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The transition mechanism in a two-dimensional wake was
studied by means of direct numerical simulations of a spatially
developing wake. The incompressible time-dependent 2-D Navier-
Stokes equations were solved using finite difference method in
the streamwise direction, pseudospectral Fourier method in the
cross-stream direction, and a third order compact Runge-Kutta
scheme for time advancement. The unstable eigenfunctions of the
Orr-Sommerfelt equations were used to perturb a Gaussian wake of
the inlet plane; only fundamental mode, fundamental and two
subharmonics, fundamental mode and random phase noise, and only
random phase noise. The wake flows forced with the eigenfunctions
of small and considerable amplitudes were investigated.

The statistical analysis was performed and some numerical
results were compared with the experimental measurements. When
only the fundamental mode is introduced, whose amplitude is
large of 0.01 of free stream velocity, the energy spectra show
the generation of harmonics. Unperturbed alternate vortices are
generated in the downstream. While the inlet plane is forced by
the fundamental mode and two subharmonics, numerical results show
the harmonics components of 2nd subharmonic. The alternate

vortices are purturbed the downstream. The selective
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amplification of a few modes around the fundamental mode 1is
observed in case of random phase noise of large amplitude. The
irregular fluctuation of phase around the fundamental mode play a
critical role to generating vortices at different downstream
locations. Therefore, the large and small-scale distortions of
vortical structure are observed in the further downstream. The
velocity signals in the further downstream show growth of
irregular component. The energy spectra of low-frequency
component become larger than that of the fundamental mode in the
further downstream. The strong interaction among some of same and
opposite sign vortices was observed, in which process a pairing
mbtion of same sign vortives and some couple vortices of
different signs éfe generated.

Wﬁen the amplitude of fluctuation at the inlet plane is zero
in the computation, the wake becomes laminar even at Reynolds
number 600. thilelthe inlet plane is forced by the random phase
noise of the amplitude of 0.0000lvof free stream velocity, the
fuhdahental mode selectively grows faster than other modes. The
spectra show a sharp peak atvthe fundamental mode. When fhe
amplitudes of the fundamental mode and two subharmonics at the
inlet plane are 0.00001, a rahdom ﬁotion is created in the flow,
so that the spectra have continuous components, as well as the
fuhdamental mode .

In case of a very large-deficit wake, the flow is absolutely
unstable at Reynolds number 700, no forcing after short time
disturbance makes the alternate vortices downstream. The

fluctuation sustains in the upstream during no forcing.
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1. Introduction

The study of laminar-turbulent transition in a plane wake, as
well as jet flow and separated flow, has been fundamental and
very important to the understanding of the mechanism of
transition of free boundary shear flow. In th decades, non-
linear and randomizing regions of the transition in a plane wake
have been investigated by numerical and experimental works.

The experimental studies of-the wake have been carried out
extensively by Sato et. al. (1961), (1970), (1975), (1978) and
Mattignly & Criminale (1972). Ditailed measurements were made on
the 1amina;—turbulent transition of two—dimensiongl wake with
many kinds of imposed_disturbances; natural disturbance in a wind
tpnnel, a sound of single frequency, a sound of two frequency
from outside and etc.. In all cases the transition to turbulence
was gradualf

Sato & Onda (1970) repoted that when the artificial disturbance
was introduced, the transition took place in different manner.
The whole transition process strongly depends on the initial
distqrbance. In non-linear region, They repoted the generation
of velocity fluctuations of subtraction and addition of two
artificial frequencies. They <conjectured that the slow and
irregular fluctuation found in the natural transition might be
ganerated by the same process of the subtraction of two
artificial frequencies. They explained the experimental results
by two empirical properties of the nonlinear interaction: the
growth suppression induced by a large amplitude fluctuation and
the stronger interaction between fluctuations of closer

amplitudes.
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On the other hand, Zabusky and Deem (1971) calculated time
developing wakes with a single exited eigenmode for the initial
condition using a finite-difference method and showed the
existence of a double row of elliptical vortices. They showed
first harmonic energy profiles with off-axis nulls, and second
harmonics phase profiles of the cross-stream direction, which was
similar to the measurements. Numerical simulations have focused
on the longitudinal spatial spectral statistics. Transverse
(cross-stream) averages of the longitudinal energies showed the
approximate power law Ekﬂ,k_n, where 3<n<4.Hannemann (1987)
simulated absoiutely and convectively unstable regions behind a
flat plate with a thick trailing édge using a finite difference
method. The temporal amplification process of perturbations at
supercritical Reynolds numbers was studied. Hultgren & Aggarwal
(1987) showed the critical defect value and supercritical
Reynolds numbers of absolutely unstable Gaussian wakes by non-
linear stability theory.

HoWever; There is still a large gap between the understanding
about nonlinear interaction and randomization by numerical
simulations and that by laboratory measurements. It is difficult
for the numerical simulation of time. developing transition flow
to present the whole spatially evolution process of statistics
measured by the experiments. While the experiment measurement
is usually hard to offer the time dependent structual evolution
such as vorticity and pressure.

The purpose of this investigation is to presnt the spatially
evoluting process of various instability modes interaction and

the flow dynamics that are crucial to the understanding of the
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evolving structure which governs the transition flow. The non-
linear region and the beginning of réndomness are studied by
means of the statistical analysis of deterministic and random
components created in the flow with various disturbances; for
example, linear instability modes and random phase noise. The
effect of interaction of these modes on the flow structure is
systematically investigated. Moreover, a very large-deficit
Gaussian wake is studied from the view of an absolute unstable
motion. This paper tries to understand the transition mechanism

determined with the experimental measurement.

2. Mathematical formulation
2.1 governing field equations

Computational domain starts downstream of the trailing-edge
of a spliter plate. Figure 1 illustrates computational set up and
the coordinate system used. The x-axis represents the streamwise
flow direction. The yfaxis represents the cross-stream direction
perpendicular to x. The streamwise extent of the computational
domain 1is finite and the y extent 1is infinite in both the
positive and negative y directions. The time-dependent

incompressible Navier-Stokes equations are

QU ) oP !
a—t—egk%wr ox. T Re Ve (1)
where P is the dynamic pressure and Re=Ub%/V_ , b% represents the

half width of the inlet laminar wake flow. The conservation of

mass for the fluid is expressed by the continuity equation:

(&n)
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aul_o (2)

All quantities are non-dimensionalized by the appropriate
characteristic scales, U and b%.
2.2 Boundary conditions
A Gaussian profile was chosen for an inlet flow condition,
namely, the mean u component of velocity at the inlet plane is

represented by:
W =1— 0692 eXP(—0.69315Y") (3)

The coefficient 0.692 in equation (3) is used so that the center-
line deficit will correspond to the experiment by Sato & Kuriki
(1961). In the study of lérge—deficit wake, this coefficient is
set at 0.99. The other coefficient 0.69315 is set so that the
half-width of the profile is 1 at y=1. In addition to the mean
flow, the inlet is forced with the eigenfunction perturbations.
The unstable eigenfunctions of Rayleigh equation for the Gaussian
profile of the equation (3) were calculated. The fundamental
mode, first and second subfarmonics are superimposed on the

velocity at the inlet plane. These perturbations are of the form
_L \WP.t
o= 1Tue e (4)

where (Up represents the frequency of oscillation of the
eigenfunction. The random phase noise is created by the

perturbation

TP ~ N t



where Uorp is the random frequency generated by a random function.
In this work, only the v component was used for the perturbation.
A time dependent advection condition of the form:

W Uaaa—%f: (6)

in invoked for each of the velocity components at the exit plane,
where U, représents the advection speed of the large-scale
structures in the layer. This approarch has been taken in other
simulations of spatially developing free shear layers (see Davis
& Moore (1985)). The choise of U_,=U is appropriate for the
simulation of the small-deficit wake at the exit plane. We use a
large computational domain in x direction, so that the exit plane
is small-deficit wake.

The velocity components are splitted into computational

variables and "reference" profiles. Specially,

W = We + Uiy)

v = Ve 7

where the computational variable are denoted by subscript c.
Boundary conditions at infinity are that all fluctuations and
their derivatives are zero. The mapping ( Cain et al. 1984)
employed in this work moved the points at infinity into
computable range.
2.3 Initial conditions

The Gaussian profile prescribed for the mean u component at

the inlet plane is distributed uniformly at all x locations in

the domain at t=0. This profile is perturbed with eigenfunctions,
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but only at the inlet plane. These initial conditions must be
allowed to wash out before any statistical analysis may be
performed on the layer. Laminar flow profiles calculated with no
forcing at the inlet plane are used as the initial condition to

simulate the large-deficit wake.

3. Numerical method

The two-dimensional Navier-Stokes equations are solved on a
domain that is infinite in the y dirrection and finite in the x
direction. Pressure is eliminated by taking the curl of equation
(1) twice. This yields a forth-order equation for the streamwise

velocity u as follows:

aVu _ ) 4
X = h+ Re VL (8)

where = — B__Gﬂu__ §ﬂ1>

Hi includes the. convective terms.
Equation (8) is advanced in time explicitly using a compact
third-order Runge-Kutta scheme by Wray (1980). Since the
Laplacian is contained in the time—derivative term, a Poisson
equation must be solved ‘during each substep. As in primitive
variable algorithms, it is the way in which this Poisson equation
is solved that guarantees conservation of mass. The cross-stream
velocity v is recovered directly from the continuity equation
(2). The algorithm is based on a Fourier method with a.cotangent

mapping in the y direction, and high-order accurate Padé

approximations in the x direction. The first x-derivatives in the



continuity equation and in: the advection terms are approximated
with modified Padé finitevdifferencing (S. Lele, private
communication). The particular approximation used here yields
sixth-order accuracy for the low to moderate wavenumber
components of the solution, and significantly less dispersion
errors for high wavenumbers. The second and fourth-order x-
derivatives are approximated with classical Padé.formulas. In
order to avoid the inversion of very large sparse matrices for
the solution of the Poisson equation, the effective wavenumber
concept by Kim & Moin (1985) is applied in the x direction. It is
implemented by subtracting off certain boundary terms and the
expanding the solution in a sineseries. A sine transformation
decouples the modes and allows the solution to be obtained by
aseries of one-dimensional inversion of the y direction
approximation. The algorithm contains no numerical diffusion,
which we believe is important for problems where the dynamics is
important, and which contain many regions of strong gradients.
Furthermore, without numerical diffusion, marginal resolution
will usually appear as high-wavenumber oscillations and is thus
easily detected. Details and numerical analytic tests of the

scheme will be presented elsewhere.

4, Vortical structure in a plane wake
4.1 Present numerical simulations
Five cases were studied in the present work: The first (Case 1)
is a wake flow forced with a fundamental mode only. The second
(Case 2) is a wake flow forced by the fundamental mode and its

first subharmonic. The third one (Case 3) is forced by the

~O
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fundamental mode and its first and second subharmonics, whose-.
phase rag is zero dgree. The fourth one (Case 4) is. forced by the
fundamental mode and a random phase noise. In this case, the
amplitudes of the fundamental mode and random phase noise are
0.01 and 0.0005 of free stream U velocity respectively. The fifth
one (Case 5) is forced with the random phase noise only. In
Cases 1 and 2, the amplitudes of purturbation were 0.01. In Cases
3 and 5, the amplitudes were 0.0, 0.00001 and 0.01 of free
stream U velocity. The Reynolds number, which based on the half-
value width at the inlet plane, ranged from 200 to 700. In the x
direction (0<x<200) at Re=200, 384 uniformly distributed grid
points were: used and. 64 .grid points in the:y direction. At
Re=300, 512 grid -points were used in the x direction (0<£x<200)
and 128 grid points in the . y directien. At Re=600, 768 grid
points were used in the x direction (0<x<200), 1536 grid points
in the x direction (0<£x<400), and 128 grid points in the ¥y
direction. In case of the very large deficit wake, 1536 grid
points were used in the x direction (0<x<300) and 128 grid points
in the y direction. The inlet plane was forced by the fundamental
mode of the amplitude 0.0001 for only one period.
4.2 Generation of vortical structure

Flow visualization of numerical results show the generation of
vortex street downstream. In .Case 1, the unperturbed vortex
street can be observed as shown in Fig. 2. The time traces of
velocities are periodic. The spectra have fundamental and its
higher harmonics can.be“séen. In Case 3, in which the émplitude
of the purturbation is 0.01, the vortex street is perturbed in

the downstrem location. The time traces of velocities are still

/D



periodic  but different from those of Case 1. The spectra show
the higher harmonics of the second subharmonics. Vorticity
contours show the deformation of vortex street in the downstream.
Figure 3 shows the vorticity contour of Case 3. In Case 5, the
amplitude is 0.00001, the vortex street is deformed. The
deformation is gradual in the downstream. The energy spectra have
a sharp peak of the fundamental mode and a lot of continuous
components. In Case 5, the amplitude is 0.01, the vortical
structure becomes chaotic, as shown in Fig.4. The strong
interaction between a vortex close to the wake center and the
other vortices makes a large-scale deformation. This deformation
is observed to be a well organized motion, where a pairing of
vortices and vortex couples are found in the further downstream:
4.2.1 Time evolving strong interaction

In this subsection, we observe the time evolving process of
vortex pairing. Pairing phenomena have never seen in a plane wake
by experimental measurements (Robert & Roshko (1985)). The
observation of vorticity contours offer an identification of
pairing motion. Figure. 5 (a), (b), (c), (d), (e) and (f) show the
time evolving vortex dynamics. The plus and minus sign vortices
shown as 1, 2, 3, 4 and 5 in Fug.5 (a) change their distances in
the downstream locations. Figures 5 (b) and (c) show that the
plus sign vortices of 2 and 3, furthermore the minus sign
vortices of 3 and 4 start to amalugamate and the vortex of 1 is
pushed out toward the downstream. Figure 5 (d) shows that the
vortices of 4 and 5 finish to amalugamate, while the vortices of
2 and 3 start to amalugamate. In the upstream of these vortices,

an amalugamation of - two vortices 8 and 9 also starts , as shown

/]



in Fig.5 (e). After the amglgamation of two vortices of 8 and 9,
the vortices 7 and 8 become a couple vortices shown in Fig.5 (f),
which is reported in the soup film experiments by Couder &

Basdevant (1986).

5. Selective growth of the fundamental mode and randomness
5.1 Growth of the fundamental mode and subharmonics

Figures 6 (a) and (b) show the streamwise distribution of the
fundamental mode of u for y=2.2 and y=0.0 respectively in Case 1
at Re=200. We notice in Fig.6 (a) that the peak of the
fundamental mode is located around x=50, where alternate vortices
are generated. In Fig.6 (b), the distribution of 2nd harmonic has
a ‘peak around x=50. In Case 3 at Re=200, the distribution of the
fundamental mode and subharmonics at y=2.2 and y=0.0 are shown in
Fig.7 (a) and (b) respectively. We notice in Fig.7 (a) that the
fundamental mode grows faster than two subharmonics and 1lst
subharmonic grows after saturating of the fundamental mode. We
also notice in Fig.7 (b) that .the distribution of 1lst
subharmonics and 2nd harmonics have peaks around x=50,
respectively. At the wake center, the energy of 2nd harmonic
component is larger than that of the fundamental mode. We notice
from the vorticity contours that the growth of the 2nd harmonic
‘component at the wake center is due to the generation of
alternate vortices. In Case 5, the amplitude of random phase
noise is 0.00001 of free stream U velocity, the fundamental mode
selectively grows in the linear region. Figure 8vshows the
spectrum of u at x=50 and y=-0.8. The spectrum has the peak at

the fundamental mode and continuous components around the
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fundamental mode. We also notice that the 2nd harmonic component
and continuous components around the 2nd harmonic component grow
at x=50.
5.2 Growth of randomness

We introduced the fundamental mode and the random phase noise
of small amplitude at the inlet plane. The amplitude of the
fundamental mode was 0.01 and that of the random phase noise
0.0005. Figure 9 show the spectrum of the velocity fluctuation of
v at x=50 and y=-0.8. Since the energy of the random phase noise
at the inlet plane is lower than 10_8,‘we notice the growth of
the continuous components around the fundamental mode in the
downstream locations. Figures 10 (a), (b), (c), (d), (e) and (£f)
show the cross-stream distribution of the fundamental mode and
various continuous components at x=150, in which the frequencies
are 0.608, 0.704, 0.508, 0.308 and 0.102. The distributions of
the fundamental mode are symmetric, as shown in Fig.10 (a). The
profile of u? has two peak with off-axis null, which is
consistent with the measurement by Sato & Kuriki (1961). Figures
10 (b) and (c) show the profiles of the continuous components
around the fundamental mode. These shapes are simillar to that of
the fundamental mode. While the shapes of the distributions of
the low-frequency noise have far differnt from that of the
fundamental mode, as shown in Fig. 10 (d) and (e). Growth of
these noises are suppresed strongly by the fundamental modé.

In Case 5, the amplitude is 0.00001, the spectra in the
upstream locations show the continuousicomponents around the
fundamental mode and also the low-frequency components as shown

in Fig.8. Figure 11 show the spectrum of the velocity fluctuation
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u in the downstream location of x=150 and y=-2.1. The low-
frequency components around the 2Znd subharmonic mode grow in the
downstream locations after the saturation of the growth of the
fundamental mode. In Case of 5, the amplitude is 0.01, a few
mode around the fundamental mode grow in the upstream locations.
Figures 12 show the spectrum of v at x=25, y=-2.7. We can
observe that the spectrum has the continuous components around
the fundamental mode but not sharp peak at the fundamental mode.
Figure 13 show the spectram of u and v at x=175 and y=-1.7. The
energy of the low-frequency noise is larger than that of the
fundamental mode. Figures 14 (a) and (b) show the phase diagrams
at the same x-y locations of Fig. 12 and Fig. 13, respectively.
Figure 14 (a) show the regular motion and chaotic motions, while

Fig.l4 (b) represent much chaotic motion.

6.. Absolute unstable wake

- 'We investigate a very large-deficit wake from the view of
absolute instability of the Gaussian wake discussed by Hultgren &
Aggarwal (1987). They determined the critical defect parameter
and supercritical Reynolds number. We used Gaussian large-
deficit profile at the inlet plane, whose deficit was 0.99. The
fundamental mode of the amplitude 0.0005 was introduced at the
inlet plane for only one periode of the oscillation. The
introduction of the fundamental mode was stopped and then no
forcing at the inlet plane. We investigate the time traces of
the oscillation in the upstream, where the mean defects are
smaller than the c¢critical defect reported by them.

At- Re=300, the disturbance does not keep on sustaining at x=2.0,



V)

where the defect of the mean profile is 0.96. Figure 15 (a) shows
the time traces of the u and v fluctuations at y=-0.4 and x=2.0.
However, at Re=700, the time traces of the fluctuations of u and
v at x=1.4 and y=-0.6, where the mean defect is 0.973, shows that
the waves of u and v keep on oscillating in the upstream shown in
Fig. 15 (b). The initial disturbance propergates to the upstrean,
as well as to the downstream, and is amplified in the downstream
locations. These facts indicate that the Gaussian wake whose
defect is larger than 0.973 is absolutely unstable at Reynolds
number 700, which support a part of theoretical results of

Hultgren & Aggarwal (1987).

7. Conclutions

Numerical solutions have been presented for the. large-scale
vortex dynamics and the statistical spectra inside forced ton
dimensional wakes. Linear stability theory provides information
on many of the important features of the wake. The ensuring
computational results compare well with the experimental results
of Sato et. al. . Numerical results on the transition process
indicate following conclutions.

1. When only the fundamental mode of the large amplitude is
invoked, the stable alternate vortices are generated. The higher
harmonics are created and grow steeply before the genaration of
alternate vortices.

2. When the fundamental mode whose energy level is much larger
than that of the noise, the fundamental mode grows steeply and
suppress the growth og the other modes. The vortex street created

in the downstream is still unperturbed.

15



3. Two subharmonics with the fundamental mode make the vortical
structure distorted in the downstream. When the amplitudes of
three modes are large, the higher harmonics of the 2nd harmonics
are genarated.

4. When the amplitude of the random phase noise is very small
such as 0.00001, the fundamental mode is selectively amplified
and grow steeply. The cross-stream profle of the fundamental mode
is quite simillar to that of Case 1. The noise sround the
fundamental mode grows faster than the low-frequency noise. The
low-frequency noise grows after the saturation of the fundamental
mode. The vortical structures are distorted in the downstream
because of the growth of low-frequency noise.

5. When the amplitude of the random phase noise is 0.01, a
few modes close to the fundamental mode are amplified and
generate low-frequency modes, so that the strong interaction
between several vortices is observed in the downstream. In the
process of the strong interaction, pairing motion and vortex
couple of different sign are observed. The vortical structure
becomes chaotic in the further downstream locations.

6. In case of very large-deficit wake such as 0.99 at the inlet
plane, the wake flows become absolutely unstable at Re=700. No
forcing after the short time disturbance of a small amplitude

‘makes vortex street.
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Figure Captions
Fig. 1: Co-ordinate system, with the basic Gaussian profile.
Fig. 2: Vorticity contour of Case 1 at Re=600.
Fig. 3: Vorticity contour of Case 3 at Re=200.
Fig. 4: Vorticity contour of Case 5 of high-amplitude at Re=600.
Fig. 5: Vorticity contour of pairing motion of Case 5 of high-
amplitude at Re=600; (a) at time=900, (b) at time=925, (c) at

time=950, (d) at time=975, (e) at time=1025 and (f) at time=1075.
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Fig.6: Distribution of the fundamental mode, 2nd harmonics, lst
and 2nd subharmonics in the x locations of Case 1 at Re=200; (a)
y=2.2 and (b) y=0.

Fig.7: Distribution of the fundamental mode, 2nd harmonics, lst
and 2nd subharmonics in the x locations of Case 3 at Re=200; (a)
y=2.2 and (b) y=0.

Fig.8: Energy spectra of u and v for Case 5 of low-amplitude at
x=50 and y=-0.8.

Fig.9: Energy spectrum of v for Case 4 at x=50 and y=-0.8.
Fig.10: Cross-stream distribution of the fundamental mode and
noises at x=150; (a) fundamental mode, (b) frequency of 0.704,
(é) ffequency'of 0.508, (d)vffequency of 0.152 and (e) frequency
of 0.102. |

Fig.1l: Energy spectra of u and v for Case 5 of low—amplitude at
x=150 and y=-2.1.

Fig.IZ: Enefgy spectra of u and v for Case 5 of high-amplitude at
x=25 and y=-2.7.

Fig.13:Energyspectraof u and v for Case 5 of high-amplitudeat
x=175 and y=-0.7.

Fig.l4: Phase diagrams for Case 5 of high-amplitude;(a) at x=25
and y=-2.7 and (b) at x=175 and y=-1.7.

Fig.15: Time traces of u and v for very large-deficit wake; (a)
at x=2.0 and y=-0.4 at Re=300 and (b) at x=2.7 and y=-0.6 at

Re=700.
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