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A METHOD TO COMPUTE LOWER BOUNDS

ON CIRCUIT—SIZE COMPLEXITY
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INTRODUCTION

In Boolean complexity theory, cir;uit-size complexity is one
of the mgin targets of research ([1]1, [31). Circuit-size com-—-
plexity (whi;h is also called combinational complexity or network
complexity) of a Boolean function f over a base set B is defined
to be the Lleast number of gates contained in a Boolean circuit
which is composed of gates in B and computes f. For most of the
functions it is extremely difficult to get good estimate, not to
mention the exact value, on the circuit-size complexity. Espe-

piaLLy, good lower bounds are hard to obtain. It is, therefore,
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quite welcome to develop any new methods to derive good bounds on
circuit-size complexity.

The purpose of this note is to exhibit a technique to derive a
lower bound on the circuit-size complexity of a function f by
counting, individually, for eagh gate in B the number of occur-
rences only of that gate appearing in any circuit computing f.

Note that this method is not new: It already appeared in
Tiekenheinrich [2)]. However, it is rarely used in the literature

and so is worth mentioning here.

PRINCIPLE

Let G = {94, 95, «.. , 9.} be a base set, i.e., a set consist-
ing of gates (Boolean functions) which can be used in construct-
ing a circuit. Let f be a Boolean function which is realizable
by a circuit over G. Denote by Co(f) the circuit-size complexity
of f over G, and by CG,gi(f)’ 1 £ i r, the least number .of
occurrances of the gate g; contained in any circuit computing f
over G.

It is clear that

r
Ca(f) 2 E | CG,gi(f)'
i=1

Consequently, if a lLower bound m; on CG,gi(f) can be derived for

each 1 ¢ i < r, we have a lower bound on Cs(f) as well. That
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is, 1if
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RESULT

The above'principte can be applied to the following function f
to get (8/3)n Lower bound on the circuit~sizé complexity over the
monotone base {AND, OR}.

Let G = {AND(=A)Y,O0R(=V)} and ‘" be an n-variable function,

vn>0, defined as féLLows.

1 Xq * ees + %, 2 (1/3)n,
£, (g eee o x) =
0 X1 + .. + xn < (1/3)“,
1 xqg * e+ x> (2/3)n,
n) =
f (Xl sse 2 Xn) =
0 X1 * eee *+ Xn g (2/3)?‘)
and
f(")(xl, cee s X ¥) = (flcn)(xi, ciats X)) AP
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For the functions fl(") and fzgn), we can prove the following.

Lemma 1

Lemma 2

As

f(n)(xl, .o

and
(n)

f (Xl' [,

we have
(n)

C,or¢T )

and

(n)
Ce,anp¢f 72

The above principle can

CG,

CG,

(n)
OR(fl > 2 (4/3)n - 2.

(n)
AND(fZ Ty 2 4/3)n - 2.
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b 00 = £,(M g, Ll L, x ),
€2 Cgor¢f1¢"d ) 2 /30 - 2
¢ 2 Coanp¢fa’™d ) 2 s3I0 - 2.

now be applied to get

Proposition Cet™) 2 (8/3)n - 4.

PROOF OF L EMMAS

Proof of Lemmal: Let

T be an optimal circuit computing fl(n)

over the base set G, where n 2 2.
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Fact 1. For every input node X4 and ‘every-path p from x; to the

output node in 7, there exists 'at Least one OR-gate in p.

Proof. Suppose, on the contrary, that there is a path from X g

to the output node which coptains only AND-gates. Then by setting
Xy = 0 the output always takes the value 0, contradicting the
definition of f,(").

Fact 2, For some input node X 4 in 1, there exist at Lleast two
OR-~gates gl_and gz‘as well as two pathskpi and Po each connecting

X ; and the output node such that

1).95 lies on P; (i = 1, 2) and

2) there is no other OR-gate on Ps bétween x; and 93 (i =1, 2).

Proof. Assume that the statement is false, and consider, for

each 4, all the paths from the input node x@ to thé outbut node’.

Then all of them must contain the same OR-gate, say gi,:és the

closest OR-gate to the input node X5 Moreover, for some io” the

(a) | (b) (e

Fig. 1
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gate g;45 has no OR-gate as its ancestors, that is, there is no
OR-gate between 940 and input nodes. The situation is shown in
Fig. 1. In cases (a) and (b) the circuit is made not to depend

on xg by assigning Xp = 1, and in case (c¢c) it is made not to

depend on Xg by assigning Xp = 0. In either case this contra-
dicts the definition of the function.
Now, Lemma 1 can be proved by mathematical induction. As the

basis, note that

(1),

CG'OR(fl = 0,
(2)y -

CG,OR(fl ) = 1,
(3>, _

Ce,or(f1 ) = 2.

Suppose CG,OR(fi(n)) 2 (4/3)n - 2 holds for n 2 3 and consider

a circuit 7 (Nt3) fl("+3).

T(n+3)

computing Choose an input node x:; in

i
as in Fact 2, and substitute the value 0 to X By this

procedure at Lleast two OR-gates‘can be eliminated from T("+3)
without ;ffecting the result of the circuit. Repeat the same
procedure to the resulting circuit, eliminating at least two OR-
gates again. Finally, substitute the value 1 to any one of the
rermaining input nodes. Then what we have is a circuit computing

fl(n), because

(n+3) = (nd
fl (Xi, e o ® ,Xn, 0, 0’ 1) el fl (Xi' . e e ? Xn)

holds. (Here, w.l.0.g., the inputs to which the value 0 or 1 is

substituted are assumed to be Xn+1’ Xn+2 and xn+3.) By hypothe-

sis, we have
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(n+3)
Ce,or¢f1 "7 2 (4r3n -2y + 2+ 2

(4/3)(n+3) - 2.

This completes the proof of Lemma 1. QED

Proof of Lemma 2: In a circuit r over the base G = {AND, OR}
computing fz(n)<x1, ees » %), replace each AND-gate by an OR-

gate and each OR—gatg by an AND-gate. Then, by de Morgan's law,

the resulting circuit 7’ computes fz(")(il, cee # §n). Now it

is easy to see that

fz(n)(;‘.il LU ’ En) = fl(n)(x1l " e ’ xn)l

and Lemma 2 follows from Lemma 1. QED
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