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ON UNIVALENT FUNCTIONS IN MULTIPLY
CONNECTED DOMAINS*

Weiqi Yang (dtxim 1 4 2)
Department of Applied Mathematics
Beijing Institute of Technology
P.O.Box 327 , Beijing , China

The present article gives an account of some results on univalent functions in multiply
connected domains obtained by author . The contents are

| . Two very simple proofs of Villat § formula

2 .Schwarz § formula ,Poisson 5 formula and Poisson-Jensen formula in multiply con-
nected domains

3 . Differentiability with respect to the parameter of analytic function family containing
one parametric variable

4  Variation theorem and parametric representation theorem
5 . Extremal problem of differentiable functionals

1. TWO VERY SIMPLE PROOFS OF VILLAT S FORMULA
By Schwarz § formula of analytic functions in disks we obtain

“Lemmal .l Let B={z:|z—a|<r}, E={z:|z—a|>r},then

([@)-ilm (@)) for (i)
. —@)+ilm ((0)) for (i)
1 . re’+ (z—a)
| Re(f@a+re?))—"2"1 dg = _
on J ¢ (@+re”)) Ta—=2) ! @+ Zfa )—ilm @)  for (i)
— 2
Lr(3+—z~r:;)+ilm ([ (0)) for (iv)

here (i) : (is analyticin B and continuous in B ,zeB;
(ii) ; [is analyticin E and continuous in E ,zeE :
(iii): fis analyticin B and continuous in B , zeE;

(iv): fis analyticin E and continuousin E , zeB,

By the Schwarz basic theorem of Dirichlet § problem we obtain
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Lemma 1,2 Let U (())bc intcgrable wilh period 2 and continuous at ¢=(, . Then

R : n L e . o N .
lim ‘—'-"J U (0)Re (fi—ﬂz—) do=+U (0,).

2 =pc'0 2“

the sign of the right hand is positive wheri z tends to pe™ inside |z |= p non-tangentially
and negative when outside

Villat § formula (see[6] ,[7] ) Let fgz)=u @z)+iv ) beanalyticin q<|z|<1 and
continuous in q <|z|< 1, Then

2n

2 . !
r(z):m};—;;ﬁ u ) K, (2.¢,)d0~CHiD,  g<|zl<] (.1

where & =¢€Y ,¢,=qe¥,and

K, @z.¢)=- "% 2w g(“’ 10;, ") ?;t‘;’ 1og%~
1

il m &
:+Z o qn } .Z L \ & .
" PR T [(Z) _('%L)] (.2)
Kz (Zvéz)z‘_Kl(vaz); ' ”3)

here { (u)is the Weierstrass function with real and imaginary periods 2w and 2¢) ’satisfying

4

Q- 1 log q; C,D are real constants with
0] T :
e | [(z)
C+iD= G j,, T dz, qgpgl (1.4)

The original proof given by Villat is very long [14] , ARer Villat some dillerent proofs -
have been given ,for instance ,by G ,M _Golusin [5] . By rewriting (1 2)and (1 .3)as the
following '

, &=¢l; (1.5)

Ltz 2 + Fq
K, .,¢)= Z < éi__gn, + gl_g—lh

N—

RPN ST Oy (P L T R
’ ) S\ Gmatr a7

N———

v &=qe” (1.6)

we give two prools of (I 1) which may be simp!cé( .

9
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Proof 1 Let f=[+f, where [, is the sum of all nonnegative powers of the Laurent

expansionof [ in q<|z|<l and [, js that of all negative powers By the termwise
integration, (1 1)follws from (1.,5),(1.6)land Lemma | 1

Proof 1l Note that Re (K, (z,é,‘))=0 on Izl%l when z ¢, ,and =1 on |z|=q ;
Re (Kl, (@ ,§2)); lonjz|=1 ,and =0 on |z|=q when z% ¢{, ,Using Lemma 1 2 we com -
pute the non- tangential limits of the real part of the right hand of (I _1)as the following

lim Re { the right hand of (2 .1)}

z-ve'?
] n "
= lim ——J u(éw)Re(e,,JrZ)do
eede 2| e~z

2
l 0y 1 e'+z
5 J u (e”}iffr}m Re (K,.(z,éy)— -~«—> dg

eifl—z

n '
" . 7'

2n

= u (e¥)+ L J u (ge”)dg-C
27[ (t) - . »

u (ei)

and similarly , .
lim Re {the right hand of @2.1) }=u (ge").

2-+qe'® :
It shows that the right hand of (I 1) which is analytic in q<|z |<1 is of same real part
with f (z) on the boundary of the annulus ,and then (I  1)is true (see{1]) .

2. SCHWARZ 'S FORMUIA ,POISSON 'S FORMUIA AND POISSON - JENSEN
FORMULA IN MULTIPLY CONNECTED DOMAINS

Villat § formula is a generalizéd form of Schwarz § formula in annuli It is easy to give
Schwarz § formula of analytic functions in n-connected circular domains by considering
geometric behaviour of integral kernels of Schwarz § formula and Villat § formula  The
method in Prool Il of (I _1)applies to the gencral case . (see[15] ,[17] ,[18] ) .

Let R, denote an n-connected domain in z- plane bounded by circles
C:lz—al=r1, j=1,2,...,n,

For &eC, let K, (z; &) be the conformal mapping of R, onto the right half plane cut
by n—1 straight scgments parallal to the imaginary axis ,C, to the imaginary axis ,which is
analytic on R except at the simple pole & with the following expansion around the point

J
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N
I
A

L+z—2a

K(z{)—+ML+Zb (_Q;Z_)K " k(z_l)

the sign of the right hand is positive when R, lies inside C; and negative when outside by is
determined by R, and ¢ . lt/'s easy to prove the existence and the unicity of the mapping
functions K; ;&) ., j=1,2,.-.n (see[3] ,[15])

Theorem 2,1 Let f(z)=u (z)+iv (z) be analytic in R, and continuous in FZ .Then
in R, we have the Schwarz representation

n
f @) =x"; T‘ﬂfo u (G)K; ;) dg—C+iD 2.2)
where &=a,+ e’ ,C and D are real constants ,and
Cop=p==p 2.3)
here
Y (2.4)

mr i

2r
l 4
U= J; u (£,)do .

/]:{0 if j=m 2 6)
" Re K, (¢;6)) i jEm.

2.5)

Proof By using the method in Proofl Il of (I .1), it follows that on the circle

z=a,+1e",0<0<2n ,the real part of the analytic function

n . ‘ o
Lo
Z-T—Ju@)&&xﬂw @.7)
. ISu(é,)’*‘/l,, le ‘2 y"'vn.
Let w, (z) be the harmonic measure of C; at the point z with respect to the domain R,
and ¢; () be an analytic function in R, with ¢; (z)as its real part ,Then in R, we have

n

n
f(z) =Z J u (&K, @;E)d0=Y 5, (2) +ia 2.8)
0 =1

where o is a real constant |
Because [ (z)and (2 .7)are single- valued in R, ,then

n

W (Z)=Z e, (2) —

j- 1!



is also single-valued in R, and then is analytic in R, The real part of  (z) on C; is the
constant y ,that is , the image of C; lies on a line d;,j=1,2,-.. ;n  Arbitrarily give a point
{, which does not lie on any d;, to apply the argument principle to  (z) —{, . We obtain
Y @)#{, in R, And then ¢ (z) =const , thus. we have p, = j,= .- =y,  Therefore , (2 .2)
follows from (2 .8),

Theorem 2,2 Let u (z) be harmonic in R, and continuous in R, Then the conju-
gate harmonic function is single- valued in R, if and only if g is independent of the lower
index j where g, is determined by (2.4)—(2.6) .

Proof If the conjugate harmonic function of u (z) is single-valued then , by Theorem
2 . | ,the condition (2 .3 )holds .

Inversely ,assume that (2,3) holds  Using again the method in Proof 11 of (1.1),for
any given ¢, €c; » we consider the non-tangential limit of the harmonic function

n
LI L :
j};'—z;t—f u@Re K, ;)0 0 (2.9)
= 0 .
as z tends to ¢, in R, . Note that by Lemma | 2,

2
lim —'—f u () Re (ﬁ%lﬂ) do=tu () (2.10)

2L, 27[

io
the sign of the right hand is positive when R, lies inside Cj;) and negative when outside ,and
by 2.4)-(2.6)

lim Z %n J u (&)Re (K; (z ;{j))d()

g i
gl

2n
I -
=V 5 J u (éj)]zl~l}:0Re (K, z;&)dd
:‘] 0
#io

——

— @.11)

Jo

Therelore , the non-tangential limit of (2 :9) is u (&) + C . and so u (z) is the real part

ol an analytic function , that is ,

2n
u(z)=Rc{ Z%}I—J"u (&K (z;éi)d()—C} ‘ (3.12)

i

Theorem 2 .3 Let u (z) be harmonic in. R, and continuous in T{—, .Then in R, we

have the Poisson representation



36

Suz)= Z J U({)Re (K; (z if))d() Z,u,w (z) X (3.13)

where g, is defined by (2 ‘4 )—2.6) o (z)is the harmonic measure ol",Cj )

Proof = Let

U@)=u@)-3 e | 2.14
J(z)=u (z) ;a,w,(Z) | 2.14)

which is harmonic in R, and its integral mean value on every C, is 0, By Theorem 2 2
and (2.12)we have ‘

n PO ’
nﬁ l ) n
8] (Z)ZZ.TEJ u'()Re (K z;¢))d0~ )_: ~21—J aRe (K; (z;&))d0 .
] o ' I 2.15)
Let =1, p.=f iljs£k , then
—_— J Re (K; (z;¢))d0= Z/ " wx @).
Therefore ,
n
4 ,=»_2J77£ aRe (K, (2:£,))d0
= Yoy P’ w )
=1 k=1 )
= Z(JJK (Z)Z ajﬁjk,
K=t j=1
= Y o @) tpy) 2.16)
k=1

and then (2 .13) lollows from 2 14)— (2 .16) .

Along the same way , we obtain the Schwarz basic theorem in n-connected domains
and an integral representation of the solution of the Dirichlet problem | (see[17])

Theorem 2.4 Let u ({) be a real valued function definedon the boundary of R, and

intcgrable as a function of () on every C,.Then

U @)=Yy %ﬂf uRe (K; (25¢))d0=Y oy @) 2.17)
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is harmonic in R, where ¢=a,+re? If u ({) is continuous at boundary point {, then the

non- tangential limit of U (z)at {,is u ({,).

- Theorem 2 /5 Let QQ be an n- connected domain , the boundary of Q be locally con-
nected and every boundary component be not a single point | Let z=f (w ) map () onto an
n- connected circular domain R, . Then the solution of Dirichlet § problem in Q with a con-

tinuous boundary value function u ({ )is
2n
n 1 _ n
Y (W)=;l 77{,[, u (C'(¢)Re (K; (C(w) ;fj))dﬁ—;‘ po; Cw)) . - 2.18)
where g, is defined by (8 .4)— (8 .6)but u'(§)is replaced by u (™' (£)) .
Finaly ,we give the Poisson- Jensen formular in n-connected domains (see [ 18] )

Theorem 2.6 Let { (z) be meromorphic in R, to have zeros at a, ,a, , ... ,a, and poles
at b,,b,,---,b, in R, ,and have no zeros and poles on the boundary Then for z,e R,
be distinct from the zeros and the poles we have

2n

log| )= i “21‘”[ log | I &)l Re K; & i))<10+z log]|S &, .a,)|— Z log|S &, b, )|— K
(2 19)
where
K=ilog|5 ¢ yﬂi)l~ilogls & bl ;s (2.20)
i=1 k=1 )

S (z,a)is the conformal mapping to map R, onto the unit disk cut by n— 1 concentric circu-
lar arcs, ¢ to 0, C, to the unit circle ; g is defned by 2.4)—(2.6)but u(f )|1s replaced

by log [T (£)I.

3. DIFFERENTIABILITY WITH RESPECT TO THEPAPAMETER OF ANALY- ‘
TIC FUNCTION FAMILY CONTAINING ONE PARAMETRIC VARIABLE

"~ Suppose that G (t), agtghb, is a domain family in z- plane, and function f @& ,t) is
defined in G (t) Let tye[a,b] be a fixed value [ (z,t)is called uniformly continuous for t
at t=1t, with respect to Ec G (t,)il there exists an 5> 0 such that

EcG (1) for Jt—t|<y .tela,b]

and if for any ¢>0 ,there existsa =9 (5)>0, 0 <1, such that
f@z.t)-T@z.4)l<e for zeE,|t—1t,]<é ,tefa,b] .

If for any ze G (t,) there is a ncighbourhood E of z satisfying the condition ,then f (z ,t)is
called locally uniformly continuous for t at t=1, The uniform diflcrentiability and the locally

uniform diflerentiability or f (z ,t)can be defined similarly |

Now let the n- connected domain family G (t) be given ,a<t<b ,and satisly the fol-

lowing presuppositions :
' 7
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l ) 0 oo¢G t); ,

2) the boundary " (t)of G (t)consxsts ofn dlSjOlnl closed Jordan curves z= Q @, t)
0e10,2q] ,m=1,2,... ,n;

3) the function Qm (0 ,t)is uniformly diflerentiable for t at t=1, with rcepect to the inter-
val [0,2n] ,where t,e[a,b] is a fixed value’

4) the n curves of I" (t,) are analytic ,
We investigate the univalent analytic function family w=F (z,t) definedin G (t) , whose
image domain family B (t), a<tgb ,satisfying the following presuppositions ;

1)0,00¢B (1) :

2) the boundary of B (l)conmsls of n analytnc Jordan curves w=g,, (0 t),0€el0. 27[}

-m=1.2,..,m;

3) the funchon a,, (0 ,t)is uniformly differentiable for t at t=t, with respect to the inter-
val [0.27] ;- ‘ :

4) B (t,)is an n- LOHHCLlCd circular domam R,
Then We have

Theorem 31 Let F (z,t), G (t) and B (t) satisfy the presuppositions .Then'F (z,t)
is locally uniformly diflerentiable for t at t=t, with.respect to G (t,) and so is the inverse

function z= (w,t) to B (t,), lurthermore

n

M{Z L (0) K, 62,40~ MD}

m=}

JD (w,1) —
T ]""‘o -

3.1)

where £, K (w,¢,) are determined as that in Section 2 but the domain hereis R_; C,
D are real constants The value Cis glven by (2.3)— (2.6) but to substitute L, (0) for

u(,), and

2 | o0 o
L, 0)= Re{ a [loglo’m(G,t)l ; aw(ém;to)}}wno' 3.2)

Prool We may assume F (z ,1,)=2 . Set

[ .= t log |E (C (1) ,0)/8 O], t#t, .{ Qe ()

0

: 3.3)
r( (t) t)—{ == log [ F({ (1) ,0)/¢ (L)) } L L t)eT (ty)

By the assumﬁlidn ol the theorem ,there exists the solution u (z ,t)of Dirichlet ’s problem in
G (t) with the boundary value I ({ (1) .t)  Obviously ,for t#1t, we have '

8
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l . . .
ufz,t)= = log|F @z,t)/z| , ze G (1) ‘ 3.4)
X (1] . . .

As Theorem 8 of [8] , it follows that u (z,t) is locally uniformly continuous for t at t=t,
with respect to G (t,) . And so is the real part of the function

@ @z,t)=logF (z,t)/z=P (z, t)+lQ (z,t). (3. 5)

Q (z,t) has the same property by the same reason _ Therefore v (Z, t)ls locally umform]y
differentiable for ¢ at t=1t, respect with to G (t,) and then ,by the Weierstrass theorem , the
derivative function is analytic in G (t,),lt is easy to see that the functnon (3.5)is continuous
inG (t,) (t,) except at most several boundary points .

Differentiating the equality

F (z,t)=2ze*%" (3.6)

with respect to t al t=1, ,applying (2,2)to (3.5)and then removing the assumption of

F (z ,t;)=2z we obtain that

2n k :
OF (Z’t) R = i _l_ _i)_ On (G)t)
‘ ot !‘t=|0— F (Zylo) { mZ:, 27[J; [ at logl F (Qm (0 ,() ’to) ' :]|v|0

'Km(F‘(Z’lo)’:Cm)F’O—CHD}- . ' 3.7)

As Theorem 5 of [8] ,it follows that @ (w ,t)is locally uniformly differentiable for t at
t=1, with respect to B (1) and

)t N F 0 ,t
aw(a»r L) —- acbgvvv W) . @ (<x>(:?vt )| G 8)
t=1, ) t=t

Then we obtain (3 1) from (3.7)and (3.8).

When n=2, the theorem is just a result of P P Kufarev and N B, Semuchina

[9] (with a little improvement )  Similarly we can prove that

Theorem 3.2 In Theorem 3.1, if we assume that the boundary of G (t)and B (t)are
some continuous curves (a<t<b ,tst;)and remove the condition 4) required by B (t),
then the functions @ (w,t) and F (a,t)are still locally uniformly differentiable for the

parameter t at t=t, (See[l0] )

4 . VARIATION THEOREM AND PARAMETRIC REPRESENTATION THEOREM

Let R denote a subregion of an n- connected region R_ with circle boundary ', The
complement set R\ R’ are n semi-closed annuli Q, . The distance betweem the two

9
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circles of each annulus is ¢ ‘ o i
Let Yy W,t) ,k=1,2,... ,n,denote n nuivalent functions containing parameter t de-
~ fined in n annuli Q, respectively , The boundary curves of ‘the image domain of Q, are
denoted by I, (t) and T"®(t), Suppose that the imeée regions of these annuli do not inter-
sect each other and that G (t)c G (t) where G (t) is the n-connected region bounded by
n curves [, (t) corresponding to the boundary circles of R, and G* (t) denote the
n-connected region bounded by the n curves I'¥(t) corresponding to the n boundary cir-
cles of RY
Now we establish the variation theorem and the parametric representation theorem for
univalent functions in n-connected regions which generalize the results of [4] , [5] and

(91 —112].

Throrem 4.1 Suppose that the function f {v) is anslytic and univalent in R and
that when T>0 is sufficiently small ,the function y, (w,t ) has the following expansion in
Q, for t¥[0,T]

Yok D=Cw)+1tg w)+0 @), k=1,2,--.,n @.1)

where 8, (w)is well-defined in Q—K . Next suppose that w=F (w,t) maps G ¢)onto R )
one—to—one and conlormally ,R_(0)= R, ,and that the centers a; (1) and radii r(t),
j=1,2,....n ,of the n boundary circles C,(t)ol R (t)are differentiable for t at t=10 Let

® (w,t) be the inverse function of F (z,t) . Then the following expansion holds in R (t)

O (w,t)=fW)+twl’'(W)P W)+o (1) 4.2)
. where o (t)is uniform with respest to every closed set of R ,and
2n
.P(W)=Z' ]il‘zi%f B; (¢)K; (w;&)dg—-C+iD, 4.3)
j=1.¢" 0
- g (&) \_| 0 0 ,
Bj(ﬁj)—Re(é_jﬁ_é—j-)—) [ o log|a; (t)+1; (t)e |]lzo @ 4)

K; (w;¢;)is defined as that in section 2 but here the region is Rf’,{i is a variable point on
the j-th boundary circie of RY’with arg (£,—a;)=6. C,D are real constants ;the value of
C isgiven by (2.3)— (2.6)but to substitute B, (£, )foru (£ ).

Proof It follows fromTheorem 3 2 that F (z t) is unifromly diflerentiable for t at

(=0 on every closed subset of G (0) .
" Denote the image region of G @ (t) under the mapping F z,t) by B “(t) Applying

Theorem 3 1 to G (1), B®(t)and FF(z,t) , we obtain that ¢ (w,t )is locally uni-
formly diflerentiable for t at t=0 with respect to R’ and that the following equality holds

n
, n F € ©,t: t
o (w . 1) .—:—;wf (w){ y —iln— [0 og| €Q_0.t;¢), )I] Km(w;,fm)dO-C+il)}

ntﬁ,”‘ ot Q. @.t;e)) |

-0

@.5)
1o
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where Q_ (0 ,t ;¢)is the pdrdmcmc representation ofr""’ (t),Let £ 0in (4 .5),weobtain
that |

Maﬁ:—’t)" —wl’(w)p W) @,6)
=0
Hence in R, (1) :

| q)(w,t)zw(w,0)+t—(2(—l)%v{—’—t~)—| +o (t)

=fw)+twf ' (w)p (w)+o (t)
and we have also proved that o (t)is locally uniform in R, .

When n=2 ,Theorem 4 1 is just the result of [9]

Theorem 4 2 For any given n-connected region B in z- plane whose each boundary
component consists of Jordan arcs of finite unmber and a pair of complex numbers z, and
W, o€ B, 0,00¢B ,there exists an n-connected region family R (t) with circle boundary
whose centers a (t) and radii 1 (1) ,i=1,2,...,n,are 2n diflerentiable functions of
parameter t ,not all constant ,w e R, (t),0 <<t ,such that the limit function

[(w)=Ilim @ (w,t) - 4.7)

1=ty
is a univalent and conformal mapping of a region with circle boundary onto B ,f (w,)=z, ,
where @ (w ,t)is univalent and conformal in R, (), w, to z,, and satisfying the following

relation in R, (1)

”%(f)‘ W 23) 22 JIK W3E) K 381y 031 0<t<ty)  @.8)

here K, (w ;¢&;)is defined as in section 2 but the region here is R, (t),&=a; (L) +1; (t)e”,

0 E .
[—a";logl L let)1) 1] a “.9)

i

P 0 ;0)=lim J

£>0 0
n; is a variable point on the j-th boundary circle of RY () with arg (;— 3, (1))=0 ;
F.(z ,t) is the inverse function of @ (w .t) | J

Proot (a)lt is easy to prove that for the region B there exists an n- connccted region
family G (1),0< <, ,satislying the lollowing conditions :

1)7eG().0,00¢G (1) -
2)for any two values t,, t,e[ 0.1,).t,<t, implies G (L, )C G (t,) (or assume that

the contra-relation G (t,)c G (,) is always true) ;
“3)G (t)tends to B as t-»1
4) the connected componmls of the boundary I" (1) ol (: (t) consist of Jordan arcs of

11
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finite number ,whose parametric equations are z=Q, '0,t).0€ [O 2n) ,m=1, 2,
5) the function Q_ (0 ,t)is uniformly differentiable for t at every te (0,1,) wnh respect
to [0,27] .

(b) For the given region family G (1) ,0gt<t, ,satisfying' the conditions 1) —5) listed
above ,it is not difficult to prove that there exists a corresponding function family F (z 0,
0<t<gt,, which map G (t) onto n-connected regions R, (t) with circle boundary one
—to — one and conformally , 'z, to w,, R, (t) tends to a region with circle boundary as
t—~t, and a; ), I (t) are differentiable ,"j= 1,2,.--n,

Suppose that £> 0 is sufficiently small . Let G ® (t) be the image region of R® (t) under
the inverse mapping z=®@ (w, t), It is easy to sce from Theorem 3 1 that the partial
derivativer of the function @ (w,t) with respect to.the parameter exist everywhere in

R“’ (t) and the following formula holds

LU aq) 3 T Q0,1 :)) _ L
ot { Z I [ ot og| F(§1 0,4;),T) |]T__' K; (w ’,m)d.() CRL‘DC}

(4,10)

where C, and D, are real constants , K; (w ;) is dclermmed by R“(l) and is dcﬁncd as

belore , Q., 0.t;8)=D (;,1) .
Using the condition zy=® (W, ,1) and introducing the function

0 -
¥; (0;t;z;)=f [%—logl F@@,0.T) |] dg @.11)

”j =1

we can rewrite (4 10)as

b _ G(D
at (’)w

)=

Z 217[J (K v sm) = K (wos) dy (0;t;s)} “.12)
0 .

Setting ¢ -0 in (4 12), we obtain (4  8)by means of a proposition es(dblmhed

by L. Ahlfors in [2] and exchanging the order of taking limit and integrating .
Obviously .the limit function .(4 . 7) possesses character required |

5. EXTREMAL PROBLEM OF DIFFERENTIABLE FUNCTIONALS

As an application ,we discuss the extremal problem of a class of differentiable func-

tionals |
Let G be an n-connected region .M, denote the set of all meromorphic functions in

G . N, denots the holomorphic function family in G .and K be an univalent subfamily of

12
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Mg. | - , .
A functional (D[(] defined in M is called weékly differentiable with respect to K if @ [:[]
does not take the value oo in K and for any fe K ,he M the limit (functional deriya{tivé)

}‘1“7{“’””"]"‘1’“” (A is real ) (5.1)
exists (linite or infinite ) .

A real functional ¢ [ f] defined in MG js called A,-type if for every fe K the functional
dervative is the real part of some complex functional D “”’[h] in M ; which does not take the
value oo in Ng o

Let {L} denote some n-connected region family in w- pldne and every region of the
family contain the point w=w, but do not contain the point w= oo . Let E denote the union
of all regions in {L} ,w,,w,,-..,w, are m points arbitrarily lakcn in E but distinct from
w

(13

Let

w¥=F (W;w, ,W,,---.W_:£,¢) (5.2)

denote the function satislying the following conditions :

I) F is analylic with respect to w, ¢, ¢ when Jg< 1, for some positive number 1,
weE ™ {w, 1Wyores 'Wm};

2)F (Wy;W, ,W, - ,W, ;& ,¢) =2, where z, is a fixed point |

3 ) when |¢| is sufficiently small ,for any region D in {L }there existe a region D* in {L}
such that the function F maps D into D* umvalenlly except arbitrarily small neighbourhood
of those w, which lie in D;

4) for sufficiently ‘\‘mdll lel and w e E\ { W, ,W,,-- ,W_}we have the following expansion

Wr=wHgep (W;w, -, W )+EpP, (W;w,,---,w_)+o (¢]) 5.3)

where P, is a rational fraction of w only to have simple poles w, ,w,, ... ,w_in E;P, is
analytic'in E ;P, and P, take the value 0 at w=w, ;the residue of P, at w=w, is denoted by
rg (W, .w, ) k=1,2,...,m,

Let K, denote the set of all univalent and conformal mappings which map
n- connected regions with circle boundary onto regions in {L}, z, to w, |

Theorem 5,1 Suppose that for any given m points w, .wz s+ w o in E to be distinet
from w, there exists a function (5.2) Then the lollowing variation forinulas hold in K,

(i) If fe K, and the corresponding region L has m outer points w ’, w,’ ... ,w_’ in
E ,then the function
@)=l @)+ep, T@);w, . wy..--.w_)+ep, (((z);w,,w,,.--w _)+o (Je]) (5.4)

13
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belongs to KL_.where w, is an arbitrary pqinl salislying |w,—w,"|<p for some sufﬁcienily
small number p>0 ,
(i) I fe K, then the function

fAA (Z)=f (Z)+£p| (f(Z) ,((Z|) LI ’r(zm))‘{-gpz (r (Z) ;‘f(Z |) 9 ,f(Zm) )

. (f(zm--,f(z.,g.)_{ zhr _ nty
k=

2 7zl '(z,) Z—1, Z,— 2,
' " Z u | Z d§
+j; “1“21(—*31. - ,Z; I J‘c. f“kzy [Hy @.¢)—H, (z,¢)] I=a }

I
+ —= ezl ' (2) - )
Z rl—z] =7z,

oo (k)M E,)) {xf+ﬁ _ t7g
. 2 =1 2 '(z,)

| - | B @) @-a) gt (7, 7)) (7—a))
B JZ—; '-@,-q;) @-a) - -G -7) (,—a)

n l T d
+ ’Z’ o L Zikz [H; @.,¢)—H, (z,.8)] fgj%}-m(m) (5.5)

belongs to K, ,where z, ,z, ,--- ,2, are m arbitrary points in the region RZ corresponding to
[, C .3 and r; are the j- th boundary circle of R, and its center and radius respectively ,
the direction of the integral path C, is chosen such that the region lies on the left side of C;;

the function v ‘
+z—2a,
lh&{hKﬂa@-(i;?j;4> 5.6)
~ the sign inside the bracket is positive when j=1 and negative otherwise , here we suppose
that R, lies inside C,

Proof (5.4) can be proved directly from the assumption of the theorem (5 5)can be
obtain from the variation formula in Theorem 4 |1 by computing and using the condition

that every function in K, maps z, to w, .

Starting from Theorem 5,1 , we can obtain variation formulas of form (5 4) and
(5 5) for many unlvalent function families , Here we will solve a general extremal problem

of functionals by means of the theorem |

It is easy to prove from (5 4) that the extremal region of A, - type functional in K,

14



has no outer points in £, Furthermore ,we have

Thcqfeui‘ 5.2 Let ¢ [f] be Ax.,' iype functional | If w=1{(z)is the extremal function of

the functional @[ f] with respect of K, ,then for any m points z, ,z, ,--- ,z in the region R,
corresponding to f,the following equality holds :

Dj(@)[p' (f(C) o (Z Ve ’f(zm))] +Djl®)[pz (f(C) ;f(ll) yere ,f(Zm))]

_ L E nez),-.fe@)) @) ' Lty gtz
72— T .{D’j [U (C)(C—Z-. %1%

Yl - —z‘,;;ZJ M, .~ H, G, c))édf')]

+Djr¢) [(f ¢ )( Z+7k 3 r,§+—2;kzzz —Z [ rif(fk*_ﬂ_j)(c——ai)

Z, o=z

'+ (Z,-a,) (zg—a,) L d
- ﬁf—i}.) (71,—215)] 2mi ZJ (“ €.0-H, (70’6))‘.‘:%;)]}
(5.7)

Proofl The funcclional differential equation (5 7) satisfied by the extremal functions can
be derived by using the formula (5 _.5)and the definition ol A,,- tpye functional

The theorem is a generalization of a main result of G G  Shlionski [13] .
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