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J. Cl. TOUGERON

Let (X, 0) be a germ of analytic space (reduced and of pure dimension n)
at the origin of cN clet F: (CN,0) -» (CP,0) a germ of analytic mapping and
f = FIX the restriction of F to X. We denote sing F the singular set of F, i.e.

the germ of points x € CN such that dF(x) has arank < r(F), r(F) meaning the

generic rank of F. Many results on F or f are true and well known when
sing F = @ or when F is flat. In this paper, we give examples where these
results can be extended with an hypothesis on the codimension of sing F.

1) If the rank of F 1is constant (= r),AF admits a factorisation (CN , 0) h—)

(C",0) % (CP,0), where A is a submersion and g an immersion. In the general
- sitution, we associate to F a differential form Qg of degree r; if the codimension

of sing QF in CN is > 3 and if QF is decomposable, there exists a factorisation

by a generic submersion and a generic immersion. If codim Y sing F > 2

and if there exists a formal factorisation F = :g— o h, then there exists an analytic
factorisation which approximates the formal one. These results are an easy
consequence of Malgrange's Frobenius theorem.

2) If s is the generic rank of f, there does not exist in general a
factorisation : (X,0) — (Y,o0) c:_L (CcP ‘, 0), where (Y ,0) is an analytic germ,
reduced and of pure dimension s at the origin of CP and i is the canonical

injection. Nevertheless, this is true if F' is a flat morphism and if codim N X =

codim cr f(X). We prove analogous results when (X, 0) is a complete

intersection, an hypothesis about the codimension of sing F taking the place of
the flatness.

3) At last, let .y = (yy, ... ,yp) (resp. x = (x; ,...,%y)) a system of
coordinates at the origin of CP (resp. CM) and let N a sub-modulus of C (ly19.
Let us suppose that (N o F) C[[x]] is generated on C [[x]] by elements of C )7
(C (x} is the ring of convergent series in x); then, if F isflat, N is also analytic,

i.e. is generated on C [[y]] by convergent series. The same is true when
hypothesis about the codimension of sing F take the place of the flatness.
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1- A factorisation theorem, v
Let r=r (F) be the generic rank of F : (C?,0) = (CP,0) and let A7{x} be the
free modulus on C{x} composed with germs at 0 e CN of holomorphic

differential forms of degree r.

Lemma 1.1 : There éxists a differential form Qg e AT{x}, r = r(F), unic modulo

multiplication by inversible elements of Cix}, such that :

1) codimCN sing Qp > 2.

2) VI =(1,..,ir),1 <01 <..<Iir <p, there exits 61 € C{x} suck that d Fr=01.QF.
@Fr=d F ; A..n dF; and sing Qp= {x; Qp (x) =0)).

Proof : For every I such that d F;# 0, we can write d F; = 6';. Q; where
0'7eC {x} and Q; is a form such that codim cN sing Q7 > 2. Let I, J be such that

d‘FI 20,dFy#0 , the generic rank of F being r, we have Qj=0.Q with «
mieromorphic at the origin of CV ; but a is holomorphic in cM\ sing Q;,
so o € C{x}. Permuting I and J, we see that a is inver‘sible and the lemma
follows |

Let ©F be the ideal generated by all the 67 in C{x} and let us denote V(Op)
the germ of zeros of ©F ; obviously :

sing F' = V(OF) U sing Q.

If codich sing F >2andif F=g o h, where h : (C%,0) — (C",0) is a generic

submersion and g : (C",0) — (CP,0) is a generic immersion, then we may choose

Qrp=dhiA..nd hr; Oris then the ideal of C{x} generated by all the

| determmants of order r of the matrix (dg) o h.

Our result is a corollary of the singular Frobenius's theorem
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‘Theorem 1.2 (Malgrange, [3]) : Let @1,y ®, be in Al{x} and let us put
Q=w1 Ai..A ©F . We suppose that fori=1,..,r, do;aQ=0.Then: . ,

) If codimCN sing Q 2 3, the system {w1,...,07} is integrable, i.e. there exist
f1yee0fr € Clx) such that :

(w1,...,07) . Clx} =(dfi1,...,dfr).Clx}.

@) If codimCN sing Q 2 2 and if the system {(w1,...,0r} is formally integrable
(i.e. there are formal series fi,..fre C[[x]] such that (014ee0,07).Cllx]] =

(d Fi,msdfr ).CUxID, then the system is integrable.

We use also the following result (cf [3] or [4]) :

Lemma 1.3 :Let h: (CN,0) = (C,0) be a germ of holomorphic mapping such
that r=r (h) and such that codimy sing h 2 2. Then, if £ : (CN,0) - C verifies

dfndhy A ... ndh, =0, we have f=g o h, with g : (C",0) — C analytic.

Proposition 14 :

(1) Let us suppose that codimCN sing QF > 3 and let us suppose that Qg is

decomposable, ie. QfF = &)1 A A wr , with w; € Al{x). Then, there exists a
factorisation F =g o h, where h : (CN,0) - (C7,0) and g : (C7,0) = (CP,0)
are analytic.

(2) Conversally , if F admits sich a Factorisation and i f codim cN sing F =22, Qp

is decomposable.

Proof : The system (@y,...,0,) is lqcally integrable in CN \V(OF), because
dFj:eI. Qp and vs.(‘) da)l A vml A..h @p =0 fori =,1,...,j‘. By theorem 12, wé may
suppose that ;= dh;,i =1,..r, with h; € Clx}, 2;(0) = 0. At last, for every
| "g=1,’..,,. D, dFJ A dhy YA.‘../\ dh, = 0 and S0 Fj = gj (h1,...,hy) with g; analytic, by

lemma 1.3. The converse (2) is obvious.
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- Proposition 1.5 : Let us suppose that codimCN sing ' 2 2 and let us suppose

that F admits a formal factorisation F=g o h (h : (CN,0) - (C",0) and
g :(C7,0) = (CP,0)). Then F admits an analytic factorisation F=go h and we

may choose g and b as closely as we wish tog and h .

Proof : From the hypothesis, Qz admits a formal decomposition :

QF =4 .dh1 A...A dhy , with 2 € Cllx]] and 2 (0) = 0. By Artin's approximation
theorem [1], Qp is decomposable, i.e. Qp= w1 A...A 0 With ©; € Al{x} and the
system {®1,...,0, } is formally integrable. By the part (2) of theorem 1.2, the

system is integrable and we conclude as in the proof of 1.4.

Proposition 1.6 : Let F : CN 5 U — CP be an holomorphic mapping with generic
rank r ; we suppose that the set of singular points of F has codimension 2 3. Then,
the set I of points x € U such that the germ Fy : (Ux) — (CP, F(x)) is factorisable in

the sense of 1.4, is the compliment of a closed analytic subset of U.

Proof : The result being of local nature, we may suppose that there exists

Q e A7(U) such that Vx € U, the germ {2, induced by Q in x, is a differential

form Qg .By 1.4, the point x belongs to I' if and only if the equation :
b

Q. =wiA...A 0, admits an holomorphic solution. The proposition results from

a general theorem about the solutions of a system of analytic equations depen-

ding analytically of a parameter (cf [6]).

Remark 1.7 : Let us suppose that F': (CN .,0) - (CP,0) admits a factorisation by
(Cr,0), with codim -y sing F' 2 2. Then this factorisation is unic, in the following

sense :if F=goh, F= g'o h’ are two factorisations, there is a unic analytic
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difféomorphism 7: (Cr,0)0 = (Cr,0) such that the following diagram is

. commutative :

1.8. Special Cases

(1.8.1.) Let us suppose that V(©r) = @ ; for instance, let us suppose that
8(1,...,r)(0) = 0. Then we may choose Qp=dF; A .. AdF, and if j > r, we get
Fj=gj (Fl,...,Fr ), with :f analytic. So F=g o h , where g is the immersion
C’ 5 (2q,....2, ) = (29,....2, ; &, +1(z),...,gp(z)).' The converse is obvious and we get
an equivalence :

(V(OF) = 0) < codim N sing F' > 2 and there exists a factorisation F=goh,where

g :(C7,0) » (CP,0) is an immersion.

(1.8.2) Let us suppose that sing Q.F = (@ ; the form Qg is generically
decomposable and non singular and so, by remark 1.9, it is decomposable, and
we may apply 1.4. We get that F =g o h where A is a submersion and fhe
converse is obvious :

(sing Qp =0 ) < There exists a factorisation F = g.o h whereh : (cN ,0)—= (CT, 0)

is a submersion.

(1.8.3) Let us supfmse that the rank of F' at 0 is r~1.Then Qg is decomposable ;

indeed, with a convenient choice of coordinates, we may suppose that

F1=x1;...,F,_ 1=%,_1and 80 Qp =dx; A... Adxr-1 A ®, and we may apply 1.4.

5
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1.9 A decomposable form must verify obvibus conditions. Let E be a vector
space of dimension N on C and let e,....,e5; be a basis of E. Let us consider the
mapping :
_ ()
CNr =Er 5 (w1,...,0r) 2 Q=01 AA®p e FE=C\7/,
Obviously, w1 A...A ®r = ©'1 A...A ®'r if and only if there exists a matrix
Me Ge(N, C) with determinant 1 such that
(01,.00,.) M =(0¢,...,0°).
Outside ¢“1(0) the mapping ¢ is a fibering with fiber of dimension r?-1 and
¢1(0) is the set of matrices (@1, ....,0,) with rank < r and so ¢71(0) is an algebraic
variety in E” of codimension N-r+1. The image of ¢ is an algebraic variety in
ATE, of dimension Nr-r?+1, with an isolated sihgularity at the origin.
If X 0 ey (ef=e; A..A ;) is the generic point of AT E and if Uy is the
open set 6;# 0, then Im ¢ N U; is regular and is the transverse intersection of

(],Y)— (Nr—r2+1) algebraic hypersurfaces FI,a = 0, where FI,a is homogeneous

of degreer (if r=2, Im¢={Q; QA Q=0}).
So, a decomposable differential form € must verify (Jg)- (Nr-r2+1)

independent conditions. Conversally, if these conditions are full filled and if Q
is non singular, then Q is decomposable. If Q is singular and decomposable
(Q= w1 A...A ®), every irreducible component of singQ = {x;rank (01 A...A ©7) <1}

has codimension < N-r+l.

Another condition is the following one. Let v(QQ) = irllf v(07) be the infimum
of the multiplicities at the origin of the 6; (Q2 = 2 0;dx; and let #(Q) be the

ideal generated in Cf{x} by 0r's. If v(A) =s < r and if Q=wiA..AOy, then r—s
forms w;are linearly independant at the origin and by choosing suitable

coordinates :

A
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Q=( 2 07 dxf) A décN_(p_s)+1 /\.;.‘.A‘ irN
\vith I= (il,...,is), 1<y <I...< iS < N-(r-s) ; so the minimal number of generators
of #(Q)is < (N’(Sr“S)) .
For instance, if N =3, r =2, the conditions FI,a(Q) =0 are’vacant. A form
Q with an isolated singularity at the origin is not decomposable ; the form
Q=xy dx dy + y2 dy dz + z dx dz, with the x—axis as a line of singularities, is not

decomposable. Nevertheless, it is decomposable at every point outside the origin
(ifx¢0,Q=(xdx—ydz)A(ydy+§dz)).~ '

If N=4, r=2, there is one condition Fi,a = 0:0612034 — 06,3094 +

This condition is not sufficient, but I do not know if the hypotheses that Q is

decom le at every point outside the origin, implies that € is decomposable.

1.10 In this paragraph, we give some upper bounds for codimCN sing F

(1.10.1). First, every irreducible component of F ~1(0) has codimension <r = r(F)

(indeed, if F' is the germ at 0 of £ : U — CP, the geheric codimension of the fiber

Egl F(&) is r and this codimension is a lower semi-continuous function of &) ;

after, F1(0)\sing F is a regular variety of codimension r. Accordingly :
r(F) 2 codimgy F 7(0) 2 inf (r(F), codim oy sing F)
(1.10.2) If codimCN sing F' 2 2 and if V(Op)= @, there is an inclusion :
FL0) cV(©p. "
Accordingly , if V(Op) # @, we get codim cN V(Op) <r,andso:
codimCN sing F <r (we supposer 21).
Indeed, if F-1(0) «V(®p) there exists an holomorphic curve C o t— x(¢) e CN
such that x(0) =0 and x(t) € F-1(0O\V(@) if ¢ # 0. From (1.8.1), the morphism

EJ:(CN,(x(t))'—> (CP,0) (t # 0 small enough) admits a factorisation through a |
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germ X, of analytic variety of dimension r at the origin of CP. All X, are equal to
a(Z and F = Fp admits a factorisation thr(;ugh Z. From (1.8.1), V(®p) = ¢, c.q.f.d.
(1.10. 3) Let us suppose that Qﬂis_dmm_pgs@blg. From 1.9, if sing Qp# @ :
codim CN sing Qp < N-r+1.

Nevertheless, if sing Qp =0, there is from (1.8.2) a factorisation F =g o &,
where h is a submersion, and V(®p) is the germ of zeros of the ideal A* ¢, where
# is the ideal generated by all determinants of order r of the matrix
pxr(dgy,...dgp).
So, if V(Og) =0, codimCN V(®p) <p-r+l.

Accordingly, if sing F # @ and if Qp is decomposable :

codim cN sing F < sup (p,n)-r+l.

The codimension being lower semi-continuous :

Let us suppose that there exist points x € sing F, as closely as we wish from
the origin, such that Qp is decomposable (this is true if d, F has rank r-1, cf
F, )

(1.8.3)). Then :
codim cN sing F' < sup (p,n)-r+l.

We have also the following remarks :

Let us suppose there exist points x € sing Qp , as closely as we wish from the -
origin, such that Qp is decomposable ;then
X

codim CN sing QF sn-r+l

Let us suppose there exist points x € V(@p), as closely as we wish Jrom the

origin, such that Qg is decomposable ;if codim v sing QF 2> 3, then :
=

codim V(@)F)_ <p-r+l.

‘Remarks 1.11 : The proposition 1.5 is false in general if we suppose that the
dimension of the space by which we factorise is not equal to r = r (F). For

example (cf [2]), there exists an analytic morphism F : (C2,0) - (C4,0)

¢
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with Fy=x;, Fo=x%9, F3=xx 5 €"%, F = ¢ (F1, F, F3), where ¢ is formal
and cannot be choosen analytic.Then r(F) = 2, ker F* = 0 and ker F*is
generated__ by y4-§_ (y1,y2,¥3). So, there is a formal factorisation of
F:(C2,0) —I; (C3,0) —% (C4,0), where C3={y € C%4;y4=0} and g is the graph of

¢ ;if F: go fis an analytic factorisation of F near of the preceding one, g is

(as :g—) an immersion and ker F* % 0, but this is false. In this example,

codimC2 sing F =1, but- we may modify it, in such a way that

codim .y sing F22.

2 - On the regularity of a germ of analytic mapping.

In this paragraph and the fgllg' wing one, we suppose that F is a generic
submersion, i r = ' ‘

2.1. Let us suppose that (X,0) is irreductible and let us suppose bthat
f:F|X:(X,0) > CP has generic rank s. If O xis the ring of germs of
holomorphic functions on (X,0) and if f*: C{y} >0y is the homomorphism

induced by f, there is inequalities :

s<s'=dim (O}(/kerfg‘) <s"=dim (0y /ker f*).

Let us recall the following result (Gabrielov, [2] ) :

Theorem 2.2 :Ifs=s', we get s =s’ =s", i.e if the topological dimension of the
image f(X) is equal to its formal dimension, then it is also equal to its analytical
dimension ; therefore : ker f;" = 1;;:\]‘"*.

The morphism f is regular (Gabrelov's definition) if s =s" =s" ; if (X,0) is
reduced, the morphism fis regular if it is regular in restriction to each |

irreducible component of (X,0) . The morphism f is regular if f is finished or if

(X,0) ahd f are algebraic ; here is another condition :
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Proposition 2.3 : Let us suppose that (X,0) is irreducible ; the morphism f is
regular under every following hypothesis : |
1) r(f) = codimy f~ 1(0) (the inequality r( p= codimy f~ 1(0) is always true)

(2) F'is a flat morphism and codimCN X= codimcp J&X.

Proof : 1) LetZcCVbea generic plane of codimension n—s (s = r(f)) passing
through the origin ; then, every irreducible component Xy ; of XNnX has
codimension (n—sH+(NN-n) = N-;s in €V, so has dimension s and X3 inf1(0)=(0).
If g=f1X3,i,8 : Xzi— CP is a finite morphism, and its rank is s.

The kernel of g* : C{y} - © Xz,i) is a prime ideal Px; such that C{yl/ =5
has dimension s. Generically, X5 ; contains points x as closely as we wish to the
origin, which are regular for X5; and X with :

rank d, f = rankd, g =s
(the notations X , g etc... mean sets, functions etc.., the germs of which at the
origin being X, g...). If p e M3z, 900 f isnullonX5; and ¢ o_f is null onX in
the neighborhood of every x. Therefore, ¢ 0 f =0 and [ 5 ; c ker f*. The inverse

inclusion is obvious because C{y}/ P 5 ; has dimension s, and the morphism f is
regular.

(2) The morphism F being flat, codim .y F-10)=p, so codimCNf“l(O) >p
and codimy FLo) = codimCNf‘l(O) - codichXz p- codime X)) = r(f).

Therefore r(f) = codimy f~ 1(0) and the result is a consequence of (1).

Example 2.4 : Let ¢1(xp) ,..., ¢n-1(xn) € Cix,} be germs, algebraically
independent on C, such that cp'1(0)‘ =... =¢'n-1(0) = 1. Let us consider the

morphism f:

(C7,0) 5 (41,...%n) = (Lper.Xn—1, X1 P1&n)ser.Xn-1 Pn-1(xn)) € C20-2,
Then r(f)=n and sing f=f" 1(0) is the x,—axis ;so codimCN fL0)=n-1;

70
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besides, the rank of df at 0 is n~1. The morphism f is not regular if n>2;
more precisely, ker ﬁ‘ =0. Indeed, let g € C [[y]] be such that:
8 (x1,...,%n-1, X1 91(xn),... Xn-1 Pn-1(xn)) = 0.

oQ
If g = Z gv is the decomposition of g in homogeneous polynomials, and if

v=1 ‘ :
X1 =t 61 ooy Xp—-1 = 4 én—l :

YtV gy (Ernbn-1, E1 01&n)sensbn-1 Pn1(xn)) =0

v=l

50 8u(E1yeerbn-1, £1 91(n),..ibn-1 Pn-1n)) =0, ie. gy =0, Vv.

This example, a variant of Osgood's example, shows that it is difficult to
improve 2.3. Nevertheless, in 2.3 (2), we may replace the hypothesis of flatness
on F' by a condition of regularity on F.

Remark 2.5 :If codich;sing F 2 p, the morphism F is flat. Indeed, by
(1.10.1), p = r(F) = codimy F-1(0) and this means exactly that F is flat. Here is

an example where codimy sing F= p-1 and F is not flat ; F :C2p-2 - CPis

defined by
F1(x)=x1; ... ; Fp1(x) =xp-1 ; Fp(x) = x1%p + X2Xp41+ ... + Xp_1X2p-2.

Proposition 2.6 : Let us suppose that codimy singF 2 3, where

F: (CN ,0) — (CP,0) is a generic submersion. If (X,0) is a germ 6f hyperSurface
at the origin of CN such that codimcp fX) =1 (= codim cN X), then f=F |Xis

regular X =F~ 1Y), where Y is a germ of hypersurface at the origin of CP).
Proof : Let ¢ = 0 be a reduced equation of X ; the condition on the generic rank

of f means that at each regular poiht of X, dx ¢ is a linear conbination ofd, F; ,

ie:

77



202

(%) , d(p=q).a):i_-§: ¢; dF;
i1
with ® € Al{x} and ¢; e C{x).
So do=- % d @) ndFi;
i=1

and do A dFj A..n dFp = 0. By 2.9, the hypothesis codimg y sing F 2 3
implies that o=d¥ mod(dF), where(dF) is the submodulus of Al{x} generated by
dFl,...,de . From (%):

d (p e-¥) e (dF)
and from lemma 1.3 : p =e¥ . (6 0 F), with 6 € C{y}.

If Y is the hypersurface with reduced equation § =0 , then X = f~ Ly).

Corollary 2.7 :1If codimCN sing 2 3and if Y is a germ of irreducible

hypersurface at the originof CP, X = FL(Y) is also irreducible
(indeed, if X =X U X" is a proper decomposition of X, we may apply to X' and X"’ the
previous reasoning, and X' = FYy), x' =FLy™" ;s0Y =Y U Y”isa proper

decomposition of Y which is not irreducible).

Corollary 2.8 : Let us suppose that codimCN sing F 2 3 and that Qpis

decomposable (we do not suppose that F is a generic submersion). If

codim N V(OF) 2r=r(F), F and the restriction of F to every hypersurface (X,0) of

(CN , 0), are regular morphisms.

Proof : By 1.4, there is a factorisation, F =g o h, where h is a generic
submersion and g is a generic finite immersion. So F is regular ; if Xis a germ
of irreducible hypersurface at the origin of CN, either the rank of 4|X is equal to
r and f = F|X is regular ; or this rank is r-1, but then we may apply 2.6 and

again f is regular.
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2.9. In the proof of 2.6, we used a very particular case of the following result

(cf [3] or [4]). Let us suppose that codimCN singF > q

(F : (€v,0)— (CP,0) is a generic submersion) and let 1<s<r<g be integers.
We put:
AP = (0 € ATl ; 0 A dFy AndF | =0

+1

forevery 1<i1<ig<... <ip-s+1<p} =

{weAlx}; 0= 2 0 e i A dF.','1 A dFjs
J1<.<Js
with 6, Jj, € ATs{x}).

This last equality is an easy consequence of the division lemma (Saito, [8])
stated below. If we write A™S(F) = A7{x}/AZ (x} then d induces a morphism :

ATS(F) — Ar+1,s(F) ;
there is an exact sequence :
d d d d
As—L{x} = ASS(F) — AStLs(F) — ... = ALS{F)
and the of kernel the first d is the submodulus of As-1{x} generated by the
images of F* : As—1{y} - As-1l{x} and d : A5—2{x} — As-1l{x}. In particular, if q =2,
F* d d
there is an exact sequence 0 — Cly} = Clx} —» ALIE) 5 A2,1(F) ; this sequence

is used in the proof of 2.6.

The division lemma says that, if codim cN sing F > q and if w € A9{x} is

such that o A dF1 A..AdFp = 0, then o = i 0; A dF;, with 6; e A1 {x}.
i=1

2.10. It would be interesting to extend 2.6 to complete intersections. If a

complete intersection (X,0) of codimension %k at the origin of CV is defined by a

reduced system of equations ¢;=...= ¢, =0 and if codimG, FX) = codimCNX,

then
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dp=Q.p+ i 6; . dF;
=1
?1

where ¢ = ( ), Q is a k x k matrix with coefficients in Al{x}, 6; is a column

Ok
vector with coefficients in C{x}. So :
 dQ-QAQ) =0 mod(dF;).

If we may choose Q such that dQ-QaAQ =0 mod (dFj) and if
codim cN sing F' 2 3, then by the arguments of the proof of 2.9 :

Q=dMM~!  mod(dF;)

where M is an inversible k x 2 matrix with coefficients in C{x}, so

dM19)=0 mod (dF;) -

61

By 29, M1 9 =00 F, where 6 ={
Oy

J , 8; € Cly}, 8;(0) =0, and X = F-1(Y)

where Y is a complete intersection.

Therefore, the main problem is finding conditions on X and F such that

the integrability condition dQ2 - QA Q=0 mod (dF;) is verified by a suitable Q.

3 - A criteria of analyticity for modulus.
If A is a (commutative and unitary) ring without divisors of zero, we

denote by [A] the quotient field of A. A modulus .# on A, of finite type, is without

torsion if a € A\0}, m € #\{0} implies a.m # 0. This means also that 4 is

isomorphic to a submodulus of A", where r = dim{a] 4 ®4 [A] is the generic
rank of 4.
If (X,0) is a germ of analytic space, we denote by <9}( the completion of the

ring ©x of analytic germs on X. We shall use the following result (Tougeron,

(7D :
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Theorem 3.1 : Let f 1 (X,0) - (Y,0) be a generic analytic submersion between
twd irreducible gérms of analytic spaces (so f; : (DAY - (O}{ is injectiVe). Then :

(p [(DAy]andrpofe [ox1) = ¢ € [OY]).

A submodule X of éqy is analytic if it is generated on (9} by elements of

q
oy .

Corollary 3.2 : Under the hypothesis of 3.1,if KM = (5% / X is without torsion

and if the vector space generated by ¥ o fin [ (9}( 19 is analytic (i.e. is generated

by vectors with coefficients in @), then ¥ is analytic.

Proof : Let ¢1,..., 9s € X be such that ¢1 A..A g5 0 and r = generic rank of
M =qg-s. Then ¢ € ¥ © ¢ A 91 A...A @5 =0 (because A is without torsion). Let us

put @1 A...A Qg = 29161 where e; = e; Nne; is the canonical basis of (9% .
- T

Let us suppose that 6 Iy * 0 ; the modulus generated by N o f being analytic,
each (8;/6 Io) o F is analytic, so by 3.1 67/6 I, is analytic for every I. Therefore
N is analytic, c.q.f.d.

This corollary admits the following extension :

Proposition 3.3 : Let f : (X,0) — (Y,0) be @ morphism between two irreducible

germs of analytic spaces and let us suppose that the -gerni of points x € X such that
fy is not flat has codimension v in X. Let M = 0‘{;/ X be a modulus such that the

two following conditions are full filled :

~ every prime ideal associated to M has height < v,
— the submodule f*X generated by Xof in Og{ is analytic. Then X is analytic.
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Let us recall that if 4 is a modulus on a ring A = (5Y and if i is a prime
ideal of A, then(l is associated to 4 if there is an injective map : A/Nc, M. Thé
modulus 4 is __coprimary ifa € A\ = (# 3 m - a.m € M) is injective and a e
=M o>m-o>ameM)is nilpbtent. If P1,...y [Sik are the prime ideals associated
tok.,#c then there exist submodules N; of 4, with #/¥; pi-coprimary, such that

N Ni=0 (cf[5D.
i=1

If # =Ad/¥ is [ -coprimary, we define a sequence ¥o=N Cc N1 C..C
Ns CNgi1 = A4 of submodules of A2 such that for every i =0,....,s : N1 {E € AT

F‘ £ c ;). Then, for every i : Xi41/X; is a modulus on A/py without torsion. We

prove first :

Lemma 3.4 : With the hypothesis of 3.3, let us suppose that M is gy—coprimary ;

then 3.3 is true.

Proof : First , we observe that {2 is analytic. In fact, as a consequence of the
flatness, the prime ideals of height < v associated to 5%/ SF*X are exactly the

‘ prime ideals of height < v associated to o x/ f*p ; [*X being analytic, these

-~
N t

prime ideals are analytic, and there exist a prime ideal {3' of ©x such that B
is a minimal prime ideal containing f*g. If X' is the germ of analytic set (c X)
defined by §', thenis the kernel of the morphism f* : <5Y 5O x/ f’;} " and by
Gabrielov's theorem, ‘:ﬂ is analytic. |

l

After, we prove by induction on { = s, s-1,....,0 that ; is analytic. If & il

is analytic, let g;,....g; be an analytic‘ system of generators of ¥ ; and let us

write X 1 = (5};,/ Ai+1 where #;,1 is the modulus of relations between g, ..., g,
‘Then ¥,/ XNi= 5’{,/ A'iv1, R'irv1 D Ris1 ; by the flatness of f,' S* R'i41 1s analytic

at the generic point of X ; by 3.2, #';,1is analytic and so J; is analytic.
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Remark : In the previous proof we don't use the complete assertion that f*x is

analytic ; we only use that f*¥ is analytic at the generic point of X".

Proofof 3.3 : Let {31,.., H& be the minimal prime ideals associated to
M= (5%/ X . As in the proof of 3.4, let F\'i be a minimal prime ideal of éX

containing f*pi ; then P‘ is analytic. If X; is the germ of analytic set defined by

Wi, then §; is the kernel of the morphism f* :(5Y -0 x/pi and so, by

Gabrielov's theorem,: ‘ﬂ‘i is analytic. Let ¥ ; be a submodule of (5% such
k

that N ¥;=X and égr/ Xi is [y -coprimary.
i=1

Let H1,..., B¢’ be the minimal prime ideals in the family {{ 1,..., Mz} ;
then, by flatness, f*¥; is analytic at the generic point of X'; , fori=1,..., 2". By
3.4 and the remark, ; is analyticifi <%’

There is an injection :

(%) (A NV XD >OF A Ny,
i<k’ >k’
Let gy,....8n be a system of analytic generators of _mk X i and let us write
i<k’

(5};,-/9t= Tk Xi where ® is the modulus of relations between the g;. Then
i<k’ '

(93 NN ~(5’;;/9'l' where ' > . The prime ideal associated to é’}/a
i<k’

are among { %'41,..., Nk , because of the injection (¥) and by flatness f* 2" is

analytic outside an analytic set of codimension v .
Therefore, we may prove the result by induction on the number % of

prime ideals in . By the induction hypothesis, 2’ is analytic and so X is

analytic.
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