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Along a Moishezon space | ,
increase, vanishing and convergence of functions.

AT & K%M T % 5 iF (Shuzo Izumi)

0. Introduction.

In this paper we clarify certain close relations among
properties of the following: ' ‘

(a) Polynomials on an affine algebraic variety;
(b) Meromorphic functions on a Moishezon space;
(c) Formal functions along a Moishezon subspaces;

(d) Pullbacks of function germs at a point of complex spaces;
(e) Products of function germs at a point of a complex space.
"In §1 we are concerned with increase of holomorphic
functions and convergence of formal functions. Sadullaev (S)
has obtained an increase estimate of polynomials on an affine

algebraic vafiety by the uniform norm on a cbmpact domain.
This can be generalized to a similar estimate for meromorphic
functions on a Moishezon space. This is equivalent to the
assertion that a formal function along a Moishezon subspace
converges either everywhere or nowhere. On the other hand
Gabrielov (G) has proved a difficult theorem on the
convergence of pullbacks of formal functions. We prove that
weak versions of the theorems of Sadullaev and Gabrielov are
equivalent modulo algebraic geometry.

In §2 we treat vanishing orders of function germs and
global meromorphic functions. In a earlier péper (I,), the
author has obtained a few basic inequalities for vanishing
orders of function germs on an irreducible germ of a complex
space. We prove that these inequalities are equivalent to the
following statement: If XCR" is an algebraic variety, a
polynomial of a small degree can not have a high vanishing
order at a prescribed point. We prove a similar theorem for a
meromorphic function on a Moishezon space. This is equivalent
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to the assertion that, for a holomorphic‘function along a

Moishezoh subspace .S, vanishing in a high order at a point
' ensUres‘vanishiﬁg in a high order along entire S.

~ We have noticed certain analogies between problems of
convergence and problems of vanishing orders in (T,) and
(Is). This time we intentionally utilize such analogies
again. Theorems (A),..., (D), (E') in §1 correspond to (A*
), ..., (D*), (E*) in §2 respectively. Theorems (A),..., (D) are
mutually equivalent as well as (A*),..., (E*) are. The proofs
of these two series of equivalence are almost parallel.
Theorem (E') is the assertion that a formal factorization of
an element of a normal analytic algebra A reduces to an
analytic factorization. This is also found as an analogue of
(E*) but the author did not find its relation to (A),..., (D).
Theorems (A), (D), (D*), (E*) are established theorems. Other
theorems may be new and they are verified in §4 through the
equivalence to these established theorems. Only (E') is
proved independently in §5. §3 is an algebraic provision for
the proofs in §4. '

» If the dimension of the Moishezon space S (or the
analytic algebra A) is zero, (A),..., (E'), (A"),..., (E*) are
trivial except the restrictions on the constants a and b in
(A*),..., (E*) and the restrictions are false. Therefore we
assume that dim S= 1 and dim A= 1. By analytic algebra we

mean the residue class algebra of a convergent power series
aigebra G{x;,...X%X,}. We express a morphism (holomorphic map)
between complex spaces by a capital Greek letter and the
induced homomorphism between analytic algebras or algebras of
sections by the corresponding small Greek letter. '

The author wishes to express hearty thanks to Professor
vTomari.‘He helped the author to materialize the indefinite
idea. The author also thanks Professor Fujiki for his
suggestion for improvement.

1. Resuits on increase and convergence.

Let alg(S) denote the transcendental degree over € of
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the field of the meromorphic functions on a compact complex
space S. It is well known that dim SZ alg(S) (Thimm,
Remmért). A compact complex space S is called a Moishezon
space if all the irreducible components S; of S... satisfy
dim S;=alg(S;). We call an analytic space, an analytic
algebra and so forth integral when they are reduced and
irreducible. Let f be a continuous function on a topological
space X and K a compact subset. We put |f|x=max.ex|f(x)].

THEOREM A (Sadullaev (S), (2.2)). For any compact domain
K of an integral algebraic subvariety S of €", the function

Py (z) = sup{| £(z)|'7*: dEN, £ is a polynomial of
degree d such that |fl«= 1}

is locally bounded on S.

(1. 1) REMARK. Sadullaev’s original assumption is that K is
compact and not pluripolar. This original form is recovered
from (A) by (S), (2.1). He has proved the converse also: if S
is an>integral complex subspace of €", boundedness of Pk (z)
implies that S is algebraic.

Let D be a Cartier divisor and L(D) the set of all
meromorphic functions on S whose pole divisors are at most D.

THEOREM B. Let D be a Cartier divisor on an integral

Moishezon space S and KC S\ (spt D) a compact domain. Then

the function

Py (z)=sup{|f(z)|'7?: dEN, f€&€ L(dD) such that |fl«= 1}

is locally bounded on S\ (spt D).

THEOREM C. Let S be a thin connected Moishezon subspace

of a reduced complex space X such that X is integral along S
and Oz the structure sheaf of the completion of X along S
(cf. (BS)). If £ €Tl(S,0z) (formal function along S) is
convergent at t€ S, £~ is convergent: f €T (S, Ox).

Let ¢: A—> B bhe a homomorphism between reduced analytic
algebtras corresponding to a morphism ¢,: Y,—> X: between
germs of complex spaces. :We put
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r, (¢)= inf{topl-dim ¢ (U).: U is a neighborhood of ¢{}/2,
r; (9)=dim A/ker 9, 13 (9)=dim A/ker y,

where 9 : A—> B denotes the extension to maximal-ideal-adic
completions. It is known that ri=r,<r; (cf. (I,),§1).

THEOREM D (Gabrielov (G)). If 9: A—> B is a ‘
homomorphism between integral analytic algebras with r,= r;,
then ¢ (A) N B= ¢ (A).

(1. 2) REMARK. Gabrielov (G), (5.2) has proved that r,=r;
implies ri=r.=r3. (D) is its weakened corollary. See (I1,),
§10 for the history and the related results. Tougeron (Tj)
»has simplified the proof of Gabrielov’s original theorem and
has improved it.

THEOREM E'. Let A be a normal analytic domain. Then a

formal factorization of an element of A reduces to an
analytic one: if f,,...,f,€A and I'1 f; € A, then there exist
invertible elements u;,...u,€ A such that u;f,,...,u,f, €A
and ITT u;=1. ’ ‘ ‘ '

By an Artin’s theorem (A), a formal factorization
implies an analytic factorization. But it does not imply such
an factorization is equivalent to the original formal one
‘modulo formal invertible factors.

2. Results on orders at a point and along a Moishezon
subspace. ‘

Let m be the maximal ideal of a local ring A. The order
and the reduced order of f& A are defined by

V(E)= 14, o (F)=sup{p: FEN"),
VE)= VA, W (£)= lim, g v (£7) /D,

respectively. If A is the local ring Ox, : (resp. the
completion OX,EEEOQ_; of Ox, ¢), v(f) is denoted by vx, ¢ (f)
(resp. vi. s (£)). |

THEOREM A*. Let S be an integral algebraic subvariety of
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C". Then, for any {€ S, there exists a&€ R such that

a- (deg £)=7s. & (£)

for any polynomial £# 0 on C". Such an a must satisfy a= 1.

THEOREM B*. Let D be a Cartier divisor on an integral
Moishezon space S. Then, for any {&€ S\ (spt D), there exists
a€ R such that

ad= -17s & (f)

for any f€ L(dD)\ {0}). Such an a must satisfy a> 0.

Let X be a reduced complex space and 1 a coherent ideal
sheaf. We put

vx X (£)= inf{sup{pE N: f,E I'}: xX€E K)
vy X, (f)= inf{sup{r/q: Jq, reN, f,"€I1,"): x€K)
= dAnf{limk-g vx*: (F*)/kK: XE K)

for any subset KCﬁXvand'for any f holomorphic in a
neighborhood of K. It is obvious that vx*, (f)= v, (£f). In
the case K= {({} and I is the ideal sheaf that defines {¢{},

7 x %, (£) (resp. ¥vx*,(£)) coincides with vy, ; (£f) (resp.v«. ¢ (£))
defined above.

(2. 1) REMARK (Lejeune-Teissier (LT}, (4.1.8), (5.5)). Let II: X'
—> X be a proper surjective morphism between reduced complex
spaces, Y a thin complex subspace of X and I a coherent ideal
sheaf on X with locus Y. Suppose that X' is normal and the
analytic inverse image sheaf H*(Ii is invertible. Then we
have the following for any compact subset KC Y:

(i) There exists an arbitrarily small neighborhood U of K
such that N-' (YN U) has only a finite number of irreducible
components Y,,...,Y,, all Y, intersect 17! (K) and Y; are all
irreducible along I-'(K). (Y, are of codimension one by
Krull’s Hauptidealsatz.) '

(ii) If U is as above and £€ T (U, Ox),

o (£) =sup{rsq: 3 q,reN, (£f:M0),"€0,*(I,")
for V (or 3y €N WUNY: (i=1,...,p).

,k—‘
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(2. 2) REMARK (Rees (R;), The strong valuation theorem). If
(A,m) is a local ring whose completion is reduced, then there
exists b such that

VA,T(f)+_b;;;A,m(f) (Zva, w (£)).

such a b must satisfy b= 0.
(From now on a parenthesized inequality means a trivial one.)

THEOREM C*. Let S be a thin connected Moishezon subspace

of a reduced complex space X defined by a coherent ideal
sheaf I. Then, for any (& S, there exist a& R such that

arvxP ()= vy, s (£7) (Zvx®0 (7))

for any £ €T (S,0x). Such an a must satsfy a> 1.

(2. 3) REMARK. Let X be a normal complex space and S and T its
hypersurfaces defined by invertible ideal sheaves I and J
respectively. Suppose that S is an irreducible Moishezon
space, T intersects S and T is irreducible along S. If f is a
representative of a fixed f & I (S,0x) defined on a
neighborhood U of S such that TN U is irreducible, then

VuX1 (f) (resp. vy?, (f)) is independent of (U, f) and x& S
(resp. y€ UNT) by Riemann’s second removable singularity
theorem. This value vs (f ) (resp. vy (f )) defines a valuation
on (S, 0x). Then (C*) implies the existence of ¢> 0 with

c vs (£7)= vy (£7)

for any £ €T (S,0x) (ecf. (2.1), (ii)). This situation arises in
the case of a resolution of a non—-isolated singularity.

THEOREM D*~(Izumi (I,)). If 9: A— B is an injective.
homomorphism between integral analytic algebras with r,= r;,

then there exist a, b& R such that

av(f)+b=v((£)) (2v(£))

for any f€ A. Such a and b must satisfy a= 1, b= 0.

(2. 4) REMARK. The case A is regular is proved by Tougeron
(T,), (£, 1.8). It is known that the converse of« (D*) is also
true: the inequality for suitable a, beE R implies r,=rs (see

6



60

(Is)).

THEOREM E* (Izumi (I,), (3:4); cf. (I4),(1.6)). If A is an
integral analytic algebra, there exists a& R 'such: that

a {v(E)+v(E)I=v(fg) (v {H+v()).

Such an a must satisfy a= 1.
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3. A Moishezon subspace is an image of a negative subspace

The lemmas of this section will reveal the reason why a
property at . a point ofya connected Moishezon subspace SC X
influences properties at other points as in (C) and (C*). In
short, the reason is that S can be transformed into a point
by birational transformations of X.

(3.1) LEMMA. Let S be a Moishezon subspace of a reduced

complex space Xo. Then there exists a thin analytic subspace
Z of a neighborhood XC X, of S such that the blowing up

$: X' — X, with center 7Z satisfies the following:
(i) X' is smooth.

(ii) ¢°'(S) is defined by an invertible sheaf of ideals.

(iii) All components Te of the total transform ¢~ ' (S)..s are
smooth projective varieties.

PROOF of (3.1). First note the following facts. The
Hironaka resolution of singularity (AHV) is a finite
composition of blowings up on a reélatively compact subset. A
finite composition of blowings up is a blowing up again on a
relatively compact subset (cf. (HR), (5)). For a blowing up,
subvarieties of the inverse image of a Moishezon space (resp.
a projectivé variety) are also Moishezon (resp. projective).

We prove by induction on s= dim S. The case s= 0 is
obvious. So we assume the case s— 1 (s=1). By Moishezon’s
theory (M), there exists a thin subspace T,C S such that the
strict transform of S is projective for the blowing up
N,: X,— X, with center T,. By the inductive hypothesis,
there exists thin subspace T, of a neighborhood UC X, of S
such that all the components of the total transform of T,
~with respect to the blowing up ll,: X,—> U with center T, are
‘projective. Let TC U be the subspace determined by the
product of the ideal sheaves of T,|U and T,. By (Hi), (2.10),
the blowing up I with center T dominates 0,|l,~!' (U) and I,
ithrough blowings up. Then all the components of the total
transform S° of S with respect to II are projective.. We have
only to compose [l and the Hironaka resolution and choose a
relatively compact neiborhood XC U of S. : 0
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(3.2) LEMMA (cf. (M), ], Th.5). Let X' be a smooth complex
manifold and T itls compact smooth hypersurface. Assume that T
is projective and that H is its smooth hyperplane section.
Let V: X' —> X be the blowing up with center nH (n&€ N) and T
the strict transform of T. If n is sufficiently large, T has
a line bundle neighborhood (not the total one) in X' and T
is exceptional (in the sense of (Gr)).

(3. 3) REMARK. Generic hyperplane sections of T are smooth by
Bertini’s theorem.

PROOF of (3.2). Let E=V"'(H)NT be the exceptional

divisor in T”..By the calculation of (F), Appendix B, (6. 10),
we have

Nypo g xr = (W!T' )" (N x- ) (-—n(E)),

where Ny | x+ (resp. N¢;x+) denotes the normal bundle of T’ in
X" (resp. T in X' ) and (E) the line bundle associated to E.
Since nH is a divisor, ¥|T is an isomorphism. By a
calculation of curvature tensor (cf. (Gf), (2.10)) we see that,
if n is sufficiently large, ([T )* (N+ | x)® (-n(E)) is
Griffiths negative. Then N | x» is weakly negative by

(Gf), (3.4) and T is exceptional by (Gr), Satz 8. 0
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4. Proofs of the equivalence.

(4. 1) PROOF of the restrictions on the constants a, b in (A*)
~ (E").

The proof of these restrictions are independent of the
mutual implications among the theorems. When we deduce (C*)
and (E*) from (B*) or (D*), there remains an additive
constant “b” on the left sides of the inequality. But we can
delete them using the homogeneity of the superlined orders:
Yy (£P)=p-v(f) (PEN) ete. (cf. (R;)). In (A*), a=1 follows
from the following observation. Let f be a generic linear

function which vanishes at {. Then
ap= a(deg £')Z Vs, : (f*)=p (PE N)

implies that a= 1. Since we have assumed that dim S=1,
Vs, ¢ (fr) is unbounded. Then a must be positive in (B*). The
restriction a=1 in (D*) and (E*) follows from the
parenthesized trivial parts of the inequalities. The proof of
a>1 in (C*) is not trivial. It is a consequence of the last
inequality of (4.5) below and unboundedness of vs, ¢ (f).
Positivity of b in (D*) follows if we put f= 1. 0

(4. 2) PROOF of (A)=> (B)rros, (A*)=™ (B*)pcoj-

Here ,.,; indicate the case S is projective. We may
assume that D is effective. Let SC P" be an embedding into a
projective space with a homogeneous coordinate system X,,

.., X,. Then there exists a homogeneous polynomial g of
degree p such that
D= SN {X= (Xo,...,X.): (X)=0) (scheme theoretically).
2

‘ n
If we define an embedding ¢: S\ (spt D)—> C by

O (X)= (Xp/2(X), X 'X,/8(X),..., Xb/g(X)) (p=deg g),

f& L(dD) is expressed asn§==h»® by a homogeneous polynomial h
of degree at most d on € . Then (A) (resp. (A*)) for ¢ (S)
implies (B) (resp. (B*)) for S. ' i

(4. 3) PROOF of - (B)—> (A), (B*)=—> (A").
Let DC P". be the divisor defined by Xo= 0 and identify

/0



b4

G" with P"\ (spt D).

(4. 4) PROOF of «(B)y.o; == (C), (B )p.,;==> (C*).

Let ¢: A-—> B be an injective finite morphism between
local rings. It is easy to see that p ' (B)=A (a special case
of (D), cf. (147, (2.2), (2.4)) and av (£)+ b=y (¢ (£)) for some
a, be R (a special case of (D*), cf. (1), (4.1)). Hence we may
assume that X is normal. We may also assume that S is
irreducible. Shrink X and take a blowing up ¢: X' —> X that
satisfies the conditions in (3.1). Let T« be a component of
- ' (S) that contains a point 1&E 0" (¢). Applying. (3.2) to
this T¢ we have a blowing up ¥V: X" —> X' such that the strict
transform Te¢' of Te has a line bundle neighborhood. Let
: N— Tq¢ be the normal bundle of Te ' C X" and Z its zero
section. Then we have a natural isomorphism between the
completions N of N along Z and X' along T«' . We identify
them. By Serre’s GAGA (Sr) N has an algebraic trivialization:

Te' =UgU...UU, (U; : affine Zariski open),
I-'"Wi)=EUi XECD (xi, i),
g,,;: regular functions on U; with t,=g;;t;.

X ? X L X'

U U

s «<—— T U

w u

& Te€—— Ta’
™S v W

, ] <— {

We may assume that ¥~'(1)NUy+* ¢. Take a point (€ V™' (1) N U,.
If £ ET(S,0z%), we have a unique expression

fw“@“‘@(Xi,ti): > azo Fia (Xi)t(i! (fi:dEr(UiyOx))
on U;. Hence ’ |
f;;d/f;,;.1=tf§/t‘;':gf§~."' On‘Ui‘UU‘].

~ There exists’a CartiEr divisor - D on T¢' which corresponds to
thé dual of N (see e.g. (H), (6.14. 1)) such that (& (spt D).
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Refining the covering {U;} if necessary, we have a system of
local equations {¢;} of D (¢:€&T (Ui, £), ga}==?5/¢;, K is
" the. sheaf of the invertible rational functions on S)i Putting
h =f,.,79¢ on U;, we have h € L(dD).

Suppose that f  is convergent at ¢{. Then there exist a
compact neighborhood KC U, of { and positive numbers M and A
such that '

(%) I fo:alc=MA".

We claim for any compact GC U;\ (spt D) there exist positive
numbers M’ and A’ such that '

(x%) [£i alc=M A ‘.

Since U; is Zariski open, moving ¢ a little and shrinking K,
we may assume that KC U;\ (spt D). (%) implies

N EaprHMAB) k=1 (B=[1/901x> 0).
By/(B) we have
I!(f;;d/so?)/M(ABMlGé_M”A”“,
so that |
I £:,4l6¢=MM (AA" BC)* c=lyile>0).

This proves (*x%). Hence f 9.V is convergent on T« \U (spt D).
Since ¥V is an isomorphism outside the center nH of ¥, £ .§ is
convergent on |T«|\ (|H| UV (spt D)). Moving D and H, we see
that £ % is convergent on T«. If TaN Te# ¢, we can similarly
see the convergence on Ts starting from any point (s€ TaN Ts.
Repeating this we know that £~ .8 is convergent on ¢~'(S),
since it is connected. Hence f~ is convergent by normality..
This completes the proof of (B)p..;=—= (C).

To prove (B*).,.;=> (C*) we claim that there exists
ac& R such that

I
o

(H) A ET 2T, 0 (),

where J¢ denotes the ideal sheaf that defines Te. Consider
“the expression
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£ o0 Y= Z azo Tia (Xi)t(i'

on UiC Ty . If we put K'=f,,,/9! on.U;, K"E L(dD). If
Ui\ (spt D)3 { and if £.,,+ 0, there exists a € R by (B*)
such that

e (Fiva) = 0k (F o0 V)—d= vy, ¢ (£7)— d.

a'd= vy, 1 (K )=V
Then
(a' + 1)d=vx, ¢ (£).
Thus we have proved that (a + 1)d<vx, ¢« (f ) implies f;,q = 0.
Since ¥ induces isomorphisms at general points of Tq', we
have

(@ + Dvxrla, Fe0) =V, ¢ (£7),

for general y&€ Tq¢. By the smoothness (3.1), (i), (iii), this

holds for all y& Te¢ and (1) follows. Such estimates are also
possible for all components Tg as in the case of (B)—> (C).
Then (C*) follows from (2.1). ' '

(4. 5) PROOF of (C)=—=> (B), (C*)=> (B*).

Let II: L—> S be the line bundle associated to D and
{Wi,¢:)} its algebraic trivialization (as in (4.4)).

To prove (C)=— (B), suppose that KC S\ (spt D) is a
compact domain and Py (z) is not bounded on a compact set
GC S\ (spt: D). We may assume that G and K are contained in
Uo. Then there exist dyEN, fY€ L(dyD) such that |f’|«x= 1,
|£]s=v '. Since the cohomology groups of a projective
variety are finite dimensional and since any two norms of é
finite dimensional C-vector spaces are equivalent, d,—> 00,
We may assume that d,<d,<.... If we put

. d, dy
f = =2 y50 7 (X0)00 (X0) to on Uy,

£f7E [ (S,0r), where L denotes the completion of L along its
zero section. Since ¢, and 1/¢, are bounded on G and K, 7 is
convergent on K and divergent at*Some point of G, a
contradiction to (C). , , v

To prove (C*)=> (B*), suppose that f& L(dD)\ {0). Then,
if we put £ = f9it! on U;, £ ET(50.) (cf. (4.4)) so that
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ad=avx*: (£)= T4, « (£7)  (by (C*))
=g, ¢ (F)+d.

Hence (a— 1)d=vs. : (f). This proves (B*). d

(4. 6) PROOF of (C)=—> (D), (C*)==> (D).

Quite similar to (I,), (6.2), (6.3). (There we have used
resolution of singularity and the regular cases of (D)
(Moussu-Tougeron, Malgrange, Eakin-Harris) and (D*) (Tougeron
cf. (2.4)). We have used (2.1) also to prove (C*)=> (D*).) [

(4. 7) PROOF of (D)= (C), ((D")—> (C*).
We may assume that S is irreducible. By (3.1) and (3. 2)
we have the following diagram (shrinking X).

X ’ X' ! X' nf> Y
U U
S <— T U W
w U )
€ $_ T(l K rra' c'
' W w
\#\\\ ] <—

Here Ty' is exceptional and 11 is the associated contraction:
I« (Ox»)=0y. For any f& [ (5, 0z) there exists g& Oy, ;- such
that f.§.V=g.[ by the comparison theorem applied to I

(cf. (BS), W, §4). Then we have the following implications:

f7: is convergent

(fF7:0.¥)y= (g:1); is convergent
g:- is convergent (by (D))
g:l=f"+:0.7 is convergent on T’
f7+.9 is convergent on Te (by (D))
f7.% is convergent on T

RRRR

(Apply the above arguments to the neighboring
Ts. Repeating this, we see the convergence on
the whole T, since it is connected. )
£f7E T (S,0x) (by (D)).

!

This proves (D)=—> (C).
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To prove (D*)=> (C*), we have only to replace “be
convergent” (resp. (D)) by “have a high order of vanishing”
(resp. (D*)) in the above (cf. (4.1)). 0

(4. 8) PROOF of (D*)<=> (Ii*).

See Proof of (1,), (1.2) (cf. (4.1)). (There we have used
the resolution of singularity for (—> ) and Tougeron’s idea
in (Ty) for (<= ).) i

5. Proof of (E ).

(5.1) LEMMA. If A is a regular analytic algebra, (E') is
true. ' ‘

PROOF. We have only to prove the case p= 2. So suppose
that f, g€ A and fg€& A. Let

r C r
e=nP'. . .0, g=n'. . pd

(h;A?’—'h.;Z\ if i# j; pi=20, q:.=0, p;i+taq.>0

be the factorization into prime elements in A. Suppose that
i# j and h; € h; A+ m* for any t€N. Then h; € h;A by Krull’s
intersection theorem. Hence we have h;A= h;A, a
contradiction. This proves that there exists g& N such that
h; & h;A+m* if i# j. By Artin’s theorem (A) on analytic

equations, there exist k,,...,k,.E A such that
-+,
fg g Prrae
— h;&n".

By the latter, k; is not equivalent to h; modulo an
invertible factor (i# j). Since A is factorial, there exist

invertible elements w,,...,w. such that ki =w; h;. Putting
P Dr 1 a-
U=w;, ...W, , V=W ...W,

we have ufe A, vg€ A and uv= 1. Thus (uf) (vg) realizes an
analytic factorization of fg. 0

(5. 2) PROOF of (E').
We have only to prove the case p= 2. So suppose . that
f, g€ A and fg&€ A. Take a normal complex space X such that A=
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Ox, ¢. Let I: Y—> X be.a Hironaka resolution and X (resp. ¥)
the completion of X at ¢ (resp. Y along S= (I"'(§)..4). The
morphism Il induces a formal morphism [I: Y— X, and
homomorphisms 1: A—> [ (S,0y) and 1: A—> [ (S, 0;). The
section 1 (fg)& T (S,0v) has a formal factorization

1 (fg)=1(f)r(g). By (5.1) there exist a covering UU;=S and
“invertible sections w; & [ (U;, 0y*) such that

fi=win (FH)ET(WU;,0v), wi '1(g)ET (U;,0y). Since
t,/f;=wi/w; €T (U NU;,04%), they determine an element

LE Pic(Y)=H' (S,0y*) the image of which vanishes in Pic(Y).
Bingener deduced the injectivity of the canonical morphism
Pic(Y|S)— Pic(Y) from the injectivity of

RN+ (Oy)e—> R"I. (03): (see (B), Proof of (3.1)). Thus we have
L= 0 and hence there exist a refinement {(V;} of {(U;)} with
refining map y of indexes and v;E&€ T (V;,0y") such that
foxy/Fp» 5y =Vve/v,;. Putting u =wp (;, /v, on V,, we have

U ET(S,0¢*) and U1 (£)ET(S,0v). By normality Il satisfies
« (Oy)= 0x and, by the comparison theorem, A=T (S, 0y)

“(see (BS), W, (4.5), (4.7)). Then there exists hE A and u€ A*
such that u =1 (u) and u 1 (£f)=r1(h). This proves uf= hE A.
'Obviously u is invertible.‘Similarly we have u” 'g& A. Thus we

have an analytic factorization fg= (uf)(u 'g). U
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