<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>電流のフロベニウスの還元について、アプソリュート配列法の応用についての研究</td>
</tr>
<tr>
<td>著者</td>
<td>FUJIWARA, Hidenori</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1990), 715: 64-78</td>
</tr>
<tr>
<td>発行日</td>
<td>1990-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/101746</td>
</tr>
<tr>
<td>型式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学 学術情報リポジトリ

KURENAI 紅
Kyoto University Research Information Repository
Réciprocité de Frobenius pour des groupes de Lie résolubles exponentiels

Hidéndori FUJIWARA

Faculté de Technologie à Kyushu, Université de Kinki

§1. Désintégration d'une représentation induite

Soit G un groupe de Lie résoluble exponentiel d'algèbre de Lie \mathfrak{g}. Cela signifie que l'application exponentielle est un difféomorphisme de \mathfrak{g} sur G: nous le notons $G = \exp \mathfrak{g}$. Nous commençons cette note par nous intéresser aux représentations monomiales de G. Soient H un sous-groupe connexe de G et τ son caractère unitaire. Notre but est de décrire dans le cadre de la méthode des orbites la désintégration centrale canonique de la représentation induite $\pi = \text{ind}_H^G \tau$. Soit \mathfrak{h} l'algèbre de Lie de H. Alors il existe $f \in \mathfrak{g}^*$, une forme linéaire sur \mathfrak{g}, telle que f s'annule sur l'algèbre dérivée $[\mathfrak{g}, \mathfrak{g}]$ de \mathfrak{g} et que τ s'écrit $\tau(\exp X) = e^{if (X)}$ ($i = (-1)^{1/2}$, $X \in \mathfrak{h}$). Dans cette situation, τ se notera τ_f. Après que l'on avait vigoureusement étudié le cas essentiel où \mathfrak{h} était une polarisation en f, vers '72 Gréaud [12] et Quint [22] ont mis fin au cas où \mathfrak{h} était un idéal de \mathfrak{g}.

De plus, Quint a laissé des conjectures suivantes. Soit ν une mesure positive finie sur l'espace affine $\mathbb{E} = \mathfrak{g} + \mathfrak{g}^*$. \mathfrak{g}^* désignant l'annihilateur de \mathfrak{g} dans \mathfrak{g}^*, équivalente à la mesure de Lebesgue sur \mathbb{E}. On regarde ν comme une mesure sur \mathfrak{g}^* et prend son image ν par l'application de Kirillov-Bernat $\theta = \theta_0: \mathfrak{g}^* \to \hat{G}$, le dual unitaire de G. \hat{G} s'obtient comme l'espace des orbites coadjointes \mathfrak{g}^*/G de G au moyen de l'isomorphisme borélien induite $\theta = \theta_0: \mathfrak{g}^*/G \to \hat{G}$ (cf. [4], [12]). Pour $x \in \hat{G}$ on note $O(x)$ l'orbite associée. Soit $Z(\mathbb{E})$ l'ensemble des $\xi \in \mathbb{E}$ telles que l'orbite $G \cdot \xi$ atteint la dimension maximum parmi les orbites rencontrant \mathbb{E}.

Conjectures de Quint [22]: (i) Pour toute $\xi \in Z(\mathbb{E})$, chaque composante connexe de $\mathbb{E} \cap G \cdot \xi$ est une variété différentielle de dimension supérieure ou égale à $1/2 \dim G \cdot \xi$. 1
(i) \(t = \text{ind}_G \mathcal{T}, = \int_\Omega m(x) \nu(x). \) Ici la multiplicité \(m(x) \) est égale au nombre des composantes connexes de \(\mathcal{E} \cap \mathcal{O}(x) \) si chaque composante est une variété de dimension \(1/2 \text{dim} \mathcal{O}(x) \), sinon \(m(x) = \infty. \)

Depuis ont été faits des travaux fondamentaux, par Benoist [2],[3] pour le cas symétrique et par Corwin-Greenleaf/Grélaud [7],[13] pour le cas nilpotent, établissant les conjectures de Quint à condition d'une petite modification sans importance: dans (i), "toute \((\in \mathcal{E}) \)" doit être remplacé par "\(\mu \)-presque toute \(\xi \in \mathcal{E} \)." On voit encore des résultats dus à Lipsman [15],[16],[17] qui contiennent la désintégration de \(\tau \) pour le cas complètement résoluble. En plus ils ont montré que la multiplicité \(m(x) \) était retrouvée comme le nombre des \(H \)-orbites incluses dans \(\mathcal{E} \cap \mathcal{O}(x) \). Ici nous nous proposons d'établir les conjectures.

Soient \(G = \exp \mathfrak{g} \) et \(f \in \mathfrak{g}^* \). On note \(S(f,\mathfrak{g}) \) l'ensemble des sous-algèbres \(\mathfrak{g} \) de \(\mathfrak{g} \) subordonnées à \(f \), c'est-à-dire que \(\mathfrak{g} \) est un sous-espace totalement isotrope pour la forme bilinéaire alternée \(B_r \) sur \(\mathfrak{g} \) définie par \(B_r(X,Y) = f([X,Y]) \).

Théorème 1 ([10]). Soient \(\mathfrak{g} \) un idéal de \(\mathfrak{g} \), \(f \in \mathfrak{g}^* \) et \(\mathfrak{g} \in S(f,\mathfrak{g}) \). On note \(\mathfrak{g}^* \) l'annihilateur de \(\mathfrak{g} \) dans \(\mathfrak{g}^* \), \(\mu \) mesure positive finie sur \(\mathfrak{g}^* \) équivalente à la mesure de Lebesgue sur \(f + \mathfrak{g}^* \) et \(\nu \) l'image de \(\mu \) par l'application canonique de \(\mathfrak{g}^* \) sur l'espace des \(G \)-orbites \(\mathfrak{g}^*/G \). Pour \(\nu \)-presque toutes les orbites \(\mathcal{O} \in \mathfrak{g}^*/G \):

(i) Chaque composante connexe \(C \) de \((f + \mathfrak{g}^*) \cap \mathcal{O} \) est une variété.

(ii) L'espace tangent de \(C \) au point \(\xi \in C \) est égal à \(\mathfrak{g} \cdot \xi \cap \mathfrak{g}^* \).

(iii) Si l'on désintègre \(\mu \) par rapport à \(\nu \), \(\mu = \int \mu_\mathcal{O} \nu(\mathcal{O}) \), la mesure de fibre \(\mu_\mathcal{O} \) restreinte à une carte \((U; x_1,\ldots,x_m) \) de \(C \) est équivalente à \(dx_1,\ldots,dx_m \).

Corollaire 1. Soient \(f \in \mathfrak{g}^* \), \(\mathfrak{g} \in S(f,\mathfrak{g}) \) et \(\mathcal{E} = f + \mathfrak{g}^* \).

(i) Pour \(\nu \)-presque toutes les orbites coadjointes \(\mathcal{O} \in \mathfrak{g}^*/G \), le support de la mesure \(\mu_\mathcal{O} \) est égal à \(\mathcal{E} \cap \mathcal{O} \) tout entier.

(ii) Pour \(\nu \)-presque toutes les orbites coadjointes \(\mathcal{O} \in \mathfrak{g}^*/G \), chaque composante connexe \(C \) de \(\mathcal{E} \cap \mathcal{O} \) est une variété ayant la dimension supérieure ou égale à \(1/2 \).
dim Q.

(i) On a $\text{dim } C = 1/2 \text{dim } Q$ si et seulement si $H \cdot \{1\} = C$ pour toute $\{1\} \in C$. S'il en est ainsi, $Q + Q(\{1\})$ est un sous-espace lagrangien pour B_1.

Pour donner la désintégration des représentations monomiales de G, notre méthode sera différente de celle de Lipsman [17]. Dans ce qui suit, on confondra parfois les classes d'équivalence des représentations unitaires avec leurs représentants et liera deux représentations équivalentes par le symbole \simeq ou même par le signe d'égalité. Avant d'énoncer le théorème, on se prépare un lemme concernant des groupes à petite dimension.

Lemme. (i) Soit $G = \exp \mathfrak{g}_2$, $\mathfrak{g}_2 = \langle X, Y \rangle_R = RX + RY : [X, Y] = Y$. Soient $f \in \mathfrak{g}_2^*$, $\hat{\mathfrak{g}}$ = RX et $H = \exp \hat{\mathfrak{g}}$. Alors $\text{ind}_{\mathfrak{g}}^G I_f \simeq \text{ind}_{\mathfrak{h}}^H I_{\hat{\mathfrak{g}}} \oplus \text{ind}_{\mathfrak{h}}^H I_{-\hat{\mathfrak{g}}}$ avec $H' = \exp (RY_1 + RY_2)$. Soient $\hat{\mathfrak{g}} = \langle T, X, Y \rangle_R$, $\mathfrak{h} = \langle T, Y \rangle_R$ et $H = \exp \hat{\mathfrak{g}}$. Alors $\text{ind}_{\mathfrak{h}}^G I_f \simeq \text{ind}_{\mathfrak{h}}^H I_{\mathfrak{g}}$ avec $H' = \exp \hat{\mathfrak{g}}, \mathfrak{g}' = \langle T, X, Z \rangle_R$.

(ii) Soit $G = \exp \mathfrak{g}_4$, $\mathfrak{g}_4 = \langle T, X, Y, Z \rangle_R : [X, Y] = Z, [X, T] = -X, [T, Y] = Y$. Soient $f = \alpha T^* + \beta Z^* \in \mathfrak{g}_4^*$ ($\beta \neq 0$), $\hat{\mathfrak{g}} = \langle T, X, Z \rangle_R$ et $H = \exp \hat{\mathfrak{g}}$. Alors $\text{ind}_{\mathfrak{h}}^G I_f \simeq \text{ind}_{\mathfrak{h}}^H I_f$ avec $H' = \exp \hat{\mathfrak{g}}, \mathfrak{g}' = \langle T, X, Y \rangle_R$.

(iii) Soit $G = \exp \mathfrak{g}_6$, $\mathfrak{g}_6 = \langle T, X_1, X_2, Y_1, Y_2, Z \rangle_R : [X_1, Y_1] = \delta_{1,i} Z (1 \leq i, j \leq 2)$, $[X_1, X_2] = -X_1 - a X_2$, $[T, X_2] = -X_2 + a X_1$, $[T, Y_1] = Y_1 - a Y_2$, $[T, Y_2] = Y_2 + a Y_1$. Soient $f = \beta T^* + \gamma Z^* \in \mathfrak{g}_6^*$ ($\gamma \neq 0$), $\hat{\mathfrak{g}} = \langle T, X_1, X_2, Z \rangle_R$ et $H = \exp \hat{\mathfrak{g}}$. Alors $\text{ind}_{\mathfrak{h}}^G I_f \simeq \text{ind}_{\mathfrak{h}}^H I_f$ avec $H' = \exp \hat{\mathfrak{g}}, \mathfrak{g}' = \langle T, X_1, Y_2, Z \rangle_R$.

Revenant au cas général, nous reprenons les notations précédentes: soient $G = \exp \mathfrak{g}$ un groupe de Lie résoluble exponentiel, $f \in \mathfrak{g}^*$, $\phi \in S(f, \mathfrak{g})$, $H = \exp \phi$ et $\tau = \text{ind}_{\mathfrak{g}}^G I_f$. Soient encore μ une mesure positive finie sur $\mathbb{E} = f + \frac{\mathfrak{g}^*}{\mathfrak{g}^*}$ équivalente à la mesure de Lebesgue et ν son image par l'application θ de Kirillov-Bernat.
Théorème 2 ([10]). La désintégration de τ s'écrit

$$\tau \simeq \int_{\mathfrak{g}} m(\xi) x d\nu(x)$$

avec la fonction de multiplicités donnée à la façon suivante: $m(\xi)$ est le nombre des composantes connexes de $\mathfrak{e} \cap \mathfrak{L}(\xi)$ si chaque composante est une variété de dimension égale à $1/2\dim \mathfrak{L}(\xi)$. Lorsque cette condition n'est pas remplie, $m(\xi)$ est égale à $+\infty$. En tout cas $m(\xi)$ s'obtient comme le nombre des H-orbites contenues dans $\mathfrak{e} \cap \mathfrak{L}(\xi)$.

Les groupes de Lie résolubles exponentiels étant monomiales, le théorème 2 nous permet de connaître la désintégration centrale canonique des représentations induites. Soit φ une représentation unitaire irréductible d'un sous-groupe connexe H de G. Soient \mathfrak{g} l'algèbre de Lie de H et $p = p(\mathfrak{g}, \mathfrak{g}') : \mathfrak{g}' \to \mathfrak{g}$ l'application restriction. Il existe sous-variété $p^{-1}(\mathfrak{O}_H(\varphi))$ de \mathfrak{g}' une mesure μ bien déterminée par la mesure canonique sur $\mathfrak{O}(\xi) = \mathfrak{O}_H(\varphi)$ et par la mesure de Lebesgue sur l'annihilateur \mathfrak{g}'' (cf. [15]). On prend une mesure finie $\hat{\mu}$ sur \mathfrak{g}' équivalente à μ regardée comme une mesure sur \mathfrak{g}', et considère son image $\nu = \nu'\circ \varphi = (\mathfrak{O}_H)_*(\hat{\mu})$ sur \hat{G}.

Théorème 3 ([11]). La représentation induite $\text{ind}_{\mathfrak{g}} \varphi$ de G se désintègre comme suit:

$$\text{ind}_{\mathfrak{g}} \varphi \simeq \int_{\mathfrak{g}} m(\xi) x d\nu(x),$$

où la multiplicité $m(\xi)$ est donnée encore par le nombre des H- orbites contenues dans $\mathfrak{O}_G(\xi) \cap p^{-1}(\mathfrak{O}_H(\varphi))$.

§2. Désintégration d'une représentation restreinte

Soient ξ une représentation unitaire irréductible de G et H un sous-groupe connexe de G. Nous allons décrire la désintégration centrale canonique de la restriction de ξ à H, notée $\xi|_H$, et observer une réciprocity de Frobenius dans cette situation.

Dans le cadre de la méthode des orbites, le problème a été pris par Kirillov [1

4
14], pleinement étudié par Corwin-Greenleaf [7] pour le cas nilpotent et par Lipsman [15],[18] pour le cas complètement résoluble. On introduit l'orbite coadjointe \(\Omega_\alpha(x) \subset \mathfrak{g}^* \) de \(G \) déterminée par \(x \) et une mesure finie \(\mu_\alpha \) sur \(\mathfrak{g}^* \) équivalente à la mesure canonique sur \(\Omega_\alpha(x) \) (cf. [4]), regardée comme une mesure sur \(\mathfrak{g}^* \). Enfin on considère la mesure \(v = v_{\mathfrak{h}}^\alpha = (\theta_\mathfrak{h} \cdot p) \ast (\mu_\alpha) \), l'image de \(\mu_\alpha \) par l'application \(\theta_\mathfrak{h} \cdot p : \mathfrak{g}^* \to \hat{\mathfrak{h}} \).

Théorème 4 ([11]). On a

\[x \mid H \simeq \int_{\mathfrak{h}} m(s) dv(s), \]

où la multiplicité \(m(s) \) est donnée par le nombre des \(H \)-orbites contenues dans \(\Omega_\alpha(x) \cap p^{-1}(\Omega_\mathfrak{h}(s)) \).

Soient \(x_j \) (\(j = 1,2 \)) deux représentations unitaires irréductibles de \(G \). Le produit de Kronecker extérieur de \(x_1 \) et de \(x_2 \), noté \(x_1 \otimes x_2 \), correspond à l'orbite \(\Omega_{G \times G}(x_1 \times x_2) = (\Omega_\alpha(x_1), \Omega_\alpha(x_2)) \subset \mathfrak{g}^* \otimes \mathfrak{g}^* \). On identifie \(G \) au sous-groupe de \(G \times G \) constitué par les éléments diagonaux.

Corollaire 2. Soit \(p = p(\mathfrak{g} \oplus \mathfrak{g}, \mathfrak{g}) : \mathfrak{g}^* \oplus \mathfrak{g}^* \to \mathfrak{g}^* \). Alors

\[x_1 \otimes x_2 \simeq \int_{\mathfrak{g}} m(r) drv(r), \]

où \(v = (\theta_\mathfrak{g} \cdot p) \ast (\mu_{x_1} \ast \mu_{x_2}) \) et où \(m(r) \) s'obtient par le nombre des \(G \)-orbites incluses dans \((\Omega_\alpha(x_1), \Omega_\alpha(x_2)) \cap p^{-1}(\Omega_\mathfrak{g}(r)) \).

Corollaire 3. La réciprocité de Frobenius s'établit dans ces situations.

Cette réciprocité avait été obtenue presque partout dans [19]. Ce qui est nouveau ici, c'est, comme déjà remarqué dans [7], de la constater partout.

§3. Problèmes et exemples

Concernant notre représentation monomiale \(\tau = \text{Ind}^G \tau_f \), nous laissons deux questions qui remontent à Penney [21]. Pour une représentation unitaire \(\phi \) de \(G \), on
notera $H(\rho)$ son espace de Hilbert, $H(\rho)^0$ l'espace des vecteurs C^0 muni de la topologie habituelle, et $H(\rho)^-\infty$ son antidual. Étant donnés un sous-groupe fermé K de G et son caractère c, nous posons

$$(H(\rho)^-\infty)^K = \{ a \in H(\rho)^-\infty; \varphi(k)a = c(k)a, \ k \in K \}.$$

Reprenons notre représentation monomial

$$\tau = \text{ind}_{\Delta G}^G \tau = \int_{\Delta G}^\oplus m(z)dv(z).$$

En désignant par e l'élément neutre de G, par Δ_G la fonction module de G, nous voyons que la mesure de Dirac

$$\delta_\tau : H(\tau)^0 \ni \varphi \mapsto \overline{\varphi(e)} \in \mathbb{C}$$
definit un élément de $(H(\tau)^-\infty)^H \cdot x_1 \delta_{\mu,1}^{1/2}$, où $\Delta_H, G = \Delta_{H, G}$. Alors, suivant la désintégration de τ, δ_τ s'écrit

$$\delta_\tau = \int_{\Delta G}^\oplus \left(\sum_{k \in I} a_k^h \right) dv(z)$$

avec $a_k^{h} \in (H(\tau)^-\infty)^H \cdot x_1 \delta_{\mu,1}^{1/2}$ (cf. [5], [21]). Ce qui veut dire que, pour toute $\varphi \in C^\infty_0(G)$,

$$\Phi_\tau^c(\varphi) = \int_{\Delta G}^\oplus \left(\sum_{k \in I} \varphi(\cdot) a_k^h, a_k^h \right) dv(z),$$

où $\Phi_\tau^c(g) = \int_{\Delta G}^\oplus \varphi(gh)1_T(h)\delta_{\Delta_H, G}^{-1/2}(h)dh$ avec une mesure de Haar dh sur H.

Cela posé, voici nos questions.

0 Réciprocité: Peut-on choisir $\dim (H(\tau)^-\infty)^H \cdot x_1 \delta_{\mu,1}^{1/2}$ pour la multiplicité $m(z)$?

0 Formule de Plancherel concrète: Explicitiez les a_k^h intervenant dans la désintégration de δ_τ.

Depuis que les travaux de Benoist [2], [3] nous ont incités à étudier ces questions, nous en avons envisagé certains cas (cf. [8], [9]). Dans toute la suite on va y ajouter encore quelques exemples.

Exemple 1. $G = G_3(x) = \exp \mathfrak{g}_3(x)$; $(T, Y_1, Y_2): [T, Y_1] = Y_1 - aY_2, \ [T, Y_2] = aY_1 + Y_2$. Soient $f = Y_1^* \in \mathfrak{g}_3(x)^*$ et $\varphi = R_y^1$. Ici a peut être supposé négatif. Vu que
\[
e^{t\begin{pmatrix} \cos at & -\sin at \\ \sin at & \cos at \end{pmatrix}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = e^{t(\cos at - i\sin at)} = e^{t(\sin at - i\cos at)},
\]
on a l'expression paramétrée de l'orbite passant
\[
\{ = \begin{pmatrix} 1 \\ l \end{pmatrix} \in RY_1 + RY_2 ;
\]
\[
x(t) = e^t(\cos at - i\sin at) \quad \cdots \quad 0
\]
y(t) = e^t(\sin at + i\cos at). \quad \cdots \quad 0
\]
Si la ligne directe \(x = 1\) est tangente à l'orbite de \(\xi\), on voit
\[
(dx/dt)_{t=0} = e^t(\cos at - i\sin at - \sin at - al\cos at)_{t=0} = 1 - al = 0,
\]
ce qui donne \(l = 1/a\), noté \(l_0\). Soit \(t^*\) le premier nombre positif \(t\) vérifiant
\[
e^t(\cos at - (1/a)\sin at) = 1,
\]
et la \(y\)-coordonnée du point d'intersection se notant \(l_1\), nous prenant
\[
\{ = \begin{pmatrix} 1 \\ l \end{pmatrix}, \quad l_0 \leq l < l_1,
\]
comme représentants des orbites qui rencontrent l'espace affine \(f + \mathcal{F}^+\), où \(\mathcal{F}^+ = \{ \xi \in \mathcal{F}^*; \{ | \xi = 0 \} \} \).

On utilise la paramétrisation de l'orbite \(\emptyset\) et \(\emptyset\), et cherche, en posant \(e^t(\cos at - i\sin at) = 1\), des points d'intersection avec \(f + \mathcal{F}^+\). D'où \(e^t(1 + \lambda^2)^{1/2}\cos(at + \emptyset) = 1\) avec \(\emptyset\) tel que \(\sin \emptyset = \lambda(1 + \lambda^2)^{-1/2}\), \(\cos \emptyset = (1 + \lambda^2)^{-1/2}\), ce qui entraîne \(e^t(\sin at + i\cos at) = (1 + \lambda^2)^{1/2}e^t\sin(at + \emptyset) = \tan(at + \emptyset)\). On en trouve les points
\[
\zeta_n = \begin{pmatrix} 1 \\ \tan(at_n + \emptyset) \end{pmatrix}, \quad \zeta_0 = \xi.
\]

Choisissons arbitrairement des \(g_n \in G\) tels que \(g_n : \xi \to \zeta_n\), et fabriquons l'application
\[
a_n : \emptyset \longrightarrow \int_{\mathcal{H}_{\mathcal{H}^0, k_{\mathcal{H}^0}}} (h g_n) \mathcal{I}(h) \mathcal{I}_{\mathcal{H}, \mathcal{G}}^{1/2} \mathcal{I}(h) \mathcal{I}_{\mathcal{H}, \mathcal{G}}^{1/2} (h) dv(h), \quad \emptyset \in H(\xi),
\]
ce dernier n'est autre que
\[
\emptyset(g_n),
\]
ici l'on a noté \(B = \exp \mathcal{F}\) associé à la polarisation \(\mathcal{F} = RY_1 + RY_2\), \(\xi = \xi_\xi = \text{ind}_{\mathcal{H}}^\mathcal{H} I_\xi\), dont l'espace se notant \(H(\xi)\). On voit ainsi que \(a_n\) est un vecteur généralisé \(H\)-semi-invariant.

Par suite, pour \(\emptyset \in C^\infty(G)\),
\[\langle x(t) a_n, (g) \rangle = \langle a_n, x(t^*) \rangle = (g(t))/(g_n) = \int g \ (g(g(t)))(g_n)dg \]
\[= \int g \ (g(g_n)dg \int g \ (g(g_n^{-1}))g \Delta_n^{-1}(g)dg \]
\[= \Delta_n^{-1}(g_n) \int g \ \delta_g \ (gb_g^{-1})(g)\delta_g dg \]
\[= \Delta_n^{-1}(g_n) \int g \ \delta_g \ (gb_g^{-1})I_g(b)db. \]

Donc
\[(x(t^*) a_n)(g) = \Delta_n^{-1}(g_n) \int \ (gb_g^{-1})I_g(b)db. \]

Ensuite
\[(x(t a_n, a_n) = \Delta_n^{-1}(g_n) \int \ (gb_g^{-1})I_g(b)db = \int \ (gb_g^{-1})I_g(b)db \]
\[= \int \ (gb_g^{-1})I_g(b)db = \int \ \phi_n'(\exp sY_2)\exp(\text{istan}(at_n + \theta))ds. \]

Là, pour \(g \in G \), \(\phi_n'(g) = \int \ (gb_g^{-1})I_g(h)\Delta_n^{-1}(h) \)

Les formules \(\text{et } \delta \text{ entraînent } y(t) \) s’écrivant simplement \(y \),
\[(1 - ay)(dt/dl) = e^s \sin at, \quad \delta \quad \delta \]
\[(dy/dl) - (y + a)(dt/dl) = e^s \cos at. \quad \delta \quad \delta \]

D’autre part, d’après \(e^{2t} = (1 + y^2)/(1 + z^2) \),
\[(1 + z^2)(dt/dl) + l)(1 + y^2)/(1 + z^2) = y(dy/dl). \quad \delta \]

Les égalités \(\delta \) et \(\delta \) impliquent
\[(y(dy/dl) + (1 - ay - y)(dt/dl) = y, \quad \delta \]
\[(dy/dl) + (lay - y - a)(dt/dl) = 1, \]

donc
\[(1 - y)(dy/dl) + (1 - a)(1 + y^2)(dt/dl) = 0. \]

Par substitution de \(\delta \),
\[(1 - y)(dy/dl) + (1 - a)(y(dy/dl) - l)(1 + y^2)/(1 + z^2) = 0, \]
ce qui est-à-dire
\[l(1 - ay)(dy/dl) = l(1 + a)(1 + y^2)/(1 + z^2). \]

En conséquence, pour \(l \) non nul,
\[(dy/dl) = (1 - a)(1 + y^2)/(1 - ay)(1 + z^2). \]

La formule à montrer revient à la suivante, \(y_n = y_n(l) \) désignant \(\tan(at_n + \theta) \),
\[\phi_n'(e) = \int_{l_n}^{l} (l)dl \left(\sum_{n=0}^{\infty} \ i(n) \int \ \phi_n'(\exp sY_2)\exp(\text{istan}(at_n + \theta))ds \right) \]
\[= (2z)^{1/2} \int_{l_n}^{l} (l) \sum_{n=0}^{\infty} \ i(n)(\phi_n'(l)) (y_n)dl \]

avec certaines fonctions mesurables \(\iota(l) \) et \(i(n) \geq 0 \), car on multiplie au besoin \(a \), par un scalaire, et \((\phi_n')^{-1} \) signifiant la transformée de Fourier inverse de \(\phi_n' \).

En effet, soient \(\iota(l) = (1 - a)/(2z(1 + z^2) \) et \(i(n) = (1 + y_n^2) \) \(s \). Alors,
\[(2z)^{-1/2} \int_{l_n}^{l} (l) \left(\sum_{n=0}^{\infty} \ (\phi_n'(l)) \right)(y_n)dl \]
\[= (2z)^{-1/2} \int_{l_n}^{l} (\phi_n'(l))(y_n(1 - a)(1 + y_n^2)/1 - ay_n)(1 + z^2)dl \]
\[= (2z)^{-1/2} \int (\phi_n'(l))(s)ds = (\phi_n'(0)) \exp(0) = \phi_n'(e). \]
Exemple 2. Soit $G = G_3(a) = \exp g_a(a)$ comme dans l'exemple 1. Etant donnée cette fois $\psi = RT$ et $f \in G_3(a)^*$ arbitraire. Alors $f + f^\perp = f(T)T^* + RY_1^* + RY_2^*$ et l'on y trouve que les orbites générales ont leur représentant $\lambda(\theta) = (\cos \theta)Y_1^* + (\sin \theta)Y_2^*$ à laquelle s'associe la représentation irréductible $\iota(\theta) = \text{ind}_B^G \iota(\theta)$ de G, où B est le sous-groupe analytique correspondant à la polarisation $RY_1 + RY_2$, et où $\iota(\theta)$ signifie le caractère unitaire fabriqué par $\lambda(\theta)$.

Dans ce cas, notre formule habituelle pour obtenir des vecteurs généralisés H-semi-invariants nous offre

$$a(\theta) : \psi \mapsto \int_H \psi(h)I_1(h)\Delta_{h^{-1/2}}^*(h)dh.$$

Des raisonnements analogues à ceux faits pour le cas $ax + b$ montrent que notre $a(\theta)$ possède les propriétés requises. Il est aisé de voir, pour $\psi \in C_c(G)$,

$$\langle \iota(\theta)(\psi)a(0) \rangle(g) = \int_R \psi^f(gb)\iota(\theta)(b)db.$$

Puis

$$\langle \iota(\theta)(\psi)a(0) \rangle = \int_H \iota_1(h)\Delta_{h^{-1/2}}^*(h)dh\int_R \psi^f(hb)\iota(\theta)(b)db$$

$$= \int_H dh\int_R \psi^f(hb)\iota(\theta)(b)db = \int_H \Delta_0(h)dh\int_R \psi^f(b)\iota_1(b)db$$

$$= \int_R e^{2it}dt\int_H \psi^f(b)\iota_1(b)db,$$

avec la notation $\iota = h \cdot \lambda(\theta) = e^{i\cos(\theta + t)}Y_1^* + e^{i\sin(\theta + t)}Y_2^*$, $h = \exp tT$.

Ceci posé,

$$(2\pi)^{-2} \int_0^{2\pi} \langle \iota(\theta)(\psi)a(0) \rangle d\theta = (2\pi)^{-2} \int_0^{2\pi} \psi^f(\exp(b_1Y_1 + b_2Y_2))\exp(i\psi(b_1\cos(\theta + t) + b_2\sin(\theta + t)))db_1db_2.$$

Appliquons le changement de variables

$$\begin{align*}
x &= e^{i\cos(\theta + t)} \\
y &= e^{i\sin(\theta + t)},
\end{align*}$$

dont le Jacobian est

$$\begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial t} & \frac{\partial}{\partial \theta}
\end{vmatrix} = e^{2it},$$

$$dx = e^{2it}dt\partial \theta.$$

On en déduit que

$$(2\pi)^{-2} \int_0^{2\pi} \langle \iota(\theta)(\psi)a(0) \rangle d\theta = (2\pi)^{-2} \int_0^{2\pi} dx dy \int_R (\psi^f)^*(b_1, b_2)x$$

$$\chi \exp(i(xb_1 + yb_2))db_1db_2 = (\psi^f)^*(0, 0) = \psi^f(e),$$

où $(\psi^f)^*(b_1, b_2) = (\psi^f)_0 \exp(b_1Y_1 + b_2Y_2).$

Exemple 3. $G = \exp \mathfrak{g}$, $\mathfrak{g} = RT + RX + RY + RZ$; $[T, X] = X$, $[T, Y] = Y$, $[X, Y] = Z$ (oscillateur complètement résoluble), $f(a, \beta) = aT^* + \beta Z^*$ et $O(a, \beta) = G \cdot f(a, \beta)$ pour $\beta \neq 0$. On se donne $f = f(a_0, \beta_0)$.

(i) Soit premièremen $\psi = RT + RX$. Alors

9
\[\text{ind}^\mathcal{H}_{1r} = \int_R \theta(0(a_0, b))d\beta. \]

Au moyen de \(\{ = f(a_0, b) \in \mathcal{O}(a_0, b) \cap (f + \mathcal{F}) \) et d'une polarisation \(\mathcal{F} = RT + RX + \mathcal{R}Z \) en \(\zeta \), on construit \(\kappa(a_0, b) = \text{ind}_\mathcal{H}^\mathcal{F} \zeta \simeq \overline{\theta}(0(a_0, b)) \). Dans cette situation, la façon usuelle propose \(a(\beta) \) par \(\langle a(\beta), \theta \rangle = \#(e) \), qui satisfait clairement aux condition requises. Comme \(\mathcal{F} = \mathcal{F} + \mathcal{R}Z \) et que \(Z \) est un élément central, \(\langle H(x(a_0, b)), -\rangle = \#^\mathcal{H} \Delta^1_{\mathcal{H}} \) de \(\mathcal{C}(G) \), \(\kappa(a_0, b)(\#^\mathcal{H} a(\beta)) = \#^\mathcal{F} \) i.e.

\[\langle x(a_0, b), \#^\mathcal{H} a(\beta) \rangle = \int_R \#(gb)I_g(b)\Delta^1_{\mathcal{H}} \Delta^1_{\mathcal{O}}(b)db, \]

par suite,

\[\langle x(a_0, b), \#^\mathcal{H} a(\beta) \rangle = \int_R \#(b)I_g(b)\Delta^1_{\mathcal{H}} \Delta^1_{\mathcal{O}}(b)db. \]

De tout ce qui précède,

\[(2\pi)^{-1} \int_R \langle x(a_0, b), a(\beta) \rangle d\beta = (2\pi)^{-1} \int_R d\beta \int_R \#(e)^i(\exp wZ)\exp(i\beta)dw = \#^\mathcal{H} i(\beta). \]

(ii) Deuxièmement soit \(\beta = RT + \mathcal{R}Z \). Posons \(\{ = f(a, b_0) = aT^* + b_0Z^* \), ce qui nous dit \(f(a_0, b_0) + \mathcal{F} \cap \mathcal{O}(a_0, b_0) = a_0T^* + x^* + y^* + b_0Z^* \); \(xy = b_0(a - a_0) \). Si la valeur

\[\langle \exp(aX)\exp(bY), \{ \rangle = \langle \exp(bY)\exp(aX), \{ \rangle = \langle \{ + aX - bY + abZ \rangle, \]

est égale à \(f(\{) \), il vient \(a + ab_0 = a_0 \) i.e. \(ab_0 = a_0 - a \). En modifiant les bases par des scalaires convenables, on peut supposer que \(b_0 = 1 \). L'égalité obtenue ci-dessus devient \(ab = a_0 - a \). Par conséquent, pour \(f(a, b_0) \) telle que \(a \neq a_0, g_j = f(a, b_0) \in f + \mathcal{F}^j \) (\(j = 1, 2 \)) avec \(g_1 = \exp(X)\exp((a_0 - a)Y), g_2 = \exp(-X)\exp((a - a_0)Y) \). Pairellement au cas (i), on réalise la représentation \(\kappa(a, b_0) = \text{ind}^\mathcal{H} i(a, b_0) \simeq \overline{\theta}(0(a, b_0)) \). Pour \(\phi \in H(x(a_0, b_0)), \] nous rappelons la formule familière;

\[\langle a_1(a, \phi) = \frac{\phi_{\mathcal{H}/\mathcal{H}_{a_0}}(a, \phi) I_f(h)\Delta^{1/2}_{\mathcal{H},\mathcal{O}}(h)dh}{\int_R \phi_{\mathcal{H}/\mathcal{H}_{a_0}}(a, \phi) I_f(h)\Delta^{1/2}_{\mathcal{H},\mathcal{O}}(h)dh}. \]

L'intégrand de ce dernier est bien intégrable et il est immédiat que \(a_1(a) \in (H(x(a, b_0)), \mathcal{H}^\mathcal{H}, x_f \Delta^{1/2}_{\mathcal{H},\mathcal{O}}) \).

De même la formule

\[\langle a_2(a, \phi) = \frac{\phi_{\mathcal{H}/\mathcal{H}_{a_0}}(a, \phi) I_f(h)\Delta^{1/2}_{\mathcal{H},\mathcal{O}}(h)dh}{\int_R \phi_{\mathcal{H}/\mathcal{H}_{a_0}}(a, \phi) I_f(h)\Delta^{1/2}_{\mathcal{H},\mathcal{O}}(h)dh}. \]

définit un élément non nul

\[a_2(a) \in (H(x(a, b_0)), \mathcal{H}^\mathcal{H}, x_f \Delta^{1/2}_{\mathcal{H},\mathcal{O}}). \]

Soit à un élément quelconque de celui-ci. La semi-invariance de a par rapport à \(h = \exp(tT), t \in R, \) nous donne

\[\langle \exp(it(a_0 - a))\exp(e^tX), \phi \rangle = \langle a, \phi(\exp(e^tX)) \rangle. \]

10
car $\langle \xi(\alpha, \beta)(h)a, \phi \rangle = \langle a, \xi(\alpha, \beta)(h)^{-1} \phi \rangle = \langle a, \text{exp}(xK) \rangle = \langle a, \text{exp}(-i\sigma t) e^{i/2} \phi(\text{exp}(xe^x')) \rangle$. On en déduit que

$\langle a, \phi \rangle = c_1 \int_{\mathbb{R}^+} \phi(\exp(xK))x^{(a - d_1)} e^{-1/2} dx$ (c1: constante)

si sup $\phi \subset \mathbb{R}_+ = \{s \in \mathbb{R}; s > 0\}$, c'est-à dire que $a = c_2 \alpha$ (c2: constante) sur \mathbb{R}_+. De même, $a = c_2 \alpha (\sigma) (c_2: \text{constante})$ sur $\mathbb{R}_- = -\mathbb{R}_+$.

Supposons maintenant sup $a \in \mathbb{R}_+$ et écrivant

$a = \sum_{j=1}^{n} i_j D_j$, où $\langle D_j, \phi \rangle = (d^k \phi)(0)$, $\phi^*(x) = \phi(\exp(xK))$.

Alors en considérant la semi-invariance de a pour $h = \exp(tT)$, on a

$\exp(it^0)\sum_{j=1}^{n} (d^k \phi^*)/(dx^j)(0) = \langle \xi(\alpha, \beta)(h)a, \phi^* \rangle = \langle \sum_{j=1}^{n} i_j D_j, \phi^*(e^{xT}) e^{i/2} \exp(-i\sigma t) \rangle$

$= \sum_{j=1}^{n} i_j (d^k \phi^*)/(dx^j)(0) e^{(j+1/2)} \exp(it^0)$.

Si l'on y choisit ϕ vérifiant $(d^k \phi^*)/(dx^j)(0) = \delta_{i, j}$, il s'ensuit que

$\lim_{t \to 0} \frac{\exp(it^0)}{\exp(it^0)} = \frac{i}{m} e^{m/2} \exp(it^0) (t \in \mathbb{R})$.

Ceci posé, on conclut que $i = 0$, ce qui veut dire que $a = 0$.

En somme,

$$(H(\tau(\xi, \beta)))^\infty_{\xi, \beta} a = \text{Ca}_1 + \text{Ca}_2.$$

Passons à la formule de Plancherel concrète pour la représentation monomiale ind_0 \ tau, f = f(\alpha, \phi). Pour alléger les notations, \tau(\alpha, \phi), examinée de près pour le moment, sera notée \xi. Soit \phi \in C^\infty(\mathbb{G}) et \phi \in H(\xi, \varepsilon)" vectoriable différentiable à support compact modulo B. On calcule: a. (\xi) (j = 1,2) se notant simplement a._j,

$\langle \xi(\phi) a_j, \phi \rangle = \langle a_j, \xi(\phi^*)(\phi) \rangle = \frac{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h) \lambda_{h, \phi}^j(\phi)(h))}{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h))} dh$

$= \frac{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h))}{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h))} dh \int_{\mathbb{G}} \phi(g) \phi(gh^j) dg$

$= \frac{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h))}{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h))} dh \int_{\mathbb{G}} \phi(g) \phi^j(gh^{-1}) \phi(gh^{-1}) dg$

$= \frac{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h))}{\text{tr}(\varphi(h) \lambda_{h, \phi}^j(\phi)(h))} \int_{\mathbb{G}} \phi(g) \phi^j(gh^{-1}) \phi(gh^{-1}) \phi(gh^{-1}) \phi(gh^{-1}) \lambda_{h, \phi}^j(\phi)(h) \lambda_{h, \phi}^j(\phi)(h)\lambda_{h, \phi}^j(\phi)(h) \lambda_{h, \phi}^j(\phi)(h) dh$

L'ordre des deux intégrales au dernier membre s'échange, ce qu'on va voir dans la suite. Remarquons tout d'abord \lambda_{h, \phi}^j(\phi)(h) = \lambda_{h, \phi}^j(\phi)(h) = 1 et qu'à l'expression g se met comme g = \exp(xK), x parcourant un certain intervalle fini J. On note \lambda(h, g, b) l'intégrand dans \(et écrit h = \exp(tT), b = \exp(sT) \exp(xY) \exp(wZ) \exp((a - \alpha) Y) \exp(-X) \exp(-tT) X e^{-i/2} \exp(i(w + as - \alpha T)) ds dy dw.

On y trouve

$\exp(xK) \exp(sT) \exp(xY) \exp(wZ) \exp((a - \alpha) Y) \exp(-X) \exp(-tT) = \exp(xK) \exp(wZ) \exp(e^{-i} X) \exp((a - \alpha) Y) \exp((-X) \exp(-tT) X e^{-i/2} \exp(i(w + as - \alpha T)) ds dy dw.$

Compte tenu de cela,
\[\int_B \Xi(h, g, b) \, db \leq |\phi^*(x)| \int_{R^2} |\phi(\exp(wZ)\exp(e^{*}y)\exp((x - e^*)X)X)\exp((s - t)T)| \, e^{-2dsdydw} \\
= |\phi^*(x)| \int_{R^2} |\phi(\exp(wZ)\exp(yY)\exp((x - e^*)X)\exp((s - t)T)| \, e^{-2dsdydw} \\
= |\phi^*(x)| \int_{R^2} |\phi(\exp(wZ)\exp(yY)\exp((x - e^*)X)\exp(sT)| \, e^{(s^{*}t^{*})/2} \, dsdydw. \]

Puisque \(x \) parcourt l'intervalle fini \(J \), \(\phi \) est intégrable relativement à \(t \) et l'on peut bien échanger l'ordre des deux premières intégrales, ce qu'on vient de chercher.

Nous arrivons ainsi à

\[\langle x(a_1), x(a_1) \rangle = \mathcal{F}_{\mathcal{G}/H} \, dg \int_{H^n \times K_1} \, \lambda \, \int_B \phi(\exp(g^{-1}h^{-1})\phi(g) \Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \times \Delta_{B^*G}^{1/2}(h) \Delta_{B^*G}^{1/2}(b) \, db. \]

Donc

\[\langle x(a_1), x(a_1) \rangle = \mathcal{F}_{\mathcal{G}/H} \, dg \int_{H^n \times K_1} \, \lambda \, \int_B \phi(\exp(g^{-1}h^{-1})\phi(g) \Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \times \Delta_{B^*G}^{1/2}(h) \Delta_{B^*G}^{1/2}(b) \, db. \]

\[\mathcal{F}_{\mathcal{G}/H} \int_{H^n \times K_1} \, \lambda \, \int_B \phi(\exp(g^{-1}h^{-1})\phi(g) \Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \times \Delta_{B^*G}^{1/2}(h) \Delta_{B^*G}^{1/2}(b) \, db. \]

Des arguments tout à fait analogues à ceux employés plus haut constant que ces deux premières intégrales sont échangeables. Finalement,

\[\langle x(a_1), x(a_1) \rangle = \mathcal{F}_{\mathcal{G}/H} \, dg \int_{H^n \times K_1} \, \lambda \, \int_B \phi(\exp(g^{-1}h^{-1})\phi(g) \Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \times \Delta_{B^*G}^{1/2}(h) \Delta_{B^*G}^{1/2}(b) \, db. \]

Pourtant que l'égalité

\[\Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \]

s'établit. Cela, celui qui est égale à constater dans notre cas, on aurait

\[\Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \]

et finit

\[\langle x(a_1), x(a_1) \rangle = \mathcal{F}_{\mathcal{G}/H} \, dg \int_{H^n \times K_1} \, \lambda \, \int_B \phi(\exp(g^{-1}h^{-1})\phi(g) \Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \times \Delta_{B^*G}^{1/2}(h) \Delta_{B^*G}^{1/2}(b) \, db. \]

De même façon,

\[\langle x(a_2), x(a_2) \rangle = \mathcal{F}_{\mathcal{G}/H} \, dg \int_{H^n \times K_1} \, \lambda \, \int_B \phi(\exp(g^{-1}h^{-1})\phi(g) \Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \times \Delta_{B^*G}^{1/2}(h) \Delta_{B^*G}^{1/2}(b) \, db. \]

De tout ce qui précède,

\[\langle x(a_1), x(a_1) \rangle = \mathcal{F}_{\mathcal{G}/H} \, dg \int_{H^n \times K_1} \, \lambda \, \int_B \phi(\exp(g^{-1}h^{-1})\phi(g) \Delta_{B^*G}^{1/2}(b) \mathcal{I}_\xi(b) \mathcal{I}_\tau(h) \times \Delta_{B^*G}^{1/2}(h) \Delta_{B^*G}^{1/2}(b) \, db. \]
\[
\begin{align*}
\mathcal{I}_t(b) &= \int_\mathbb{R} \exp(\text{i}t(a_0 - \varrho))e^{\text{i}\varrho^2/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(xT)\exp(y)\exp(-X)\exp(\text{i}\varrho)X) \\
&\quad \times \exp(-\text{i}\varrho^2/2)dx dy \\
&= \int_\mathbb{R} \exp(\text{i}t(a_0 - \varrho))e^{\text{i}\varrho^2/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(ye^{-\text{i}X})\exp(-X)X) \\
&\quad \times \exp(\text{i}x(a_0 - \varrho))e^{-\text{i}\varrho^2/2}dx dy \\
&= \int_\mathbb{R} \exp(\text{i}t(a_0 - \varrho))e^{\text{i}\varrho^2/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(ye^{-\text{i}X})\exp(-X)X) \\
&\quad \times \exp(\text{i}x(a_0 - \varrho))e^{-\text{i}\varrho^2/2}dx dy \\
&= \int_\mathbb{R} \exp(\text{i}(t - x)(a_0 - \varrho))e^{(t^2 + x^2)/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(-\text{i}X)X) \\
&\quad \times \exp(\text{i}x(a_0 - \varrho))e^{-\text{i}\varrho^2/2}dx dy.
\end{align*}
\]

En effectuant le changement de variables \(t \rightarrow t + x, \) \(\varrho = s, \) on obtient
\[
\langle \mathcal{I}(\varrho) a_1, a_1 \rangle = \int_\mathbb{R} \exp(\text{i}t(a_0 - s))e^{\text{i}\varrho^2/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(xT)\exp(y)\exp(X)) \\
&\quad \times \exp(-\text{i}\varrho^2/2)dx dy.
\]

D'une façon analogue,
\[
\langle \mathcal{I}(\varrho) a_2, a_2 \rangle = \int_\mathbb{R} \exp(\text{i}t(a_0 - s))e^{\text{i}\varrho^2/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(xT)\exp(y)\exp(X)) \\
&\quad \times \exp(-\text{i}\varrho^2/2)dx dy.
\]

\[
\langle \mathcal{I}(\varrho) a_1, a_2 \rangle = \int_\mathbb{R} \exp(\text{i}t(a_0 - s))e^{\text{i}\varrho^2/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(xT)\exp(y)\exp(X)) \\
&\quad \times \exp(-\text{i}\varrho^2/2)dx dy.
\]

Ces calculs se terminent donc à
\[
\langle \mathcal{I}(\varrho) a_1, a_1 \rangle + \langle \mathcal{I}(\varrho) a_2, a_2 \rangle + \langle \mathcal{I}(\varrho) a_1, a_2 \rangle = \int_\mathbb{R} \exp(\text{i}t(a_0 - s))e^{\text{i}\varrho^2/2}dt \int_{\mathbb{R}^2} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(xT)\exp(y)\exp(X)) \\
&\quad \times \exp(-\text{i}\varrho^2/2)dx dy.
\]

Si l'on y pose
\[
\Psi(t) = \int_\mathbb{R} \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(X)) e^{\text{i}\varrho^2/2}dx dy,
\]

 cette fonction est infiniment différentiable pour t non nulle car, dans ce cas, l'intégrale serait effectuée sur un compact. D'ailleure, la fonction \(R^2 \ni (s, y) \)
\[
\rightarrow \mathcal{N}_f(\text{exp}(\text{e}^{\text{i}X})\exp(y))
\]

 appartenant à \(C^\infty(R^2), \) dont on fait des \(L^1 \)-approximations par des fonctions de la forme \(\Sigma_j \xi_j(s)\varphi_j(y) \) \((\xi_j, \varphi_j \in C^\infty(R)) \), pour un nombre positif \(\varepsilon \) quelconque, on peut choisir des \(\xi_j, \varphi_j \) de telle manière que
\[
| \Psi(t) - (2\pi)^{-1/2} \Sigma_j \int_\mathbb{R} \xi_j(s(1 - e^{\text{i}y}))(\varphi_j)\varphi_j^*(s)ds | < \varepsilon
\]

 quel que soit \(t \in R, \) où \((\varphi_j) \) désigne la transformée de Fourier inverse de \(\varphi_j. \)

 Compte tenu du fait que la limite, lorsque \(t \) tend vers zéro, de
\[
\int_\mathbb{R} \xi_j(s(1 - e^{\text{i}y}))(\varphi_j)\varphi_j^*(s)ds
\]

 est égale à \((2\pi)^{-1/2} \xi_j(0)\varphi_j(0). \) \(\Psi(t) \) est continue même en \(t = 0. \)

 Nous considérons à la fin la fonction \(e^{\text{i}\varrho^2/2}\Psi(t), \) lorsque \(t \rightarrow -\infty, \) elle décroît
rapidement grâce au facteur $e^{t^2/2}$. Examinons son comportement quand t tend vers $+\infty$. Un changement de variables mène à

$$e^{t^2/2} \psi(t) = e^{t^2/2}(1 - e^t)^{-1} \int_{\mathbb{R}^2} \hat{\psi}'(\exp(sX)\exp(yY))\exp(\text{i}ys(1 - e^t)^{-1}) \, ds \, dy,$$

et à

$$|e^{t^2/2} \psi(t)| \leq e^{t^2/2}(1 - e^t)^{-1} \int_{\mathbb{R}^2} |\hat{\psi}'(\exp(sX)\exp(yY))| \, ds \, dy,$$

ce qui prouve que $e^{t^2/2}\psi(t)$ est à décroissance rapide, t tendant vers $+\infty$.

Il en découle que la formule d'inversion de Fourier peut nous amener à la notre formule de Plancherel concrète pour la représentation monomiale $\tau = \operatorname{ind}^G_{H} r$:

$$(2\pi)^{-2} \int_{\mathbb{R}} \left(<\tau(\phi) a_1(s), a_2(s)> + <\tau(\phi) a_2(s), a_1(s)> \right) \, ds$$

$$= (2\pi)^{-1} \int_{\mathbb{R}} \hat{\psi}'(\exp(yY)) e^{ix^*} \, ds \, dy = \hat{\psi}'(e).$$

Bibliographie

[10] H. Fujiwara, Représentations monomiales des groupes de Lie résolubles exponen-
entiels, à paraître.

[16] R. Lipsman, Harmonic analysis on exponential solvable homogeneous spaces: The algebraic or symmetric cases, à paraître.

[18] R. Lipsman, Restricting representations of completely solvable Lie groups, à paraître.

