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1 Introduction
Group-symmetry has been extensively employed to enhance efficiency in the numerical
computation in many different fields of mathematical sciences. Sparsity of matrices is
another important aspect to be taken into account for computational efficiency. In this
paper we show how group-symmetry and sparsity can be utilized for efficient matrix
computations. We discuss this issue in the context of numerical analysis of bifurcation
behavior of axisymmetric structures based on a pair of recent papers [11], [15] of the
authors.

We consider a static (or stationary, steady) bifurcation problem expressed by a
system of equations

$f(v, \lambda)=0$

in a finite-dimensional vector $v$ with a bifurcation parameter $\lambda$ . We are concerned with
the bifurcation diagram, i.e., the loci of $(v, \lambda)$ satisfying the equations in a region of
our interest.

As a typical problem that we have in mind, we mention the problem of determining
the deformation of the spherical diamond shell of Figure 1 under a uniform vertical
loading, where $v$ is a 93 $(=3\cross 31)$ dimensional vector representing displacements of
31 free nodes, and $\lambda$ is a loading parameter.

In applications we often encounter bifurcation problems that have group-symmetry
(in the sense to be made precise in \S 3). For instance, the system of equations describing
the spherical dianond shell has a symmetry expressed by a dihedral group if all the
physical properties are symmetric. Also finite dimensional approximations to group-
symmetric bifurcation problems described by differential equations often fall into the
category we shall consider.

A typical numerical procedure for obtaining the bifurcation diagram would involve
the following two phases:

(i) extending and tracing a path (or locus), and
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(ii) identifying bifurcation points as well as the directions of new branches.
The first phase (i) amounts to solving a system of nonlinear equations by, e.g., a
predictor-corrector (Newton-Raphson) type method, whereas the second to determin-
ing the rank of the Jacobian matrix $J$ of $f$ with respect to $v$ as well as its null space.

When the bifurcation problem has group-symmetry we can make use of this fact in
various ways to enhance the computational efficiency of the numerical analysis [1], [2],
[4], [5], [8], [9], [10]. In particular, a recent paper [9] by T. J. Healey illustrates to the
full extent how we can reduce the computational effort in the path-tracing phase (i)
by exploiting symmetry.

The main concem of this paper is to exploit symmetry in the second phase (ii)
of singularity-detection, in which we are to see if the Jacobian matrix is singular at
particular points. The basic idea of the proposed method is to find a suitable (uni-
tary) matrix $H$ , which is independent of particular points, such that the transformed
Jacobian matrix $H^{*}JH$ takes a block-diagonal form.

The advantage of this block-diagonalization is twofold. Obviously, the test for
singularity of $J$ is decomposed into a series of tests for singularity of diagonal blocks,
which are much smaller in size and hence much easier to handle. Moreover, the diagonal
blocks of $H^{*}JH$ are not all distinct but contain several pairs (or tuples, depending
on the symmetry) of identical matrices. Thus we have only to deal with distinct
representatives among the diagonal blocks, and we can check for their singularities
independently of one another, or in parallel if such a machinery is available.

The proposed method is based on the well-established mathematical facts about the
(nonunique) decomposition of a group representation into a direct sum of irreducible
representations (see \S 2). Such a transformation matrix $H$ , as well as the block-diagonal
form $H^{*}JH$ , is not uniquely determined from the group representation theoretic point
of view, which fact allows us to select a “good” one from the computational point of
view.

For a symmetric structure like the one in Figure 1, the proposed choice of $H$ is
induced naturally from the underlying geometric symmetry, and is a block-diagonal
matrix composing of many small diagonal blocks. In other words, the block-diagonal
form $H^{*}JH$ is obtained through a series of “local” coordinate transformations. This
“locality” is computationally advantageous in that it requires small amount of com-
putation and preserves, to some extent, the sparsity of the original Jacobian matrix
$J$ .

For the example problem of spherical diamond shell (Figure 1), the proposed
method puts the Jacobian matrix $J$ of size 93 into a block-diagonal matrix $H^{*}JH$

with 8 diagonal blocks, among which are 6 distinct blocks of sizes 6, 7, 8, 10, 15 and
16.

This paper is organized as follows. Preliminaries from group representation theory
are given in \S 2 with particular stress on dihedral groups. Sections 3 and 4 consider the
block-diagonalization of the Jacobian matrix under a group symmetry from a compu-
tational point of view. The former affords general framework for bifurcation problems
with symmetry expressed by a finite group $G$ , and the latter specializes it to axisym-
metric truss structures, the symmetry of which is represented by dihedral groups. We
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derive estimates for the computational complexity of the proposed procedure to show
its efficiency.

$Y|$

$arrowarrow X$

Fig.1. Spherical diamond shell

2 Preliminaries on Group Representation
This section is to introduce the notations as well as some fundamental facts about
linear representations of finite groups to be used in this paper. For complete accounts,
the reader is referred to textbooks such as [3], [7], [12], and [14].

Let $G$ be a finite group, whose order is denoted by $|G|$ . Let $V$ be a finite dimensional
vector space over $F=R$ or $C$ , where $R$ is the field of real numbers and $C$ the field of
complex numbers. Denote by $GL(V)$ the group of all nonsingular linear transformations
of $V$ onto itself, and by $GL(N, F)$ the group of all nonsingular matrices over $F$ of order
$N$ .

By a representation of $G$ on $V$ is meant a homomorphism $\hat{T}$ : $Garrow GL(V)$ , i.e.,

$\hat{T}(gh)=\hat{T}(g)\hat{T}(h)$ , $g,$ $h\in G$ .

3
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We call $V$ the representation space and $N=\dim V$ the dimension or the degree of the
representation. Fixing a basis $B=$ $(u_{1}, \cdot. , , u_{N})$ for $V$ , we can associate with $\hat{T}(g)$ an
$N\cross N$ nonsingular matrix $T(g)=T_{B}(g)=(T_{1j}(g))_{1\leq i,j\leq N}$ in a usual manner:

$\hat{T}(g)u_{j}=\sum_{i=1}^{N}T_{ij}(g)u_{i}$ , $g\in G$ .

The homomorphism $T$ : $Garrow GL(N, F)$ is called a matrix representation of $G$ . A
change of basis $B$ to $C=$ $(v_{1}, \cdots , v_{N})$ where $v_{j}= \sum_{=1}^{N}H_{ij}u_{i}$ with $H=(H_{ij})\in$

$GL(N, F)$ replaces the matrix $T_{B}$ by another matrix $T_{C}=H^{-1}T_{B}H$ .
We say that $\hat{T}$ (respectively $T$) is unitary if $\hat{T}(g)$ (respectively $T(g)$ ) is unitary for

each $g\in G$ .
Since we are interested in computational efficiency in this paper, we are concerned

not only with representations in the abstract sense but also with their concrete matrix
representations with respect to particular choices of bases. In f\’act, it is one of the
central issues of this paper to choose “good” bases that yield matrix representations
which are convenient to numerical computations.

Let $P$ be a finite set, and assume that $G$ acts on $P$ through permutations $\pi(g),gd\in$

$G$ , of $P$ . The permutation representation $\hat{T}$ is a representation of dimension $|P|$ defined
as follows. Consider the vector space $V=F^{P}$ , i.e., the linear space consisting of
“formal” sums $\sum_{p\in P}f_{p}u_{p}(f_{p}\in F)$ with basis $(u_{p}|p\in P)$ , and define バ: $Garrow GL(V)$

by
$\hat{T}(g)u_{p}=u_{\pi\langle g)p}$ .

A permutation representation is called the regular representation when $P=G$, and
the unit representation when $|P|=1$ .

Let $\hat{T}_{1}$ and $\hat{T}_{2}$ be representations of $G$ with respective representation spaces $V_{1}$ and
$V_{2}$ over $F$ . We say that $\hat{T}_{1}$ and $\hat{T}_{2}$ are equivalent if there exists a nonsingular linear
map $\hat{H}$ : $V_{1}arrow V_{2}$ such that

$\hat{T}_{1}(g)=\hat{H}^{-1}\hat{T}_{2}(g)\hat{H}$ , $g\in G$ .

We also say that two matrix representations $T_{1}$ and $T_{2}$ of $G$ are equivalent.if there
exists a nonsingular matrix $H$ such that

$T_{1}(g)=H^{-1}T_{2}(g)H$, $g\in G$ .

The direct sum $\hat{T}_{1}\oplus\hat{T}_{2}$ of $\hat{T}_{1}$ and $\hat{T}_{2}$ is a representation on the direct sum $V_{1}\oplus_{F}V_{2}$

of the representation spaces $V_{1}$ and $V_{2}$ , and is defined by

$(\hat{T}_{1}\oplus\hat{T}_{2})(g)=\hat{T}_{1}(g)\oplus\hat{T}_{2}(g)$ , $g\in G$ .

The tensor product $\hat{T}_{1}\otimes\hat{T}_{2}$ of $\hat{T}_{1}$ and $\hat{T}_{2}$ is a representation on the tensor product
$V_{1}\otimes_{F}V_{2}$ of $V_{1}$ and $V_{2}$ , and is defined by

$(\hat{T}_{1}\otimes\hat{T}_{2})(g)=\hat{T}_{1}(g)\otimes\hat{T}_{2}(g)$ , $g\in G$ .
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A subspace $W$ of $V$ is said to be ( $\hat{T}(G)-$ or $G-$ ) $invariant$ if $\hat{T}(g)w\in W$ for $w\in$

$W,$ $g\in G$ . If $W$ is invariant, the subrepresentation of $\hat{T}$ on $W$ , denoted as $\hat{T}|W$ , is
defined by the restriction of $\hat{T}(g)$ to $W$ for each $g\in G.$

$\hat{T}$ is said to be irreducible if
there exists no nontrivial invariant subspace $W$ , where $W$ is nontrivial if $W$ is neither
$\{0\}$ nor V. $\hat{T}$ is absolutely irreducible if it is irreducible as a representation over C.

There exist a finite number of nonequivalent irreducible representations of $G$ (over
a fixed field $F$). We denote by

$\{\hat{T}^{\mu}|\mu\in R(G)\}$

a family of all nonequivalent irreducible representations of $G$ , where $R(G)$ denotes an
index set for the irreducible representations of $G$ , and put

$N^{\mu}=\dim\hat{T}^{\mu}$ .

The unit representation is indicated by $\mu=\mu_{0}$ . We also fix a family

$\{T^{\mu}|\mu\in R(G)\}$

of nonequivalent’ irreducible matrix representations of $G$ .

It is known as Maschke’s theorem that any representation $\hat{T}$ of $G$ on $V$ can be
expressed as a direct sum of irreducible representations. To be more precise, $V$ is
decomposed as

$V=$ $\oplus V^{\mu}$ (2.1)
$\mu\in R\langle G)$

with
$V^{\mu}= \bigoplus_{i=1}^{a^{\mu}}V_{i}^{\mu}$, (2.2)

where $V_{i}^{\mu}$ is invariant, and $\hat{T}|V_{i}^{\mu}$ is irreducible and equivalent to $\hat{T}^{\mu}$ . Substituting (2.2)
into (2.1), we obtain

$V= \bigoplus_{\mu\in R\langle G)}\bigoplus_{i=1}^{a^{\mu}}V_{i}^{\mu}$ , (2.3)
/

a direct sum decomposition into irreducible components.
The decomposition (2.1) is unique and called the isotypic (or standard) decompo-

sition; each $V^{\mu}$ being called an isotypic (or homogeneous) component. On the other
hand, the decomposition (2.2) is not unique though the multiplicity $a^{\mu}(\geq 0)$ is uniquely
determined. Hence, the decomposition (2.3) into irreducible components is not unique
either.

The direct sum decomposition (2.3) means that the matrix representation is put
into a block-diagonal form

$T(g)=$ $\oplus\oplus^{\mu}T_{i}^{\mu}(g)a$
$g\in G$ (2.4)

$\mu\in R(G)i=1$
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with $T_{i^{\mu}}$ being irreducible, if we choose a basis of $V$ consistent with the decomposition
(2.3), i.e., if we first choose a basis $(h_{ij}^{\mu}|j=1, \cdot:., N^{\mu})$ for each $V_{i}^{\mu}$ and adopt their
union as a basis of $V$ . In this paper, we take advantage of the fact that we can impose
a further condition

$T_{i^{\mu}}(g)=T^{\mu}(g)$ , $g\in G$ , $1\leq i\leq a^{\mu}$ . (2.5)

Lemma (Schur). Let $T_{1}$ and $T_{2}$ be irreducible matrix representations of $G$ over $F$ , and
$J$ be a matrix over $F$ . Assume that

$T_{1}(g)J=JT_{2}(g)$ , $g\in G$ .
(i) If $T_{1}$ and $T_{2}$ are not equivalent, then $J=O$ .
(ii) If $T_{1}$ and $T_{2}$ are equivalent, then $J=O$ or $J$ is nonsingular.
(iii) If $T_{1}(g)=T_{2}(g),$ $g\in G$ , and $T_{1}$ is absolutely irreducible, then $J=\alpha I$ for some
$\alpha\in F$ . 口

The dihedral groups and their representations play substantial roles in this paper.
The dihedral group $D_{n}$ of order $2n$ is defined as

$D_{n}=\{1, r, \cdots,r^{n-1}; s, sr, \cdots, sr^{n-1}\}$ ,

where
$r^{n}=s^{2}=(sr)^{2}=1$ .

A matrix representation $T$ of $D_{n}$ is determined by $T(r)$ and $T(s)$ .
We index the family of nonequivalent irreducible representations of $D_{n}$ by

$R(D_{n})$ $=$ $\{sj|j=1,2,3,4\}\cup\{dj|j=1, \cdots, (n-2)/2\}$ for $n$ even;
$R(D_{n})$ $=$ $\{sj|j=1,2\}\cup\{dj|j=1, \cdots, (n-1)/2\}$ for $n$ odd,

where the first component $\delta=s$ ’ or $d$ ’ of the index $\mu=\delta j$ indicates the dimension of
the representation; $s$

’ for one-dimensional representations and $d$ ’ for two-dimensional
ones.

The one-dimensional irreducible representations $T^{sj}$ of $D_{n}$ are uniquely determined
and given by

$T^{s1}(r)=1$ , $T^{s1}(s)=1$ ;
$T^{s2}(r)=1$ , $T^{s2}(s)=-1$ ;
$T^{s3}(r)=-1$ , $T^{s3}(s)=1$ ;

$T^{s4}(r)=-1$ , $T^{s4}(s)=-1$ .
The two-dimensional irreducible matrix representations $T^{dj}$ are not unique but the
following choice seems to be convenient:

$T^{dj}(r)=R^{j}$ , $T^{dj}(s)=S$,

where
$R=(_{\sin(2\pi}^{\cos(2\pi}/n)n)$ $-\sin(2\pi/n)\cos(2\pi/n))$ , $S=(\begin{array}{ll}1 00 -l\end{array})$ . $- Z(2.6)$

These irreducible representations over $R$ are absolutely irreducible.
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3Exploiting General Group Symmetry

In this section we propose a computational method for the numerical bifurcation anal-
ysis of structures with group symnetry in general. The method will be applied to
axisymmetric structures (with $D_{n}$-symmetry) in the next section.

3.1 Group equivariance
We consider a system of equations

$f_{i}(v, \lambda)=0$ , $i=1,$ $\cdots,$
$N$, (3.1)

in a finite-dimensional real vector $v=(v_{j}|j=1, \cdots, N)\in R^{N}=V$ with a bifurcation
parameter $\lambda\in R$ . Suppose further that this problem is equivariant (cf. [6], [16]) to a
finite group $G$ through a unitary matrix representation $T$ of $G$ on $V$ :

$T(g)f(v, \lambda)=f(T(g)v, \lambda)$ , $g\in G$ ,

where $f=(f_{i}|i=1, \cdots,N)$ . Then the Jacobian matrix $J=(J:j),$ $J_{ij}=\partial f:/\partial v_{j}$ ,
commutes with. the group action:

$T(g)J(v, \lambda)=J(v, \lambda)T(g)$ , $g\in G$ , (3.2)

if $v$ is G-symmetric, i.e., if $T(g)v=v,$ $g\in G$ .
A typical numerical procedure for finding the bifurcation diagram would involve

the following two phases:
(i) extending and tracing a path (or locus), and
(ii) identifying bifurcation points as well as the directions of new branches.

The first phase amounts to solving a system of nonlinear equations by, e.g., a predictor-
corrector type method, whereas the second to determining the rank of $J$ as well as its
null space.

We shall explain in the following subsection how we can make use of the nonunique
decomposition (2.3), which is a refinement of the isotypic decomposition, for efficient
computation in the phase (ii) of singularity detection.

3.2 Block-diagonalization
Since $T$ is assumed to be unitary, we can find (cf. \S 2) a unitary (orthogonal) matrix
$H$ such that

$H^{*}T(g)H= \bigoplus_{\mu\in R(G)}\bigoplus_{1=1}^{a^{\mu}}T_{i^{\mu}}(g)=\bigoplus_{\mu\in R(G)}\bigoplus_{i=1}^{a^{\mu}}T^{\mu}(g)$ , $g\in G$ , (3.3)

where (2.5) is used. Note that $T^{\mu}(g)$ is a square matrix of order $N^{\mu}$ . If we accordingly
partition the column set of $H$ as

$H=(H_{:}^{\mu}|\mu\in R(G), i=1, \cdots, a^{\mu})$ (3.4)

7



166

$*$

with $H_{i}^{\mu}$ being an $N\cross N^{\mu:}matrix$ , we have $\backslash$

$T(g)H^{\mu}=H^{\mu}T^{\mu}(g)$ . (3.5)

With reference to (3.4) we put

$H^{\mu}=(H^{\mu}:|i=1, \cdots,a^{\mu})$ , $\mu\in R(G)$ ;

then
$H=(H^{\mu}|\mu\in R(G))$ . (3.6)

A block-diagonal matrix $\tilde{J}$ is obtained by transforming $J$ with $H$ :

$\tilde{J}=H^{*}JH$ .

If we define
$\tilde{J}_{:j}^{\mu\nu}=(H:^{\mu})^{*}JH_{j^{\nu}}$ ,

$\tilde{J}$ is partitioned consistently with (3.3):

$\tilde{J}=(\tilde{J}_{ij}^{\mu\nu}|\mu, \nu\in R(G);i=1,$
$\cdots,$ $a^{\mu};j=1,$ $\cdots,$

$a^{\nu}$ ).

Then Schur’s lemma (i) implies that

$\tilde{J}_{:j}^{\mu\nu}=O$ if $\mu\neq\nu$ , (3.7)

since $(H^{*}T(g)H)\tilde{J}=\tilde{J}(H^{*}T(g)H)$ by (3.2). It follows that

$\tilde{J}=$
$\oplus$

$\tilde{J}^{\mu}$ , (38)
$\mu\in R(G)$

where
$\tilde{J}^{\mu}=(\tilde{J}_{:j}^{\mu\mu}|i,j=1, \cdots,a^{\mu})$ , $\mu\in R(G)$ ,

is a square matrix of order $a^{\mu}N^{\mu}$ .
Each diagonal block $\tilde{J}^{\mu}$ can have a further structure by virtue of our choice (2.5)

and Schur’s lemma (iii). That is, if $T^{\mu}$ is absolutely irreducible, then $\backslash$

$\tilde{J}^{\mu\mu}:=\alpha^{\mu}I_{N^{\mu}}$ , $i,j=1,$ $\cdots,$
$a^{\mu}$ ,

for some $\alpha^{\mu}:j\in F$ . If we define

$A^{\mu}=(\alpha^{\mu}:j|i,j=1, \cdots,a^{\mu})$ , (3.9)

this means that $\tilde{J}^{\mu}$ is in a block-diagonal form (after suitable arrangement of rows and
columns) which has $A^{\mu}$ as its $N^{\mu}$ identical diagonal blocks of size $a^{\mu}$ :

$\tilde{J}^{\mu}=\bigoplus_{l=1}^{N^{\mu}}A^{\mu}$ .

8
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To sum up, we obtain

$\tilde{J}=H^{*}JH=(\bigoplus_{\mu\in R_{a}\langle G)}\bigoplus_{l=1}^{N^{\mu}}A^{\mu})\oplus(\bigoplus_{\mu\in R(G)-R_{a}(G)}\tilde{J}^{\mu})$, (3.10)

where $R_{a}(G)$ denotes the subsets of $R(G)$ consisting of absolutely irreducible repre-
sentations of $G$ . This type of block-diagonalization, as well as the one of (3.8) corre-
sponding to the isotypic decomposition (2.1), is well known in many application areas.
In bifurcation theory, as shown by [5], (3.8) plays an essential role in the analysis of
bifurcation at simple points. This principle is also used in quantum mechanics [7], [14]
in deriving “selection rules”.

Obviously, $J$ is singular iff $A^{\mu}$ or $\tilde{J}^{\mu}$ is singular for some $\mu\in R(G)$ . Hence, instead
of testing for the singularity of $J$ , of size $N$ , we may test for the singularity of $|R(G)|$

smaller matrices: $A^{\mu}$ , of size $a^{\mu}$ , for $\mu\in R_{a}(G)$ and $\tilde{J}^{\mu}$ , of size $a^{\mu}N^{\mu}$ , for $\mu\in R(G)-$

$R_{a}(G)$ . This procedure involves an extra work of computing the matrices $A^{\mu}$ and $\tilde{J}^{\mu}$ ;
the amount of computation for it depends on the choice of $H$ . The following subsection
shows a natural choice of $H$ , which results in an overall improvement in efficiency.

3.3 “Good“ basis
This subsection suggests a choice of the matrix $H$ in (3.3) and (3.10) for a class of
bifurcation problems including those arising from truss structures.

Let us recall the spherical diamond shell of Figure 1, and suppose that the steady
state of this structure is described in terms of displacements of the nodes. We denote
by $P$ the set of the free nodes; $|P|=31$ . As a consequence of the geometric symmetry
of this structure, the bifurcation problem is equivariant to the dihedral group $D_{6}$ , if
the physical characteristics and the loading pattern have also $D_{6}$ symmetry; $r\in D_{6}$

corresponds to the anti-clockwise rotation around Z-axis at angle $\pi/3$ and $s\in D_{6}$ to
the reflection with respect to XZ-plane. The space $V$ of the displacements can be
regarded as the tensor product of $R^{P}$ and the 3 dimensional Euclidean space $R^{3}$ , and
the action of $D_{6}$ on $V$ conforms with this tensor product. That is, the representation
$T$ of $D_{6}$ on $V$ is the tensor product of a permutation representation $T_{P}$ on $P$ (or on
$R^{P})$ and a representation $T_{E}$ on $R^{3}$ .

On the basis of this observation, we shall discuss in a rather general framework in
this subsection. The following section will give a more concrete description for truss
structures with $D_{n}$-symmetry.

Now we shall assume for (3.1) in general that

$V=R^{P}\otimes R^{E}$ (3.11)

for some finite sets $P$ and $E$ , and that

$T=T_{P}\otimes T_{E}$ ,

where $T_{P}$ is a permutation representation of $G$ on $P$ and $T_{E}$ a representation of $G$ on
$R^{E}$ . Note that the matrix $T$ is of size $N=|P|\cross|E|$ and each row (or column) set is
indexed by $P\cross E$ .

9
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Let
$P= \bigcup_{k\in K}P_{k}$

(3.12)

be the decomposition of $P$ into disjoint orbits with respect to the action of $G$ . Obvi-
ously, $R^{P_{k}}$ is a G-invariant subspace for each $k$ . Also let

$E= \bigcup_{l\in L}E_{l}$

be a decomposition of $E$ into disjoint subsets such that $R^{E_{l}}$ is a G-invariant subspace
for each $l$ . Then $P\cross E$ is partitioned into disjoint sets as

$P \cross E=\bigcup_{k\in K}\bigcup_{l\in L}P_{k}\cross E_{l}=\bigcup_{\kappa}(P\cross E)_{\kappa}$
. (3.13)

Here and henceforth, we put

$\kappa=(k, l)$ , $(P\cross E)_{\kappa}=P_{k}\cross E_{l}$ ,

and the summation over $\kappa$ will mean that for $k\in K$ and $l\in L$ . Put

$N_{\kappa}=|(P\cross E)_{\kappa}|=|P_{k}|\cross|E_{l}|$ .

Since $V=R^{P_{k}}\otimes R^{E_{l}}$ is G-invariant, we have a block-diagonal decomposition of $T$ :

$T(g)= \bigoplus_{\kappa}T_{\kappa}(g)$ , $g\in G$ .

Note that this decomposition is of combinatorial nature, in that it is obtained only
through partition of the set of coordinates without involving rotation of coordinate
axes.

Each diagonal block $T_{\kappa}$ of $T$ is to be decomposed further into irreducible components
through a suitable “local” change of the basis of $V$ . If we denote by $H_{\kappa}$ the unitary
matrices of size $N_{\kappa}$ representing such “local” transformations, we have (cf. (3.3), (3.4),
(3.5))

$(H_{\kappa})^{*}T_{\kappa}(g)H_{\kappa}=$

$\oplus\oplus^{\kappa}T^{\mu}(g)a^{\mu}$

$g\in G$ .
$\mu\in R(G)i=1$

The whole transformation matrix $H$ is a block-diagonal matrix:

$H= \bigoplus_{\kappa}H_{\kappa}$ (3.14)

and

$H^{*}T(g)H= \bigoplus_{\mu}\bigoplus_{\in\kappa R(G)}\bigoplus_{i=1}^{a_{\kappa}^{\mu}}T^{\mu}(g)=\bigoplus_{\mu\in R(G)}\bigoplus_{1=1}^{a^{\mu}}T^{\mu}(g)$, $g\in G$ ,

where
$a^{\mu}= \sum_{\kappa}a_{\kappa}^{\mu}$ .

10
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Then, as explained in the previous subsectiop, $\tilde{J}=H^{*}JH$ is in a block-diagonal form

(3.10) with $|R(G)|$ distinct blocks; $A^{\mu}$ is of size $a^{\mu}$ , and $\tilde{J}^{\mu}$ is of size $a^{\mu}N^{\mu}$ .
It should be clear that the partition (3.13) above does not put $\tilde{J}$ into a block-

diagonal form. That is, the submatrix $\tilde{J}_{\kappa\lambda}$ of $\tilde{J}$ with row-set $(P\cross E)_{\kappa}$ and column-set
$(P\cross E)_{\lambda}$ does not vanish in general even if $\kappa\neq\lambda$ , since $T_{\kappa}$ and $T_{\lambda}$ may have some
irreducible components in common.

Nevertheless, $\tilde{J}_{\kappa\lambda}$ is likely to vanish for many pairs of $(\kappa, \lambda)$ in practical applications.
This is not because of the group symmetry but because of the sparsity of $J$ and the
locality of our transformation $H$ . In fact, if $J_{\kappa\lambda}=O$ (where $J_{\kappa\lambda}$ is the submatrix of $J$

with the same row/column subsets as $\tilde{J}_{\kappa\lambda}$), then $\tilde{J}_{\kappa\lambda}=(H_{\kappa})^{*}J_{\kappa\lambda}H_{\lambda}=O$ . This means
that each $A^{\mu}$ or $\tilde{J}^{\mu}$ in (3.10) inherits the sparsity of $J$ in the sense that its $(\kappa, \lambda)$ block
vanishes if $J_{\kappa\lambda}=O$ .

3.4 Computational cost
We now give a rough estimate of the computational efficiency of the above procedure
when each irreducible representation of $G$ is absolutely irreducible.

The computational cost for obtaining the nonzero elements of $\tilde{J}$ from $J$ is estimated
as follows. For each $(\kappa, \lambda)$ , the distinct nonzero elements of $\tilde{J}_{\kappa\lambda}=(H_{\kappa})^{*}J_{\kappa\lambda}H_{\lambda}$ can be
computed with

$\sum_{\mu\in R\langle G)}(a_{\kappa}^{\mu}N_{\kappa}N_{\lambda}+a_{\kappa}^{\mu}N_{\lambda}a_{\lambda}^{\mu})$

multiplications and additions. Hence all the elements of $\tilde{J}$ can be computed with

$\sum_{\kappa}\sum_{\lambda}\sum_{\mu\in R\langle G)}(a_{\kappa}^{\mu}N_{\kappa}N_{\lambda}+a_{\kappa}^{\mu}N_{\lambda}a_{\lambda}^{\mu})$

$= \sum_{\mu\in R(G)}((N+a^{\mu})(\sum_{\kappa}a_{\kappa}^{\mu}N_{\kappa}))$ (3.15)

operations, where
$\sum_{\kappa}N_{\kappa}=N$, $\sum_{\kappa}a_{\kappa}^{\mu}=a^{\mu}$

are used.
Assuming the Gaussian elimination for testing for singularity of a matrix, the overall

computational cost of the proposed procedure is estimated by

$\sum_{\mu\in R(G)}((N+a^{\mu})(\sum_{\kappa}a_{\kappa}^{\mu}N_{\kappa})+\frac{1}{3}(a^{\mu})^{3})$ . (3.16)

In the case of $D_{n}$-symmetric structures, we can derive an explicit form for this expres-
sion. Note also that if $J$ is known to be a symmetric matrix, then the above estimate
reduces to its half.
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The cost (3.15) for computing $\tilde{J}$ is of the order of $N^{2}$ (if $|G|$ and $|E|$ are of constant
order). To see this, first observe

$\sum_{\mu}a_{\kappa}^{\mu}\leq\sum_{\mu}a_{\kappa}^{\mu}N^{\mu}=N_{\kappa}=|P_{k}||E_{l}|\leq|G||E|$ , $\kappa=(k, l)$ .

It then follows that

$\sum_{\mu}(N+a^{\mu})(\sum_{\kappa}a_{\kappa}^{\mu}N_{\kappa})$
$\leq$

$2N \sum_{\mu}\sum_{\kappa}a_{\kappa}^{\mu}N_{\kappa}=2N\sum_{\kappa}(\sum_{\mu}a_{\kappa}^{\mu})N_{\kappa}$

$\leq$

$2N|G||E| \sum_{\kappa}N_{\kappa}=2|G||E|N^{2}$ .

It is to be emphasized that this bound is due to our choice of “local” transformation $H$ ;
if $H$ were a dense matrix, the computation of $\tilde{J}$ alone would involve $O(N^{3})$ operations.

In the above argument we have assumed that all the entries of $J$ are computed
first. In many applications (e.g., truss structures, finite element method, or other
discretization schemes), however, the matrix $J$ is often sparse, being an assembly of
$O(N)$ elementary matrices. Then the computation of $\tilde{J}$ can be done more efficiently,
compatibly with such assembly process, as follows.

Let $\overline{J}^{e}$ be the elementary matrix, say, of size $N^{e}$ , corresponding to element $e$ ; we
denote by $J^{e}$ the $N\cross N$ matrix obtained by augmenting $\overline{J}^{e}$ with zeros. (In the case
of truss structures we have $N^{e}\leq 6.$ ) We assume that $J$ is expressed as

$J= \sum_{e=1}^{M}J^{e}$

with $M$ elementary matrices. Referring to $H_{\kappa}$ in (3.14), we denote by $\hat{H}_{\kappa}$ the $N\cross N$

matrix obtained by augmenting $H_{\kappa}$ with zeros; then (3.14) is written as $H=\Sigma_{\kappa}\hat{H}_{\kappa}$ .
We partition the column set of $H_{\kappa}$ as

$H_{\kappa}=(H_{\kappa}^{\mu}|\mu\in R(G))$ ,

where $H_{\kappa}^{\mu}$ denotes the $N\cross a_{\kappa}^{\mu}N^{\mu}$ submatrix corresponding to the representation $\mu$ .
Accordingly we express $\hat{H}_{\kappa}$ as

$\hat{H}_{\kappa}=(\hat{H}_{\kappa}^{\mu}|\mu\in R(G))$

with $N\cross a^{\mu}N^{\mu}$ submatrices $\hat{H}_{\kappa}^{\mu}$ , which is obtained by augmenting $H_{\kappa}^{\mu}$ with zeros. Using
these expressions we have

$\tilde{J}=$ $H^{*}JH$

$-$

$=$ $\sum_{e=1}^{M}\sum_{\kappa}\sum_{\kappa’}(\hat{H}_{\kappa})^{*}J^{e}\hat{H}_{\kappa’}$

$=$ $\sum_{e=1}^{M}\sum_{\kappa}\sum_{\kappa’}((\hat{H}_{\kappa}^{\mu})^{*}J^{e}\hat{H}_{\kappa}^{\mu’},|\mu, \mu’\in R(G))$

$=$ $\oplus(\sum\sum\sum_{\kappa’}(\hat{H}_{\kappa}^{\mu})^{*}J^{e}\hat{H}_{\kappa}^{\mu},)M$ . (3.17)
$\mu\in R(G)e=1\kappa$

12



$17\perp$

The last equality follows from (3.7); note also that $(\hat{H}_{\kappa}^{\mu})^{*}J^{e}\hat{H}_{\kappa}^{\mu’},\neq O$ in general. Since
$\overline{J}^{e}$ is small in size, there are only small number (at most $(N^{e})^{2}$ ) of pairs $(\kappa, \kappa’)$ that
contribute to this sum. For each $(e,\mu, \kappa, \kappa’)$ , the contribution of the matrix product
$(\hat{H}_{\kappa}^{\mu})^{*}J^{e}\hat{H}_{\kappa}^{\mu}$, to $A^{\mu}$ can be computed with $a_{\kappa}^{\mu}N^{e}(N^{e}+a_{\kappa}^{\mu},)$ operations. Thus, if $a_{\kappa}^{\mu}$ and $N^{e}$

are small, being independent of $N$ and $|G|$ (which is often the case), we can compute $\tilde{J}$

with $O(M|G|)$ operations. This implies that the first term in (3.16) could be replaced
by a term of $O(N|G|)$ if $M=O(N)$ . See [1], [11] and [15].

The sparsity of $J$ is partially inherited to $\tilde{J}$ (or to $A^{\mu}$ ), as has been mentioned
at the end of \S 3.3. There are many computational techniques to exploit sparsity in
computing determinants and hence the second term $(a^{\mu})^{3}/3$ in (3.16) could be reduced
considerably.

4 Axisymmetric Truss Structures
The method discussed in \S 3 is applied to axisymmetric truss structures, which enjoy
both equivariance to $D_{n}$ and sparsity. It is noteworthy in connection to the block-
diagonalization (3.10) of $J$ that each irreducible representation of $D_{n}$ is absolutely
irreducible, i.e.,. $R_{a}(D_{n})=R(D_{n})$ .

We are mainly interested in the comparison of the computational efficiency of the
proposed (block-diagonalization) method and that of the conventional (direct) method
for computing determinants or for solving linearized equations. We assume that the
Jacobian matrix $J$ , of size $N$ , is symmetric. As will be explained below, the computa-
tional efficiency of the proposed method, when applied to truss structures, stems from
the following properties:

(P1) The transformation matrix $H$ can be chosen as a block-diagonal matrix, repre-
senting a “local” coordinate change.
(P2) The Jacobian matrix $J$ is often sparse, being an assembly of element stiffness
matrices.
(P3) The band structure of $J$ is inherited to each block $\tilde{J}^{\mu}$ , again due to the “locality”
of $H$ .

The dominant computational cost in the direct method is the cost (a) to sweep
out $J$ by the Cholesky method. If we denote by $B$ the half band width of $J$ , we may
estimate this cost by

$B^{2}(N-B)+ \frac{1}{6}B^{3}$ (4.1)

in terms of the number of arithmetic operations.
The major computational cost of the proposed method consists of the cost (b) to

compute the diagonal blocks of $\tilde{J}$ of (3.10), and the cost (c) to sweep out $\tilde{J}^{\mu}$ by the
Cholesky method for $\mu\in R(D_{n})$ . As has been observed at the end of \S 3.3 for the
general case, we can reduce the cost (b) significantly by taking advantage of sparsity
(P2) of $J$ as follows.

Let us denote by $P$ the set of free nodes, the number of which equals $N/3$ , and
divide it into $|K|$ disjoint orbits $P_{k},$ $k\in K$ , as in \S 3.3. That is, each $P_{k}$ consists of
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those nodes which can be transformed to one another by the geometric transformations
represented by the elements of $D_{n}$ . We classify the orbits into four types labeled $0$ ,
$1M,$ $1V$ , and 2, as depicted in Figure 2. We partition $J$ as

$J=(J_{pq}|p, q\in P)$ , (4.2)

where $J_{pq}$ is a 3 $\cross 3$ matrix corresponding to a pair $(p, q)$ of nodes. For convenience,
we refer to the set of fixed nodes also as an orbit.

Fig.2. Orbital decomposition of the spherical diamond shell

Suppose that the truss structure is composed of $M$ elements (members). Consider
an element $e$ that connects a free node $\overline{p}(e)$ and another node $\overline{q}(e)$ (free or fixed)
which belong to orbits $\overline{k}(e)$ and $\overline{l}(e)$ , respectively. We sometimes use the short hand
notations: $\overline{p}=\overline{p}(e),\overline{q}=\overline{q}(e),\overline{k}=\overline{k}(e)$ , and $\overline{l}=\overline{l}(e)$ . Let $J^{e}$ denote the $N\cross N$ matrix
that corresponds to the member stiffness matrix $\overline{J}^{e}$ ; $J^{e}$ is partitioned as

$J^{e}=(J_{pq}^{e}|p, q\in P)$ (4.3)
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in accordance with (4.2). If nodes $\overline{p}(e)$ and $\overline{q}(e)$ are free, $J_{pq}^{e}$ is given by

$J_{pq}^{e}=\{\begin{array}{l}\hat{J}^{e}if(p,q)=(\overline{p}(e),\overline{p}(e))or(\overline{q}(e),\overline{q}(e))-\hat{J}^{e}if(p,q)=(\overline{p}(e),\overline{q}(e))or(\overline{q}(e),\overline{p}(e))Ootherwise\end{array}$

for some $3\cross 3$ symmetric matrix $\hat{J}^{e}$ ; and if nodes $\overline{q}(e)$ is fixed (and $\overline{p}(e)$ is free)

$J_{p^{e}q}=\{\begin{array}{l}\hat{J}^{e}if(p,q)=(\overline{p}(e),\overline{p}(e))Ootherwise\end{array}$

The whole Jacobian matrix $J$ is expressed as

$J= \sum_{e=1}^{M}J^{e}$ . (4.4)

Substituting (4.4) and (3.6) into (3.10) we see

$\tilde{J}^{\mu}=\sum_{e=1}^{M}\tilde{J}^{\mu e}$ ,

where
$\tilde{J}^{\mu e}=(H^{\mu})^{*}J^{e}H^{\mu}$ . (4.5)

$IfwepartitionH^{\mu},$ $ofsizeN\cross N^{\mu},$ $intoblocksas$

$H^{\mu}=(H_{p^{\mu}k}|p\in P, k\in K)$ (4.6)

with each block $H_{pk}^{\mu}$ , of size $3\cross N_{k^{\mu}}$ , corresponding to node $p$ and orbit $k$ , our choice
of $H$ suggested in \S 3.3 (see also [15]) enjoys the “locality” in the sense that

$H_{pk}^{\mu}=O$ if $p\not\in P_{k}$ .
Substituting (4.3) and (4.6) into (4.5), we obtain the expression

$\tilde{J}^{\mu e}=(\tilde{J}_{kl}^{\mu e}|k, l\in K)$

with
$\tilde{J}_{kl}^{\mu e}=\sum_{p=\overline{p}(e)\overline{q}(e)},\sum_{q=\overline{p}\langle e),\overline{q}\langle e)}(H_{pk}^{\mu})^{*}J_{pq}^{e}H_{ql}^{\mu}$

. (4.7)

If $\overline{p}(e)$ and $\overline{q}(e)$ are free nodes and belong to different orbits $\overline{k}(e)$ and $\overline{l}(e)$ (i.e., $\overline{k}(e)\neq$

$\overline{l}(e)),$ $(4.7)$ is evaluated to

$\tilde{J}_{kl}^{\mu e}=\{\begin{array}{l}(H_{\frac{\mu}{p}})_{*^{*}}-(H_{\overline{l}}^{\overline{k}}-(H^{\frac{\mu}{p}\overline{k}})^{)_{*}^{*}}\hat{J}^{\hat{J}_{e^{e}}^{H_{\frac{\mu}{q}}}H_{\frac{\mu}{\mu q}}^{\overline{k}_{\frac{}{p}\overline{k^{\overline{l}}}}}}(H_{\frac{\mu}{q}})^{\frac{\mu}{q}\overline{\iota}_{\hat{J}^{\hat{J}_{e^{e}}}H^{H_{\overline{l}}^{\frac{\mu}{p}}}}}if(k,l)=((e)^{\overline{\frac{k}{l}}}(e))if(k,l)=((e),(e))if(k,l)=((e),(e))if(k,l)=((e)^{\frac{\frac{}{k}}{l}}(e))\overline{\frac{\frac{\frac{k}{k}}{}l}{l}}Ootherwise\end{array}$ (4.8)
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If both nodes are free and belong to the same orbit (i.e., $\overline{k}(e)=\overline{l}(e)$ ),

$\tilde{J}_{kl}^{\mu e}=\{\begin{array}{l}(H_{\frac{\mu}{p}k}-H_{\frac{\mu}{q}k})^{*}\hat{J}^{e}(H_{\frac{\mu}{p}k}-H_{\frac{\mu}{q}k})if(kl)=(\overline{k}(e),\overline{k}(e))Ootherwise\end{array}$ (4.9)

If node $\overline{q}(e)$ is fixed (and $\overline{p}(e)$ is free),

$\tilde{J}_{kl}^{\mu e}=\{\begin{array}{l}(H_{\frac{\mu}{p}\overline{k}})^{*}\hat{J}^{e}H_{\frac{\mu}{p}\overline{k}}if(k,l)=(\overline{k}(e),\overline{k}(e))Ootherwise\end{array}$ (4.10)

The cost (b) for computing all $\tilde{J}^{\mu}$ for $\mu\in R(D_{n})$ is expressed as

$\sum\prime M\sum$
$C^{\mu e}$ (4.11)

$e=1\mu\in R(D_{n})$

where $C^{\mu e}$ is the cost for computing $\tilde{J}^{\mu e}$ for the member $e$ according to (4.8) to (4.10).
If the nodes $\overline{p}(e)$ and $\overline{q}(e)$ are free and belong to different orbits $\overline{k}(e)$ and $\overline{l}(e),$ $C^{\mu e}$ is
estimated by

$C^{\mu e}=3 \{\gamma_{k}^{\mu}(N_{k}^{\mu})^{2}+\gamma_{T}^{\mu}(N_{T}^{\mu})^{2}+\min(\gamma_{k}^{\mu}, \gamma_{T}^{\mu})N_{k}^{\mu}N_{\Gamma}^{\mu}+3\gamma_{k}^{\mu}N_{k}^{\mu}+3\gamma_{\gamma}^{\mu}N_{T}^{\mu}\}$ , (4.12)

where $N_{k}^{\mu}$ denotes the number of the columns of $H_{pk}^{\mu},$ $\gamma_{k}^{\mu}$ indicates the density of $H_{pk}^{\mu}$ ,
i.e., the ratio of the number of non-zero entries of $H_{p^{\mu}k}$ to $3N_{k^{\mu}}$ . If nodes $\overline{p}(e)$ and $\overline{q}(e)$

belong to the same orbit $\overline{k}(e)$ or if node $\overline{q}(e)$ is fixed, we have

$C^{\mu e}=3 \{\gamma\frac{\mu}{k}(N\frac{\mu}{k})^{2}+3\gamma\frac{\mu}{k}N\frac{\mu}{k}\}$ .

Tables 1 and 2 list the values of $N_{k^{\mu}}$ and $\gamma_{k}^{\mu}$ obtained by [15]. Table 3 lists the compu-
tational cost for $\tilde{J}^{\mu e}$ estimated by (4.11) with Tables 1 and 2.

As for the cost (c) we have the following estimate, similar to (4.1):

$\sum_{\mu\in R(D_{n})}\{(B^{\mu})^{2}(N^{\mu}-B^{\mu})+\frac{1}{6}(B^{\mu})^{3}\}$, (4.13)

where $B^{\mu}$ denotes the half band width of $\tilde{J}^{\mu}$ . Note that $\tilde{J}^{\mu}$ is of size

$N^{\mu}= \sum_{k\in K}N_{k^{\mu}}$
.

It is remembered that the use of parallel computers will further reduce the costs for
(b) and (c) to a great extent, thereby enhancing the efficiency of the proposed method.
With the aid of more than $n/2$ computing units, these blocks are computed in parallel
and the cost (c) will be reduced up to approximately $2/n$ times as what is presented
above. Moreover, one can even split the computation of each block into parts and
reduce the cost (b) further. Supported with infinite parallel units, the cost (b) would
be almost nullified.
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Table 1 Column-size $N_{k}^{\mu}$ of $H_{p^{\mu}k}$ .

Table 2 Density $\gamma_{k}^{\mu}$ of $H_{pk}^{\mu}$ .

Table 3 Computational cost for a truss member.

s3 and s4 apply only for $n=even$ .

Besides the efficiency in computation time the procedure above achieves the econ-
omy in memory space. It works with the element stiffness-matrices $\overline{J}^{e}$ (consisting of
$\hat{J}^{e}$ of size 3) and the diagonal blocks $\tilde{J}^{\mu}$ of size $a^{\mu}(\mu\in R(D_{n}))$ , thereby avoiding
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the explicit construction of the matrix $J$ of size $N$ . Moreover, $\tilde{J}^{\mu}$ inherits the band
structure and can be stored as such.

As the conclusion we schematize the computational flow below.

diagonal blocks
$O(nN^{2})$

$\tilde{J}^{\mu}$

$=$ $(H^{\mu})^{*}JH^{\mu}$

$arrow$
$=\Sigma_{e=1}^{M}\tilde{J}^{\mu e}$

$\downarrow o(B^{2}N)$ $\downarrow o(B^{2}N/n^{2})$

determinant $\det J$ , etc. $arrow$ determinants $\det\tilde{J}^{\mu}$ , etc.
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