<table>
<thead>
<tr>
<th>Title</th>
<th>F-regular and F-rational graded rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>渡辺 敬一</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1990), 713: 95-107</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1990-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/101714</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
F-regular and F-rational graded rings

東海大・理（情報数理） 渡辺敬一
（Kei-ichi Watanabe）

標数 $p > 0$ の環の Frobenius 写像によってイテリアルの tight closure の概念は Hochster と Huneke によって定義され、この概念を用いて標数 0 の rational singularity に対応する F-regular，F-rational ring の概念が定義される。本稿の目的は、

（1）Cohen–Macaulay graded ring に対しても、パラメーターイテリアルの tight closure は、grading によって明らか説明がつくこと。特に F-rational ring は [GW] で定義された $a(R)$ によって説明されること。

（2）normal graded ring と $R = R(X,D)$ と $X = \text{Proj}(R)$ と $D \in \text{Div}(X)$ で表したときに R が F-regular （又は F-pure）であるための (X, D) の条件。

の二点を中心ににして書いて行きたい。

なお、この稿は expository なものである事をお断りしております。
§1. 用語の準備.

Rが標数p>0の体を含むとき，Frobenius写像

\[F : R \to R = R^p, \quad F(a) = a^p \]

を考える．以下に設けて，\(p^q = p^e \)は必ずpの中とすると．

\[F^e : R \to R = R^e \]（右辺を \(R^e \)と書いて区別する）

RがreducedのときFはinjectiveだから，\(F^e \)と

\[R \subseteq R^{1/p} \]

を同一視できる。また，\(R^0 : = R - \bigcup \text{min.prime of } R \)
とおく。

(1.1) イデアル \(I \subseteq R \)に対して，\(x \in I^* \)（tight

closure of I）\[\iff \exists c \in R^0, \forall q \gg 0, \quad c \cdot x^q \in I^{[q]} \]

\[\iff \cdots, \cdots, \quad c^{1/q} \cdot x \in I, R^{1/q} \]

とし，\(I = (a_1, \cdots, a_n) \)のとき，\(I^{[q]} = (a_1^q, \cdots, a_n^q) \)。

また，R-module Mとsubmodule N \subseteq Mに対して，

\[x \in N^* \iff \exists c \in R^0, \forall q \gg 0 (\forall e \gg 0), c \cdot F^e(x) \in \text{Im}(N \otimes_R R^e) \]

\[\iff \cdots, \cdots, \quad c \cdot x \in \text{Im}(N \otimes_R R^{1/q}) \]

とし，\(F^e(x) : = x \otimes 1 \in F^e(M) = M \otimes_R R^e, x^e : = F^e(x) \)

\(\text{Im}(N \otimes_R R^e \to M \otimes_R R^e) = : N^{[q]} \)とおくと，上の条件は，

\(c \cdot x^e \in N^{[q]} \)となりイデアルの場合に対応する。

\[x \in I^* \iff R/I \text{に設けて} \quad x \mod I \in (0)^* \]
(R, m) が local ring のとき, M = E := Er(R/m) の場合と, M = H^d_m(R) (d = \text{dim} R) の場合が以下に述べて特に重要である。

(1.2) 定義. (i) R が weakly F-regular \iff \forall I \subseteq R, I^* = I.
(2) (R, m) が F-rational \iff \forall parameter ideal I = (x_1, \ldots, x_d),
I = I^*.

('weakly' は以下常に省略する事にする。)

[HH] § 4, 5 の R が F-regular \implies R は normal, cohen-Macaulay の証明は "F-regular" を "F-rational" におきかえて成立する事は容易にわかる。

以下 "R が Cohen-Macaulay" は従来でしょう。

(1.3) (R, m) が Cohen-Macaulay, \text{dim} R = d のとき, I = (x_1, \ldots, x_d) を R の parameter ideal とすると,

\[H^d_m(R) = \lim_{\to} R/I^{[q]} = \bigcup_{q} R/I^{[q]} \text{ である。} \]

但し, q' > q に対し,

\[R/I^{[q']}, R/I^{[q]} \text{ は } y \mod I^{[q']} \rightarrow (x_1, \ldots, x_d) \cdot y \mod I^{[q]} \]

で同一視される。このとき,

\[(0)^*_R/I^{[q]} = (0)^*_{H^d_m(R)} \cap R/I^{[q]} \]

は容易にわかる。特に, 上記の \[R/I^{[q]} \rightarrow R/I^{[q]} \] は,

\[(0 : m)_{R/I^{[q]}} \Rightarrow (0 : m)_{R/I^{[q]}} \text{ を引き起こすから,} \]

R が F-rational \iff (0)^* = (0) \in H^d_m(R) \iff \exists I = (x_1, \ldots, x_d),
I^* = I. ([F1], [FW] 参照).

(1.4) C ∈ R ならば test element ⇔ ∀ICR, ∀x ∈ I^*,
C.x^q ∈ I[q^r] (q > 0).

つまり, test element とはすべての ideal の tight closure の test を一気に含む要素という意味である. ([HH, §6] 参照).

test element で生される ideal を test ideal と呼ぶ.

test ideal は次の意味で, "non-F-regular locus を定義するイデアル" と云う.

(1.5) F: R → R が finite, R が reduced のとき,
R が strongly F-regular ⇔ ∀C ∈ R^*, ∃q, R → R^q,
1 → C^q が R-mod.と正則.

上の状態のとき, C ∈ I.R^q の R = I から, 任意の C ∈ R^*
が test element である. また, R が Gorenstein のとき,

R が F-rational ⇔ R が F-regular ⇔ R が strongly F-regular
が成立する."strongly F-regular" という性質は open property
や localization で保たれるなど, ある意味では F-regular と現在の階級とすすむ性質である. ([HH2] 参照).

次の結果は test element に関して重要と思える.

(1.6) [HH2] C ∈ R^*, R が strongly F-regular ならば,
C のある中が test element である.

これの系として, (regular ⇒ strongly F-regular とはなら)
(1.7) \((R,m) \) が (1.5) の大前提をみたし、\(0 \neq \forall x \in R \), \(R_\chi \) が strongly F-regular ならば (特に \(\text{Spec}(R) - \{m\} \) が regular ならば), \(R \) は test ideal は \(m \)-primary である。

§2. grading と tight closure.

\[
R = \bigoplus_{n=0}^\infty R_n \quad \text{が Cohen-Macaulay graded ring とする。}
\]
また, \(R_0 = k \) は体とし, \(m = R_+ = \bigoplus_{n=0}^\infty R_n \) とおく。

\[
H^d_{\omega}(R) \quad (d = \dim R) \quad \text{の中で} \quad (0)^* \quad \text{を求める。} \quad (1.3) \]
により, これは homogeneous parameter ideal \(I = (x_1, \ldots, x_d) \) に対し, \(I^* \) を求める事に対応する。

\[
x_c \in R_{n_c} \quad \text{のとき,} \quad N = \sum_{i=1}^d n_c \quad \text{とおく} \quad \text{とgraded module}
\]
としては,

\[
H^d_{\omega}(R) = \varprojlim \left(R/I^n \right) (q \cdot N)
\]
であり, Frobenius 対像 \(F^e : \left(R/I^n \right) (q \cdot N) \to \left(R/I^{en} \right) (q^{en} \cdot N) \)
\((q = p^e) \) は \(y \mod I^n \) \to \(y^{q^n} \mod I^{q^n} \) で与えられる。

\[
y \in R_{n} \quad \text{のとき,} \quad y \mod I^{en} \quad \text{の} \quad H^d_{\omega}(R) \quad \text{での像の degree}
\]
は \(n - q^n \cdot N, \quad y^{q^n} \mod I^{q^n} \in \left(H^d_{\omega}(R) \right) (q^{n-q^n} \cdot N) \) となる。

\[
H^d_{\omega}(R) \quad \text{は Antinian} \quad R \text{-module だから,} \quad \left[H^d_{\omega}(R) \right]_n = 0 \quad (n \gg 0)
\]
であり, 従って, \(\eta \in \left[H^d_{\omega}(R) \right]_n \) をとるとき,

\[
n > 0 \quad \Rightarrow \quad F^e(\eta) = 0 \quad (e \gg 0),
\]
導いて、

\[
(0)^* \Rightarrow \bigoplus_{n \geq 0} [H^d_m(R)]_n
\]

は自明に成立する。問題は、\(n < 0 \) のときである。

定義 ([F1]). \(F \)-injective \(\iff \forall e > 0, F : H^d_m(R) \rightarrow H^d_m(R) \)

は injective。

いずれく Frobenius 写像をつきますと、固有の標数 \(p > 0 \)では、この概念に本質的に最も難しいと思えてくるが、\(R \)
graded ring のとき、上記の理由から、

\(R \) が \(F \)-injective \(\Rightarrow a(R) \leq 0 \)

である。しかし、\((0)^* \subseteq H^d_m(R) \) を推定するという観点からは、次の場合が有効と思われる。

定義 (2.2). \(R \) が \(F \)-injective in negative degree

\(\Rightarrow \forall \eta \neq 0 \in [H^d_m(R)]_n, n < 0, F(\eta) \neq 0 \).

この概念を用いると、test ideal が m-primary であるとき、

\((0)^* \subseteq H^d_m(R) \) を推定できる。

(2.3) \(R \) が \(F \)-injective in negative degree, すなわち test
ideal が m-primary \(\Rightarrow (0)^*_{H^d_m(R)} = \bigoplus_{n \geq 0} [H^d_m(R)]_n \).

(証明) test ideal が m-primary のとき、\(\exists n_0, \forall n \geq n_0, \forall x \in R \) は test element. 一方、\(H^d_m(R) \) は socle ([0:m]_H^d_m(R))

6
は有限生成下から，\(\exists n_1, [0:m] H^d(R) \subset \bigoplus_{n \geq n_1} H^d(R)_n \)。
任意の \(\eta \neq 0 \in H^d(R)_n \) に対し，\(\exists x \in R, x\eta \in [0:m], \exists \eta \neq 0 \in \eta \neq 0 \in H^d(R)_n, n < 0 \) と \(\neq 0 \) と \(\eta_1 \neq 0 \neq \eta_2 \) \(\exists \eta, o \in R, n \geq n_0, x, F^e(\eta) \in [0:m], x, F^e(\eta) \neq 0. \)
一方，\(x \in \text{test element to get} \), \(\eta \notin (0)^{H^d(R)} \).

(2.3) \(\text{"test ideal of } m \text{-primary"} \) は事実的な定義である。

例 (2.4). \(R = \mathbb{k}[x, y, z, t]/(x^3 + y^2 + z^3) \) とおく。
\((x, y, z, t \in R_1 \) と \(\exists z \).) このとき，\(R \) \(\not\equiv \) \(F\)-injective \(\not\equiv \) \(p = 1 \) (mod 3) である。\(I = (y, z, t) \) とおく，\(\eta = x^2 \mod I \) とおくと，\(\eta \in (R/I)/(3) \) の degree は \(-1 \)。
\(\forall e, \ F^e(\eta) \neq 0 \) \(\forall e \in (0)^{H^d(R)} \).

R/I(3) \(\cong \mathbb{k}[x, y, z, t]/(x^3 + y^2 + z^3, y^2, z^2, t^2) \) はode の生成要素は \(x^2(yz + t)^{3-1} \) と \(t \) と \(1 \), \(0 \neq T^{2-1} F^e(\eta) \in [0:m]. \)

ある特定の \(p \) に対して，\(R \) \(\not\equiv \) \(F\)-injective in negative degree をどのように判定するかは結構面倒な作業のようである。

例 (2.5). (i) \(R = \mathbb{k}[x, y, z]/(x^2 + y^2 + z^7) \) \((x \in R_1, y \in R_1, z \in R_1, z \in R_1) \).
このとき \(\kappa(R) = 42 - (21 + 14 + 6) = 1 > 0 \) で \(R \) は \(F\)-injective でない。
(iii) \(R = \mathbb{k}[x, y, z]/(x^2 + y^5 + z^7) \) と \(\exists \).

(ii) \(R = \mathbb{k}[x, y, z]/(x^3 + y^5 + z^7) \) と \(\exists \).
\(R \) \(\not\equiv \) \(F\)-injective in negative degree \(\not\equiv \) \(p \geq 7. \)

(iii) \(R = \mathbb{k}[x, y, z]/(x^2 + y^5 + z^7) \) と \(\exists \).
\(R \) \(\not\equiv \) \(F\)-injective in negative degree \(\not\equiv \) \(p \geq 23 \) \(\not\equiv \) \(p = 11, 17. \)
このように、"F-injective in negative degree" ばかりは倒
倒的な性質だが、とあるように「複数 0」で定義された「良
い」（例えば、isolated singularity）の場合に対しては P \gg 0 で
常に成立する事が予想される。実際には証明されているのは、
2 次元の場合のみだが。

定理 (2.6) (R. Fedder) R が標数 0 の体上定義された 2 次元
normal graded ring とする。このとき、P \gg 0 に対し、R
の標数 P \wedge 0 reduction は F-injective in negative degree.

従って、特に R が rational singularity (a(R) < 0 と同値)
のとき、P \gg 0 に対して、R の標数 P \wedge 0 reduction は F-rational.
証明は R の derivation module Der(R) を使って述べる
事ができる。実際には、P の位大きい P に対して、F-inj.
neg. deg. から Der(R) の言葉で与える事ができる。

高次元の場合、更には graded でない一般の場合に対し、
"R が rational singularity \iff P \gg 0 に対して、R の標数 P \wedge 0
a reduction は F-rational" と期待されるが、2 次元でなら
一般には open であるように思われる。

R が graded complete intersection の場合は、[F2] に限られ
ている。
§3. normal graded rings の F-regularity の判定.

R が Gorenstein のとき、F-rational ⇔ F-regular だが、そうでない時には F-regular と F-rational とは大分様相が異なる。

一例、$R = \bigoplus_{n \geq 0} R_n$ が normal graded ring とし、$R_0 = \mathbb{R}$ が体のとき、R は $X = \text{Proj}(R)$ とし、$D \in \text{Div}(X, \mathbb{Q}) = \text{Div}(X) \otimes \mathbb{Q}$ を用いて、

$R = \bigoplus_{n \geq 0} H^0(X, \mathcal{O}_X(nD)) \cdot T^n$ （右辺を $R(X, D)$ と表す）

と書ける ([D], [W]). $D = \sum_{\nu \in \mathbb{Q}} \frac{p_{\nu}}{q_{\nu}} \cdot \nu \ (q_{\nu}, p_{\nu} \in \mathbb{Z}, q_{\nu} \text{と} p_{\nu} \text{は互いに素、} q_{\nu} > 0)$ のとき、「D の分数部分」と、

$D' = \sum_{\nu} \frac{q_{\nu} - 1}{q_{\nu}} \cdot \nu$

で表す。このとき、$d = \dim R$ とおいて、

$E := E_R(R/m) \cong H^d_m(K_R) \cong \bigoplus_{\nu \in \mathbb{Z}} H^{d-1}(X, \mathcal{O}_X(K_x + D') + nD) \cdot T^n$

である事から、$0 \neq z \in H^{d-1}(X, \mathcal{O}_X(K_x + D')) = H^{d-1}(X, \mathcal{O}_X(K_x))$ をとると、

$R = R(X, D)$ が F-regular $\iff \bigcap_{e > 0} \text{Ann}_R(F^e(z)) = (0)$

$\iff 0 \neq f \in H^0(X, \mathcal{O}_X(nD)), \exists \ e \ , f \cdot F^e(z) \neq 0$.

([W2] 参照) が成立する。したがって、次の成立する。

定理 3.1. $R = R(X, D)$ のとき、R が F-regular ならば、X (または K_x) と D の小数部分 D' のみにより、個々の D によ
らない。

即ち、$D_1, D_2 \in \text{Div}(X, \mathbb{Q})$のとき、($\exists N, ND_1, ND_2$がample Cartier divisorという条件は必要だが) $(D_1)' = (D_2)'$ならば、$R(X, D_1)$がF-regular \iff $R(X, D_2)$がF-regular。DはDにintegral divisorを加えても、合同を変えるに至る子をとりかえても変わらないので（この点は"F-rational"は非常にデリケートである。）F-regular ringの特徴づけに大変有用と思われる。

(証明) $F^e(\xi) \in H^{d-1}(X, \mathcal{O}_X(q(K_X + D'))) \in (\xi) \in H^d(X, \mathcal{O}_X(q(K_X + D'))) \in (\xi)$である。今 $R(X, D_1)$がF-regular、$(D_1)' = (D_2)'$として、$R(X, D_2)$がF-regularを示そう。

1. $R(X, D_1)\ni F$-pure $\iff R(X, D_2)$がF-pure

$(\iff F(\xi) \not= 0, F\text{-regular } \Rightarrow F\text{-pure でより})$R(X, D_c)(c=1,2)は$F$-pureとしてある。従って、$F$が$End_R(R/M)$への作用はinjectiveとしてある。（$R = R(X, D_c), c=1,2$）

2. Fがinjectiveであると、$x. F^e(\xi) \not= 0 \Rightarrow x. F^{e=1}(\xi) \not= 0 \Rightarrow$, $Ann_R(F^e(\xi)) \supset Ann_R(F^{e=1}(\xi))$である。$\cap_{c>0} Ann_R(F^e(\xi)) = (0)$

\iffあるdegreeをfixするとき、$\exists e,

F^e(\xi) : H^0(X, \mathcal{O}_X(ND_2)) \rightarrow H^{d-1}(X, \mathcal{O}_X(q(K_X+D'))) \in injective.$ $(R = R(X, D_2))$。

3. ND_1はample Cartier div. ($\exists N$)とる、ND_2に対し,
\[\exists N', \quad H^0(X, \mathcal{O}_x(N'D_1 - N'D_2)) \not= 0. \]

4°. \(0 \neq \varphi \in H^0(X, \mathcal{O}_x(N'D_1 - N'D_2)) \)をとる。\(e \gg 0 \)を,

\[F^e(\varphi) : H^0(X, \mathcal{O}_x(N'D_1)) \rightarrow H^{d+1}(X, \mathcal{O}_x(N'D_1 + \varphi(K_x + D'))) \]

がinjectiveになるようにとると、次の可換図式

\[\begin{array}{ccc} H^0(X, \mathcal{O}_x(N'D_2)) & \xrightarrow{\varphi} & H^0(X, \mathcal{O}_x(N'D_1)) \\ \downarrow F^e(\varphi) & & \downarrow F^e(\varphi) \\ H^{d+1}(X, \mathcal{O}_x(N'D_2 + \varphi(K_x + D'))) & \xrightarrow{\varphi} & H^{d+1}(X, \mathcal{O}_x(N'D_1 + \varphi(K_x + D'))) \end{array} \]

より左の変換がinjectiveである事がわかる。次に、

\(R(X, D_2) \)もF-regularである事がわかる、た。

§4. いくつかのコメント。

• F-rationalとF-regularとは\(R \)がGorensteinのとき同値で、\(dR = 2 \)のとき、\(R \)がF-rationalならばdivisor class groupの中で、\(R \)のcanonical class \(c_0(K_R) \)が有限位数をもつので、\(R \)は有限なcanonical coverをもつ。この場合に、\(R \rightarrow S, S \)はGorenstein。\(R \)は\(S \)の\(R \)-moduleとしての直和因子となる。このとき、"\(R \)がF-regular"は\(R \)の性質というよりは\(S \)の性質と思われる。（\(c_0(K_R) \)の位数が\(p \)と互いに素なとき、\(R \)がF-regular \(\iff S \)がF-regular。[W2]参照)
\[\dim \mathcal{R} \geq 3 \] のときは、\(\mathcal{R} \) が F-regular であるとし、\(cl(K_{\mathcal{R}}) \) は有限位数を持ち得る。だが、このときは "canonical cover" だと考えられないだろうか？ 候補としては、\(\oplus \mathbb{Z} K_{\mathcal{R}}^{(i)} \) が考えられるが、この環は Noether 環になるだろうか？ こうした問題は代数幾何の極小モデルの理論と関わり、考えてそうである。（代数幾何の局部理論は可構成環論というのだろうか？）

・ \(\mathcal{R} = \bigoplus_{n=0}^{\infty} \mathcal{R}_n \) は normal (Noetherian) graded ring, \(\dim \mathcal{R} = d \), \(\mathcal{R}_0 = \mathbb{k} \) は標数 0 の体のとき、もし \(Spec(\mathcal{R}) - \{ \mathfrak{m} \} \) が rational singularity なら、\((H^d_0(\mathcal{R}))_n = 0 \) （\(i < d \), \(n < 0 \)）が成立する（証し、Gravenet–Rieumann–Schauder van. Thm. を使う）。標数 \(p > 0 \) で平たん vanishing Thm. の逆例がある以上、標数 \(p > 0 \) で一般には不成立だが、どういう条件をつければ成立するだろうか？（上記の命题は小平 van. Thm. の逆理論の statement とえらせるが）。

REFERENCES

