I}_1$ for all $X \in \mathfrak{h}_2$, i.e. for any multi-index α satisfying ($|\alpha| \geq N$), there are $P_j(x, \partial) \in A$,

$$
x^\alpha D_X = \sum_{X_j \in \mathfrak{h}_1} P_j(x, \partial) D_{X_j}.
$$

Let $P^o_j(x, \partial) \in A$ be the homogeneous part of $P_j(x, \partial)$ of degree $-|\alpha|$, here we assign the degree 1 and -1 to the element ∂_i and x_i respectively. Then

$$
(3.13) \quad x^\alpha D_X = \sum_{X_j \in \mathfrak{h}_1} P^o_j(x, \partial) D_{X_j}.
$$
The transform of (3.13) by F is

$$(-\partial)^\alpha D_{-\iota X} = \sum_{X_j \in b_1} P_j^\circ (-\partial, x) D_{-\iota_{X_j}}.$$

Then the left ideal \{ $P \in A; PD_X \in \mathcal{I}_1$ for any $X \in \mathfrak{h}_2$ \} of A contains both $(x_1, \ldots, x_n)^N$ and $(\partial_1, \ldots, \partial_n)^N$, but such an ideal must be A itself. This means that $D_X \in \mathcal{I}_1$ for any $X \in \mathfrak{h}_2$, hence Proposition 11 is proved.

3.4. The Spaces 4° : $Sp(p, q+1)/Sp(p, q) \times Sp(1)$

As a corollary of Theorem 8 and Remark 1,

Theorem 12. For $p, q \geq 1$, we have $\mathcal{M} \sim \mathcal{N}$.

4. Problem I and II

In this section, we treat Problem I and II with the H-orbit decomposition of q. Define $q_{reg} = \{ x \in q : \text{codim}_q H \cdot x = 1 \}$ and $S = q - q_{reg}$, then q_{reg} is H-invariant open subset of q. Define $\omega' = \omega|_{q_{reg}}$ and $\omega_1 = \omega|_{q - \{0\}}$.

15
4.1.

We quote the following Proposition from [2, § 6.3].

PROPOSITION 13. In cases $3^\circ \sim 9^\circ$ except for the case 6° and $m = 2$.

1. $\omega': q_{reg} \to \mathbb{R}$ gives H-orbit parametrization, by definition, $\text{grad } \omega' \neq 0$ everywhere and $\omega^{-1}(t)$ is H-orbit for any $t \in \mathbb{R}$.

2. $S \subset \omega^{-1}(0)$ and S decomposes finite H-orbits.

3. $\omega_1: q - \{0\} \to \mathbb{R}$ gives \tilde{H}-orbit parametrization.

4. As a consequence,

$$
\begin{align*}
\{ & B^H(q_{reg}) = \omega^*(B_{\mathbb{R}}(\mathbb{R})) \\
B^{\tilde{H}}(q - \{0\}) = \omega_1^*(B_{\mathbb{R}}(\mathbb{R})).
\end{align*}
$$ (4.1)

We quote the following theorem due to Cerezo [1].

THEOREM 14. A connected Lie group $SO_0(p, q)$ acts on \mathbb{R}^{p+q} naturally. If $(p, q) \neq (1, 1)$, then both $B^{SO_0(p, q)}(\mathbb{R}^{p+q}) \to B^{SO_0(p, q)}(\mathbb{R}^{p+q} - \{0\})$ and $B^{SO(p, q)}(\mathbb{R}^{p+q}) \to B^{SO(p, q)}(\mathbb{R}^{p+q} - \{0\})$ are surjective.

Now we prepare Lemma 15 for the proof of Proposition 16.

LEMMA 15. Set $\mathcal{F}[0] = \{u \in \mathcal{F}(q); \text{supp } u \subset \{0\}\}$. Then in case $1^\circ \sim 9^\circ$,

$$B^{\tilde{H}}[0] = B^H[0].$$

PROOF: After Fourier transformation, Lemma 15 is easily shown by the fact that the ring of H-invariant polynomial on q is generated by Casimir polynomial ω. □
PROPOSITION 16. In the same case in Proposition 13, if the assumption
(A) : $B^H(q - \{0\})[S - \{0\}] = 0$ holds, then we have $B^\tilde{H}(q) = B^H(q)$.

PROOF: Take $f \in B^H(q)$. For the restriction $f|_{q_{reg}} \in B^H(q_{reg})$, there
is a $g \in B(\mathbb{R})$ such that $f|_{q_{reg}} = g \omega'$ by (4.1). For $g \omega_1 \in B^\tilde{H}(q - \{0\})$,
there is an $\tilde{f} \in B^\tilde{H}(q)$ such that $\tilde{f}|_{q - \{0\}} = g \omega'$ by Theorem 14. Then $f - \tilde{f} \in B^H(q)[S]$. For $(f - \tilde{f})|_{q - \{0\}} \in B^H(q - \{0\})[S - \{0\}]$, it must
be zero by the assumption (A). Then $f - \tilde{f} \in B^H[0] = B^\tilde{H}[0]$, therefore
$f \in B^\tilde{H}(q)$.

We can check the assumption (A) in some cases.

PROPOSITION 17.

(1) The singular set $S = \{0\}$ in cases $1^o, 2^o, 3^o, 4^o$ and 5^o. In
particular, the assumption (A) is satisfied.

(2) The assumption (A) is satisfied in cases $6^o, 7^o$.

PROOF:

(1) This is the definition of isotropic symmetric pairs. [2]

(2) If $m \geq 3$, then Theorem 3 implies this. Thus we may assume
$m = 2$. Since the problem is outside the origin, we adopt the coor-
dinates (3.5). In this coordinates, $S = \{\bar{x}_1 = \bar{x}_2 = 0, \bar{y}_2 \neq 0\}$ and
$\mathcal{M} = \mathcal{D}/I = \mathcal{D}/(\partial_{y_1}, \partial_{y_2}, \bar{x}_1 \partial_{\bar{x}_1}, \bar{x}_2 \partial_{\bar{x}_1})$, then $\text{Hom}_D(\mathcal{M}, \Gamma_{S}\mathcal{B}) \subset
\text{Hom}_D(\mathcal{D}/\mathcal{D}_{x_1, x_1, x_1=0}\partial_{\bar{x}_1}, \Gamma_{\{x_1=0\}}B) = 0$.

Summing up the results, we have $B^\tilde{H}(q) = B^H(q)$ in cases $3^o\tilde{8}^o$ except
for the case 6^o and $m = 2$.

17
4.2. The Space: \(SL(3, \mathbb{R})/S(GL_{+}(2, \mathbb{R}) \times GL_{+}(1, \mathbb{R})) \)

We consider case 6°, \(m = 2 \). We adopt the notations in § 3.1. We introduce an element \(f \in \Gamma(\mathbb{R}^4 - \{0\}, B) \)

\[
\begin{align*}
\delta(x_1 y_1 + x_2 y_2) \{ Y(x_1)Y(y_2) + Y(x_2)Y(y_1) \} \\
\in \Gamma(\{x_1 \neq 0 \text{ or } y_2 \neq 0\}, B) \\
\delta(x_1 y_1 + x_2 y_2) \{ Y(x_2)Y(-y_1) + Y(-x_2)Y(y_1) \} \\
\in \Gamma(\{x_2 \neq 0 \text{ or } y_1 \neq 0\}, B)
\end{align*}
\]

Then \(f \) is \(H \)-invariant, \(\square f = 0 \), and

\[
\begin{align*}
(x_1 \partial_{y_2} - x_2 \partial_{y_1}) f &= \delta(y) = \delta(y_1, y_2) \\
(y_1 \partial_{x_2} - y_2 \partial_{x_1}) f &= \delta(x)
\end{align*}
\]

thus \(f \) is not \(\tilde{H} \)-invariant. Let \(\theta = x_1 \partial_{x_1} + x_2 \partial_{x_2} + y_1 \partial_{y_1} + y_2 \partial_{y_2} \), then \((\theta + 2)f = 0 \). We take \(\tilde{f} \in B(\mathbb{R}^4) \) such that \(\tilde{f}|_{\mathbb{R}^4 - \{0\}} = f \). Since the mapping \((\theta + 2): B[0] \to B[0] \) is bijective, there is a unique \(g \in B[0] \) such that \((\theta + 2)g = (\theta + 2)\tilde{f} \). We define \(f_0 = \tilde{f} - g \in B(q) \), then \((\theta + 2)f_0 = 0 \). For any \(X \in \mathfrak{h} \), \([D_X, \theta] = 0 \) implies that \((\theta + 2)D_X f_0 = D_X (\theta + 2)f_0 = 0 \), then \(D_X f_0 = 0 \), i.e. \(f_0 \in B^H(q) \). Moreover \(\square f_0 \in B[0] \) is homogeneous of degree \(-4\), then \(\square f_0 = c\delta(x, y) \) by some constant \(c \in \mathbb{C} \). The relation \((\square f_0)(-x_1, x_2, y_1, -y_2) = -\square f_0(x, y) \) and \(c\delta(-x_1, x_2, y_1, -y_2) = c\delta(x, y) \) imply \(\square f_0 = 0 \). Therefore \(f_0 \in B_0^H(q) \), \(f_0 \notin B^H(q) \) and supp(\(f_0 \)) = \(N_+^- = \{(x, y) \in \mathbb{R}^4; \omega(x, y) = 0, x_1 y_2 - x_2 y_1 \geq 0\} \). Conversely an element \(B^H(q - \{0\}) \) whose support is contained in \(N_+^- - \{0\} \) is a constant multiple of \(f_0|_{q - \{0\}} \).

Unfortunately \(\omega': \mathfrak{a}_{\text{reg}} \to \mathbb{R} \) does not give \(H \)-orbit parametrization because \(\omega'^{-1}(0) \) has two connected components \(N_{\pm} = \{(x, y) \in \mathbb{R}^4; \omega(x, y) = 0\} \).
$\omega(x, y) = 0, \pm(x_1y_2 - x_2y_1) > 0$, Therefore Proposition 13 must be modified in this case. Let R' be the non-Hausdorff manifold obtained by taking copies of R, say R_+, R_-, and sticking together the positive parts of R_+ and R_- and the negative parts of those [1]. Let $R' \xrightarrow{\rho} R$ be the canonical map and define $B_{R'} = \rho^{-1}B_R$, the sheaf of hyperfunctions on R'. We define a real analytic mapping $\omega'' : q_{reg} \to R'$ by $\omega''^{-1}(t) = \omega'^{-1}(t)$ for any $t \in R^\times$ and $\omega''^{-1}(0\pm) = (N_{\pm})$.

\[
\begin{array}{cc}
q_{reg} & \subset & q - \{0\} & \subset & q \\
\omega'' & \downarrow & \omega' & \searrow & \omega_1 & \nearrow & \omega \\
R' & \xrightarrow{\rho} & R
\end{array}
\]

Then $\omega'' : q_{reg} \to R'$ gives H-orbit parametrization, and therefore

(4.2) \[B^H(q_{reg}) = \omega''^*(B_{R'}(R')). \]

Proposition 18. Retain the above notation.

(1) $B^H(q) = B^\tilde{H}(q) \oplus Cf_0$.

(2) $B_0^H(q) = B_0^\tilde{H}(q) \oplus Cf_0$.

Proof: (1) Take $f \in B^H(q)$. For $f|_{q_{reg}} \in B^H(q_{reg})$, there is a $g \in B(R')$ such that $f|_{q_{reg}} = g\omega''$ by (4.2). For $g|_{R_-} \in B_{R'}(R_-) = B_R(R)$, $(g|_{R_-})\omega_1 \in B^\tilde{H}(q - \{0\})$, then there is an $\tilde{f} \in B^\tilde{H}(q)$ such that $\tilde{f}|_{q - \{0\}} = (g|_{R_-})\omega_1$ by Theorem 14. Then $f - \tilde{f} \in B^H(q)[N_+]$. For $(f - \tilde{f})|_{q - \{0\}} \in B^H(q - \{0\})[\overline{N_+} - \{0\}]$, there is a constant $c \in C$ such that $(f - \tilde{f})|_{q - \{0\}} = cf_0$. Then $(f - \tilde{f} - cf_0) \in B^H[0] = B^\tilde{H}[0]$. Therefore $f \in B^\tilde{H}(q) \oplus Cf_0$.

(2) It is obvious from (1) because $f_0 \in B_0^H$.

\[\square \]
Because f_0 is a distribution and tempered, the table in [2, § 6.3] must be corrected: case 7, $m = 3$ and $\lambda = 0$, in his notation, then
\[
\dim D'_{\lambda, H}(q) = 3, \text{ and } \dim S'_{\lambda, H}(q) = 3.
\]

以前 [8] で記したとおりのうち、この § 4.2 に相当する部分は誤っています。正しくは、このようになります。おわびして訂正します。

REFERENCES