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REGULARISED INTEGRAL EQUATIONS IN

CRACK SHAPE DETERMINATION PROBLEMS

(クラック形状決定問題に於ける正則化された積分方程式)

N. Nishimura (西村直志)

Dept. Civil Eng., Kyoto Univ.

1. Introduction

Let $D$ be a bounded domain in $R^{2}$ which has a smooth boundary $\partial D$ . Also let $S$ be

a smooth $non-self$-intersecting curve contained in $D$ . The 2 dimensional (direct) crack

problem for Laplace’s equation is formulated into the following boundary value problem:

Find a function $u(x)$ in $D\backslash S$ which satisfies

$\triangle u=0$ in $D\backslash S$ ,

$( \frac{\partial u}{\partial n})^{+}=(\frac{\partial u}{\partial\tau\iota}I$

一

$=0$ on $S$ ,

hm $\varphi(a)=0$ , $\varphi$
$:=u^{+}-u^{-}$ ,

$x(\in S)arrow x_{0}(\in\partial S)$

subject to a certain boundary condition (such as Dirichlet or Neumann conditions) on

$\partial D$ , where the superposed $+(-)$ indicates the limit on $S$ from the positive (negative)

side. In this statement, the positive (negative) side indicates the side of $S$ into which (the

negative of) the normal vector $n$ points.
.

The solution to this problem is well known to have an integral representation given

by

$u(x)= \int_{-}\partial DG(x-y)\frac{\partial u_{J}(y)}{\partial n}dS_{y}-\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u(y)dS_{y}+\int_{S}\frac{\partial G(x-y)}{\partial n_{y}}\varphi(y)dS_{y}$,

for $x\in D\backslash S$ , where $G(x-y)$ is the fundamental solution of Laplace’s equation given by

$G(x-y)=- \frac{1}{2\pi}\log|x-y|$ .
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The unknown halves of $u$ and $\partial u/\partial n$ on $\partial D$ and $\varphi$ on $S$ are determined &om the boundary

integral equations given by

$0=- \frac{u(x)}{2}+\int_{\partial D}G(x-y)\frac{\partial u(y)}{\partial n}dS_{y}-\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u(y)dS_{y}$

$+ \int_{S}\frac{\partial G(x-y)}{\partial n_{y}}\varphi(y)dS_{y}$ , $x\in\partial D$

$0= \frac{\partial}{\partial n_{x}}(\int_{\partial D}G(x-y)\frac{\partial u(y)}{\partial n}dS_{y}-\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u(y)dS_{y})$

(la b)

$+ \ovalbox{\tt\small REJECT}_{S}\frac{\partial}{\partial n_{x}}\frac{\partial}{\partial n_{y}}G(x-y)\varphi(y)dS_{y}$ , $x\in S$

where the integration sign with a superimposed $=implies$ that the integral is carried out in

the sense ofHadamard’s finite part. The numerical method of solving crack problems with

the help of discretised versions of these equations is called the double layer formulation

of the boundary integral equation method (BIEM).

From a numerical point of view, the hypersingularity of the kernel function in (1b) has

been the biggest difficulty associated with the otherwise attractive double layer potential

formulation for crack problems. However, the so called regularisation techniques have

reduced this difficulty considerably, and made this formulation a practical numerical tool

of crack analysis. In particular, the stress function approach of regularisation proposed

in [1] replaced all the nonintegrable kernel functions in this formulation by integrable

ones. With this development, we are now ready to use BIEM in various practical crack

problems.

The particular application considered in this paper is the inverse problem of deter-

mining the shape of a crack S&om experimental data. Suppose that we somehow know

that $D$ contains one single crack $S$ , whose shape and location, however, are unknown.

We now try to determine $S$ with the help of certain experiments. Namely, we prescribe a

serie$s$ of Dirichlet data $u^{I}(I=1\sim N)$ on $\partial D$ and measure the corresponding Neumann

data $q^{I};=\partial u^{I}/\partial n$ , or vice versa, where $N\cdot\geq 2$ . In physical terms this corresponds

to giving elastic antiplane displacements, electrostatic fields, etc. on $\partial D$ and measuring

the associated elastic traction, electric current, etc. We then reconstruct $S$ in a manner
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that these $u^{I}’ s$ and $q^{I}’ s$ are consistent with each other. This problem of crack shape
$\gamma$

determination from experiments has been investigated by Fnedman&Vogelius[2]. They

constructed two specific boundary data with which the uniqueness of the crack shape is

conclusive. Kubo et a1.[3] also discuss the same problem. In this paper, however, we shall

be more interested in actually determining the shape of the crack with the help of the

regularised boundary integral equations.

This paper begins with a new version of regularised integral equation for direct crack

problems. This formulation allows the use of $C^{0}$ elements provided that the near tip

behaviour of the solution be properly incorporated into the analysis. This is in contrast

to the old version where one has to use $C^{1}$ elements. We then proceed to the inverse

problem of crack shape determination. We shall determine $S$ in a way that the $L^{2}$ norm

of the RHS of (1a) is minimised subject to (1b). To this end we compute the variation

of the Lagrangian functional associated with this minimisation problem to obtain a set

of criteria of optimality. These criteria are nonlinear equations with respect to shape

parameters of $S$ , and are solved with the help of Newton’s method. This process, however,

requires derivatives of $\varphi$ with respect to shape parameters. Bearing this in mind we derive

hypersingular integral equations for these derivatives, which are also shown to allow the

new version of regularisation. This paper concludes with a few numerical examples.

2. ‘Integrated’ regularised integral equations for direct crack problem$s$

We shall consider a simplified version of (1b) given by

$\ovalbox{\tt\small REJECT}_{s^{n_{i}(x)n_{j}(y)G_{ij}(x-y)\varphi(y)dS_{y}=g(x)}’}$, $x\in S$ (2)

where $g$ is a given function on $S$ , and $i$ indicates the derivative with respect to the ith

argument. We now notice that

$G_{ij}(x)=-e_{ip}e_{jq}G_{pq}(x)$ (3)

holds modulo Dirac’s delta, where $e_{ij}$ stands for the permutation symbol. Substitution
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of (3) into (2) yields

$- \frac{\partial}{\partial s_{x}}\int_{S}G(x-y)\frac{\partial\varphi}{\partial s}(y)dS_{y}=g(x)$ , (4)

from which one obtain$s$ a variational equation given by

$\int_{S}\frac{\partial\psi}{\partial s}(x)\int_{S}G(x-y)\frac{\partial\varphi}{\partial s}(y)dS_{y}dS_{x}=\int_{S}\psi(x)g(x)dS_{x}$ , (5)

where $\psi$ is a test function bounded near $\partial S$ , and $s$ is the arc parameter of $S$ which

increases as one traces the crack viewing the positive side of $S$ to the left. Furthermore,

we set $s=0$ at the mid-point of the crack and $s=\pm a$ at tips, where $2a$ is the arc length

of $S$ . N\’ed\’elec[4] proposed a Galerkin approach based on (5).

This variational formulation is more versatile than the collocation method proposed

in [1] in that the former work$s$ with $C^{0}$ elements while the latter requires $C^{1}$ elements.

Even with this property, however, this variational formulation may not be very practical

because the double integration in (5) makes this method time consuming. An alternative

to (5) which is devoid of this inefficiency is obtained by taking $\psi$ to be piecewise constant:

$\int_{S}(G(x_{1}-y)-G(x_{0}-y))\frac{\partial\varphi}{\partial s}(y)dS_{y}=-\int_{x_{O}}^{x_{1}}g(x)dS$, (6)

where $x_{0},$ $x_{1}$ are arbitrary points on $S$ . In practice one takes sufficient number of pairs

$(x_{0}, x_{1})$ on $S$ and computes (6) to get a system of linear equations for the discretised

unknown $\varphi$ . Some of the advantages of this formulation are (a) One may at least formally

use $C^{0}$ shape functions. (b) The computational efficiency is not inferior to collocation.

Actually, our experience show$s$ that this method works well as long as the near tip be-

haviour of the solution is properly incorporated into the analysis.

3. Criteria of optimality in crack shape determination problems

We now proceed to the inverse problem of determining $S$ from experimental data.
.

As stated in Introduction we assume that the shape of $S$ is unknown, but $N$ pairs of

both Dirichlet and Neumann data $u^{I},$ $q^{I}$ $:=\partial u^{I}/\partial n(I=1\sim N)$ on $\partial D$ are known via

some experimental means. We shall now determine $S$ as the minimiser of

$\sum_{I,.=1}^{N}\int_{\partial D}(f^{I}(x)+\int_{S}G_{i}(x-y)n_{i}(y)\varphi^{I}(y)dS_{y})^{2}dS_{x}$ (7)
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under the constrains of

$g^{I_{i}}(x)n_{i}(x)+4_{s^{n_{i}}}(x)n_{j}(y)G_{ij}(\#-y)\varphi^{I}(y)dS_{y}=0$ on $S$, $I=1\sim N$ (8)

where (See (1).)

$f^{I}(x)= \frac{u(ae)}{2}+\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u^{I}(y)dS_{y}-\int_{\partial D}G(x-y)q^{I}(y)dS_{y}$ on $\partial D$ ,

$g^{I}(x)= \int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u^{I}(y)dS_{y}-\int_{\partial D}G(x-y)q^{I}(y)dS_{y}$ on $S$.

The use of the Lagrangian multiplier converts this problem into another of finding a

stationary point of the following functional:

$L:= \frac{1}{2}\sum_{I=1}^{N}\int_{\partial D}(f^{I}(x)+\int_{S}G_{i}(x-y)n_{i}(y)\varphi^{I}(y)dS_{y})^{2}dS_{x}$

(9)

$+ \sum_{I=1}^{N}\int_{S}\lambda^{I}(x)(g^{I_{i}}(x)n_{i}(x)+4_{s^{n_{i}}}(x)n_{j}(y)G_{ij}(x-y)\varphi^{I}(y)dS_{y})dS_{x}$ ,

where $\lambda^{I}$ is the Lagrangian multiplier corresponding to (8). The function $\lambda^{I}$ is assumed

to be bounded near $\partial S$ so that the integrals in the second term in (9) are convergent.

We next compute the variation of $L$ . To facilitate this calculation we assume that

$S$ is at the optimal location $S_{0}$ , and take the coordinate in this configuration as the

‘Lagrangian coordinate’ $X$ . A varied configuration is then expressed in terms of a smooth

one parametered mapping $x=x(X, t)$ fron $D\cross[0,$ $\epsilon[toD$ such that

$x(X, \cdot)$ is one to one in $D$ , $X=x(X,\forall t)$ for $X\in\partial D$ , $x(X, O)=X,$ $X\in D$ (10)

where $t\in[0,$ $\epsilon[is$ a parameter and $\epsilon>0$ . Also, we define $\varphi^{I}$ and $\lambda^{I}$ to be functions of

$X(\in S_{0})$ and $t$ , whose values in a varied configuration are computed via $\varphi^{I}(x^{-1}(x,t),t)$ ,

etc. $L$ is then considered to be a functional of $x,$ $\varphi^{I}$ and $\lambda^{I}$ , which are functions of the

‘Lagrangian coordinate’ $X$ . Also the variation operator $\delta$ is now identical to $\partial/\partial t\cdot|_{t=0}$ .
These devices simplify the computation of the variations of $L$ with respect to $\varphi^{I}$ and $\lambda^{I}$ .
Actually, a standard variational calculus shows

$\delta_{\lambda^{I}}L=0$ :
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$\not\in_{s^{n_{i}(x)n_{j}(y)G_{ij}(x-y)\varphi^{I}(y)dS_{y}=-n_{i}(x)f_{i}(x)}’}$, $x\in S$ (11)

$\delta_{\varphi^{t}}L=0$ :

$\not\in_{s^{n}}:(x)n_{j}(y)G_{ij}(x-y)\lambda^{I}(y)dS_{y}=n_{*}\cdot(x)F_{*}^{I}(x)$ , $x\in S$ (12)

where

$F^{I}(ae)$ $:= \int_{\partial D}G(x-y)(f^{I}(x)+\int_{S}G_{k}(y-z)n_{k}(z)\varphi^{I}(z)dS_{z})dS_{y}$ .

Notice that the RHSs of (11) and (12) are smooth functions on $\overline{S}$ . This observation,

together with the assumptions on the behaviour of $\varphi^{I}$ and $\lambda^{I}$ , shows that these functions

have the following estimates near the tips:

$\varphi^{I}\sim 4Sif[\varphi^{I}]r^{1/2}+O(r^{3/2})$, $\lambda^{I}\sim 4$ Sif $[\lambda^{I}]r^{1/2}+O(r^{3/2})$, $r:=|s\pm a|$ , (13)

where Sif $[\cdot]$ indicates a number called ‘stress intensity factor’.

The variation of $L$ with respect to $x$ is also computed in a standard manner, except

that one has to pay attention to the hypersingularity of kernels. To illustrate this we

compute

$\delta_{l}J$ , $J:= \int_{S}\lambda(x)(\not\in sn_{*}\cdot(x)n_{j}(y)G,:i(x-y)\varphi(y)dS_{y})dS_{x}$ , (14)

where the superposed $I$ in $\lambda^{I}$ etc. has been suppressed for the purpose of simplicity. We

first rewrite the integral in (14) by using the ‘regularisation’ in (4) and an integration by

parts, followed by a change of variables to the Lagrangian coordinate. This process yields

$J= \int_{S_{O}}\frac{\partial\lambda(x)}{\partial s_{0}}\int_{S_{0}}G(x-y)\frac{\partial\varphi(y)}{\partial s_{0}}dS_{Y}dS_{X}$

where $x$ and $y$ are short for $x(X,t)$ and $x(Y,t)$ . This expression depends on $x(X,t)$ only

through the argument of $G$ . Therefore the variation in question possesses the following

expression:

$\delta_{x}J=\int_{S_{O}}\frac{\partial\lambda(x)}{\partial s_{0}}\int_{S_{Q}}G_{i}(x-y)(\delta x_{i}(x)-\delta x_{i}(y))\frac{\partial\varphi(y)}{\partial s_{0}}dS_{y}dS_{x}\uparrow$ (15)

\dagger From this formula onwards, we write $x$ etc. for $X$ etc., since they are identical at

$t=0$ .
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since the inner integrand is integrable for a smooth variation of $S$ . For the purpose of the

subsequent analysis, however, it is convenient to factor out the whole expression under

the outer integration sign in (15) by $\delta x$ . Hence we split the inner integral in (15) into a

sum of two singular integrals to obtain

$\delta_{l}J=\int_{S_{O}}6x_{i}(x)\frac{\partial\lambda(x)}{\partial s_{0}};_{S_{0}}G_{i}(x-y)\frac{\partial\varphi(y)}{\partial s_{0}}dS_{y}dS_{x}$

(16)
$- \int_{S_{0}}\frac{\partial\lambda(x)}{\partial s_{0}}f_{s_{o}}G_{i}(x-y)\delta x_{i}(y)\frac{\partial\varphi(y)}{\partial s_{0}}dS_{y}dS_{x}$ ,

where the integration sign with a superimposed –indicates an integral in the sense of

Cauchy’s principal value. It is now obvious that we have to somehow change the order of

integrations in the second term in (16). To this end, we prepare the following

Lemma. Let $f(x,y)$ be a smooth function defined on $(x, y)=[-1,1]\cross[-1,1]$ . Then one

has

$\int_{-1}^{1}\frac{1}{\sqrt{1-x}}(f_{-1}^{1}\frac{f(x,y)}{(x-y)\sqrt{1-y}}dy)dx$

$=- \pi^{2}f(1,1)+\int_{-1}^{1}\frac{1}{\sqrt{1-y}}(f_{-1}^{1}\frac{f(x,y)}{(x-y)\sqrt{1-x}}dx)_{\wedge}- dy$ .

proof. A lengthy but straightforward calculation shows this result.

Corollary Let $\varphi$ and $\lambda$ be functions which are defined on $S$ and are smooth except at the

tips $\partial S$, where they behave as in (13). Also let $\Omega$ be a smooth function on S. Then one

has
$\int_{S}\frac{\partial\lambda(x)}{\partial s}f_{s}\frac{\partial}{\partial s_{y}}G(x-y)\Omega(y)\frac{\partial\varphi(y)}{\partial s}dS_{y}dS_{x}$

$=-2\pi((Sif[\lambda]Sif[\varphi]\Omega)|_{righttip}-(Sif[\lambda]Sif[\varphi]\Omega)|_{1efttip})$

$+ \int_{S}\frac{\partial\varphi(y)}{\partial s}\Omega(y)(\frac{\partial}{\partial s_{y}}\int_{S}G(ae-y)\frac{\partial\lambda(x)}{\partial s}dS_{x})^{\neg}dS_{y}$ .

With the last corollary it is now a simple matter to complete the calculation of $6_{x}J$ in (14).

Indeed one first decomposes the variation $\delta x$ into it $s$ tangential and normal components

to rewrite the second term in (16) into

$- \int_{S_{0}}\frac{\partial\lambda(x)}{\partial s_{0}}f_{s_{0}}G_{i}(x-y)(t_{i}(y)\delta\Omega(y)+n_{i}(y)5\omega(y))\frac{\partial\varphi(y)}{\partial s_{0}}dS_{y}dS_{x}$ , (17)
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where $t_{i}$ stands for the unit tangential vector to S,directed into the positive direction of $s$ ,

and $\delta\Omega$ and $\delta\omega$ are arbitrary functions defined on $\overline{S}.$ .Since $G_{i}(x-y)n_{i}(y)$ is integrable

for a smooth $S$ , one may interchange the two integrations in the 2nd term in (17). One

then applies the foregoing corollary to the remaining term in (17), and returns to the

‘Eulerian coordinate’ to have

$\delta_{x}J=\int_{S}\delta\omega(x)(\frac{\partial\lambda(x)}{\partial s}\int_{S}n_{i}(x)G_{i}(x-y)\frac{\partial\varphi(y)}{\partial s}dS_{y}$

$+ \frac{\partial\varphi(x)}{\partial s}\int_{S}n_{i}(x)G_{*}\cdot(ae-y)\frac{\partial\lambda(y)}{\partial s}dS_{y})dS_{x}$

$+ \int_{S}\delta\Omega(x)(\frac{\partial\lambda(x)\partial}{\partial s\partial s_{x}}\int_{S}G(x-y)\frac{\partial\varphi(y)}{\partial s}dS_{y}$ (18)

$+ \frac{\partial\varphi(x)\partial}{\partial s\partial s_{x}}\int_{S}G(x-y)\frac{\partial\lambda(y)}{\partial s}dS_{y})dS_{x}$

$-2\pi((Sif[\lambda]Sif[\varphi]\delta\Omega)|_{righttip}-(Sif[\lambda]Sif[\varphi]\delta\Omega)|_{1efttip})$ .

This equation, (11) and (12) finally yield two more criteria of optimality for our problem

in the following forms:

$\delta_{\omega}L=0$ :

$\sum_{I}\frac{\partial\lambda^{I}}{\partial s}$ (ae) $( \frac{\partial g^{I}(x)}{\partial s}+\int_{S}n_{i}(x)G_{i}(x-y)\frac{\partial\varphi^{I}}{\partial s}(y)dS)$

$= \sum_{I}\frac{\partial\varphi^{I}(ae)}{\partial s}(\frac{\partial F^{I}(x)}{\partial s}-\int_{S}n_{i}(x)G_{i}(x-y)\frac{\partial\lambda^{I}}{\partial s}(y)dS)$, $x\in S$ (19)

$\delta_{\Omega}L=0$ :

$\sum_{I}$
Sif $[\varphi^{I}](x)Sif[\lambda^{I}](x)=0$. $x\in\partial S$ (20)

We thus conclude that the criteria of optimality for the minimisation problem given in

(7) and (8) are (11), (12), (19) and (20).

Notice that the assumption that $S$ is a straight line segment simplifies (19) consid-

erably since one then has

$n_{i}(x)G_{i}(x-y)=0$ for $x,$ $y\in S$.

Indeed, this observation, together with the restriction that $S\omega,$ $\delta\Omega$ are linear with respect
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to $s$ , reduces (19) into

$\sum_{I}\int_{S}\omega^{\alpha}(\frac{\partial\lambda^{I}}{\partial s}\frac{\partial g^{I}}{\partial s}-\frac{\partial\varphi^{I}}{\partial s}\frac{\partial F^{I}}{\partial s})dS$, (21)

where $\alpha=1,2$ and

$\omega^{1}(x)=\frac{a+s}{2a}$ , $\omega^{2}(x)=\frac{a-s}{2a}$ .

Equations (11), (12) and (20), however, remain unchanged with this assumption.

One may now determine the shape of $S$ by using these criteria and Newton’s method

as shown in the following steps:

(1) Carry out more than 2 experiments to obtain $u^{I}$ and $q^{I}$ on $\partial D$ . These data determine

$f^{I}$ and $9^{I}$ in $D$ for $I=1\sim N$ .

(2) Assume an initial shape for $S$ . This initial shape has to be chosen close to the exact

one for the present scheme to converge.

(3) Solve (11) and (12) in this order for $\varphi^{I}$ and $\lambda^{I}(I=1\sim N)$ . To this end, use the

‘regularisation’ of the type shown in (6).

(4) See if (19) and (20) are satisfied to within an allowable error. If yes, one terininates

the analysis. Otherwise one uses Newton’s method to update the shape of $S$ , and

returns to the 3rd step.

Obviously one has to compute the derivatives of $\varphi^{I}$ and $\lambda^{I}$ with respect to shape

parameters of $S$ in the 4th step of the above scheme. The next section will be devoted to

a method of computing these derivatives.

4. Regularised integral equations for derivatives with respect to shape para-

meters for $S$

As mentioned in the last section the determination of $S$ by Newton’s method re-

quires derivatives of $\varphi^{I},$ $\lambda^{I},$ (19) and (20) with respect to shape parameters of $S$ . This

section discusses how one computes these derivatives. We shall henceforth denote these

derivatives by which is essentially identical to 6 in the last section.

To begin with, we consider $\dot{\varphi}^{I}$ . One may expect that an integral equation for ¢i is

obtained by taking the dot derivative of (11). This computation is made easier as one
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introduces the Lagrangian coordinate and the mapping in (10). Indeed, a calculation

similar to the one used in (18) proves

$\overline{\ovalbox{\tt\small REJECT}_{s^{n_{i}(x)n_{i}(y)G_{ij}(x-y)\varphi^{I}(y)dS_{y}}},}$

$=- \frac{\partial}{\partial s_{x}}f_{s}G_{k}(x-y)$ ( $\dot{x}_{h}(x)$ 一
$\dot{X}$

為 $(y)$ ) $\frac{\partial\varphi^{I}}{\partial s}(y)dS_{y}$

$+t_{k}(x) \frac{\partial\dot{x}_{h}}{\partial s}(x)\frac{\partial}{\partial s_{x}}\int_{S}G(x-y)\frac{\partial\varphi^{I}}{\partial s}(y)dS_{y}-\frac{\partial}{\partial s_{x}}\int_{S}G(ae-y)\frac{\partial\dot{\varphi}^{I}}{\partial s}(y)dS_{y}$ .

This result, (11) and $\triangle g^{I}=0$ then give

$\frac{\partial}{\partial s_{x}}[e_{ij}g^{I_{i}}(x)\dot{x}_{j}(x)+\int_{S}G_{k}(x-y)(\dot{x}_{k}(x)-i_{h}(y))\frac{\theta\varphi^{I}}{\partial s}(y)dS_{y}$

$+ \int_{S}G(x-y)\frac{\partial\dot{\varphi}^{I}}{\partial s}(y)dS_{y}]=0$,

which permits an integration of the type given in (6) to yield

$\int_{S}G(x_{1}-y)\frac{\partial\dot{\varphi}^{I}}{\partial s}(y)dS+e_{ij}g^{I_{i}}(x_{1})\dot{x}_{j}(x_{1})$

$+ \int_{S}G_{k}(x_{1}-y)$ ( $\dot{x}$

為 $(x_{1})-i_{h}(y)$ ) $\frac{\partial\varphi^{I}}{\partial s}(y)dS$

(22)
$= \int_{S}G(x_{0}-y)\frac{\partial\dot{\varphi}^{I}}{\partial s}(y)dS+e_{ij}g^{I_{i}}(x_{0})\dot{x}_{j}(x_{0})$

$+ \int_{S}G_{k}(x_{0}-y)(\dot{x}_{h}(x_{0})-\dot{x}_{k}\cdot y))\frac{\partial\varphi^{I}}{\partial s}(y)dS$ . aeo, $x_{1}\in S$

Similarly one obtains an integral relation for $\dot{\lambda}^{I}$ given by

$\int_{S}G(x_{1}-y)\frac{\partial\dot{\lambda}^{I}}{\partial s}(y)dS-e_{ij}F_{i}^{I}(x_{1})ae_{i}(x_{1})$

$+ \int_{S}G_{\text{為}}(x_{1}-y)(\dot{x}_{k}(x_{1})-di_{\text{為}}(y))\frac{\partial\lambda^{I}}{\partial s}(y)dS$

$= \int_{S}G(x_{0}-y)\frac{\partial\dot{\lambda}^{I}}{\partial s}(y)dS-e_{ij}F_{i}^{I}(x_{0})\dot{x}_{j}(x_{0})$ (23)

$+ \int_{S}G_{k}(x_{0}-y)(\dot{x}_{h}(x_{0})-\dot{x}_{h}(y))\frac{\partial\lambda^{I}}{\partial s}(y)dS$

$- \int_{x_{0}}^{x_{1}}n_{i}(x)(\int_{\partial D}G_{i}(x-y)E^{I}(y)dS_{y})dS_{x}$ ,

where

$E^{I}(x):=e_{kl} \int_{S}G_{k}(x-\cdot y)\dot{x}_{l}(y)\frac{\partial\varphi^{I}(y)}{\partial s}dS_{y}+\int_{S}G_{k}(ae-y)_{7b_{k}}(y)\dot{\varphi}^{I}(y)dS_{y}$ . $x\in\partial D$
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With the solutions of (22) and (23), and formulae such as

$\overline{\frac{\partial\varphi}{\partial s}}=\frac{\partial\dot{\varphi}}{\partial s}-\frac{\partial\varphi}{\partial s}\frac{\partial\dot{x}_{i}}{\partial s}t:$ , $\overline{Sif[\varphi]}=Sif[\dot{\varphi}]-\frac{1}{2}$ Sif $[ \varphi]\frac{\partial\dot{x}_{i}}{\partial s}t_{i}$

one computes the dot derivatives of (19) and (20). One then utilises these derivative$s$ in

Newton’s method for determining $S$ . The expressions of these derivatives, however, are

omitted because they are neither compact nor are they very difficult to obtain.

Finally, we notice that the terms of the form

$\int_{S}G_{h}(x-y)(\dot{x}_{k}(x)-\dot{x}_{\text{為}}(y))\frac{\partial\varphi^{I}}{\partial s}(y)dS_{y}$ $x\in S$

in (22) and (23) vanish when $S$ is a straight Iine.

5. Numerical analysis

In this section we shall make several comments on the numerical techniques employed

for obtaining the result$s$ to be given in the next section. Our main concern -here is

to describe precisely how we got our numerical solutions, rather than to recommend

particular techniques. Hence the reader should bear in mind that the method to be

discussed may not necessarily be useful in applications other than the present one.

(1) The ‘integrated’ regularised integral equations of the form in (6) are solved as follows:

1. Take nodal point$sx^{i}(i=0\sim n+1)$ on $S$ in a way that $x^{0}$ and $x^{n+1}$ coincide with

the left and right tips, respectively.

2. Introduce a new variable $\tau$ defined by $s=a$ $\sin(\pi\tau/2)$ , and discretise $\varphi^{I}$ etc. by

using cubic spline functions in $\tau$ associated with the nodal points introduced in 1.

This change of variable takes care of the near tip singularities of $\varphi^{I}$ etc.

3. Write $n+1$ equations obtained from (6) by setting

$x_{1}=ae^{i}"$ . $.x_{0},$
$=x^{i-1}$ , $i=1\sim n_{:}+1$

consecutively.
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4. Solve the resultant linear equations for $n$ unknowns by using a least square solver.

(2) We found, by way of numerical experiments, that reduced degrees of heedom for the

shape of $S$ help to enhance the robustness of the crack shape determination analysis. We

therefore assume that $S$ is a straight line segment in the early stage of iterations. Namely

we begin the analysis by using (11), (12), (21) and (20) to find a line segment located as

close as possible to the true shape of $S$ . We shall henceforth call this process a line search.

As the line search converges, we switch to another analy$sis$ which allow$s$ full degrees of

&eedom to the shape of $S$ . This analysis $wiU$ be called a full search.

(3) Even in the line search, the process of the crack shape determination analysis is not

as robust as would be desirable. Some improvement is achieved, however, by alternating

directions of search for $S$ : we may for example modify the shape of $S$ only in the normal

(tangential) direction in the even (odd) steps of Newton’s method.

(4) In the full search we take as the shape parameters for $S$ the coordinates of all nodes

$x^{i}(i=0\sim n+1)$ . We therefore need $2(n+2)$ equations to determine these parameters

completely. Equation (19) evaluated at $x^{i}(i=1\sim n)$ provides $n$ equations, while the

same equation with $\partial\varphi^{I}(x)/\partial s$ etc. replaced by $Sif[\varphi^{I}](x)$ etc. gives two more equations

at tips. Also (20) yields two equations. Finally $n$ more constraints given by

$\frac{|x^{i+1}.-x^{i}|}{|x^{i}-x^{i-1}|}$ remain$s$ unchanged $(i=1\sim n)$

are considered, so that the inter-node spacing keeps the same proportion during the

iteration. We thus have as many equations as the number of unknowns.

6. Numerical examples

In this section we present several numerical examples of the crack shape determina-

tion analysis based on the proposed method.

We consider a circular domain having a radius of 21. In place of experiment$s$ we com-

pute boundary data on $\partial D$ by using BIEM for assumed exact crack locations, prescribing

12



on $\partial D8$ Dirichlet data given by

$Re,{\rm Im}(x_{i}+ix_{2}’)^{m}$ , $m=1\sim 4$ .

The exterior boundary $\partial D$ is modelled by 24 piecewise linear boundary elements, and 9

DOF ($n=9$ in the notation used in the last section) spline elements are used for the

crack.

In the first example the exact crack shape is a straight line having a length of 21

located at the centre of the domain. Figure 1 shows the mode of convergence $hom$ the

indicated initial location. The line search was used throughout the whole convergence

process.

The exact crack shape for the second example is a segment of a parabola shown in

Fig. 2. The line search from the indicated initial location converged to a line segment

near the parabola as shown in Fig. 2. Subsequent full search then led to a convergence

to the exact location as depicted in Fig. 3.

7. Concluding remarks

(1) The use of Newton’s method in the proposed method of crack shape determination

is partly responsible for the occasional divergence of the scheme when the assumed initial

location is not sufficiently close to the exact one. In practice it might be safer to attempt

at a ‘preprocessing’ by using more robust, but not necessarily efficient, non-linear pro-

gramning techniques to find a good initial location. In some cases other experimental

information such as the AE source location data might be helpful for the same purpose.

(2) The results of the crack shape determination analysis presented here extend almost

automatically to elastostatics.

(3) For an accurate crack analysis using the ‘integrated’ regularised integral equations, it

is essential to use shape functions capable of introducing the correct near-tip singularities

of $\varphi$ etc.
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Fig. 1: Mode of convergence for a line crack
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Fig. 2: Line search for a parabolic crack

Fig. 3: Full search for a parabolic crack
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