Transversality of linear holomorphic vector field on ${\mathfrak C}^{\mathbf n}$

TOSHIKAZU ITO *
(Ryukoku University)

INTRODUCTION

Let \mathcal{F} be the holomorphic foliation on $\mathbb{C}^2 - \{0\}$ defined by a linear vector field $\mathbf{X} = \sum_{i=1}^{L} \lambda_i \mathbf{z}_i \ \partial/\partial \mathbf{z}_i$ ($\lambda_i \in \mathbb{C}$, $\lambda_i \neq 0$) on \mathbb{C}^2 . Let us begin by recalling a well-known fact ([1],[2]):

FACT If λ_1/λ_2 does not belong to \mathbf{R}_- = { negative real numbers }, then the 3 dimensional unit sphere \mathbf{S}^3 in \mathbf{C}^2 is transverse to \mathfrak{F} . On the other hand, if λ_1/λ_2 ϵ \mathbf{R}_- , \mathbf{S}^3 is not transverse to \mathfrak{F} .

^{*} Partially supported by the Ishida Foundation (No. 63-427) and Grant-in-Aid for Scientific Research (No. 01540089) Ministry of Education.

These pictures suggest to us a question:

QUESTION Let M be a connected closed 2 or 3 dimensional smooth manifold. Is there a smooth map ϕ ; M $\longrightarrow c^2 - \{0\} \text{ such that } \phi \text{ is transverse to } \Re ?$

In this note, we shall give an answer to this question. This note is divided into three sections. In §1, we give a definition of transversality of maps to a holomorphic vector field on \mathbf{C}^n and some examples. In §2, we investigate a non-existence of transversal maps. Finally in §3, we have a structure theorem on an existence of transverse maps on condition that λ_1/λ_2 is a real positive number.

The author would like to thank Professor Andre Haefliger for numerous discussions and encouragement.

§ 1 DEFINITION OF TRANSVERSALITY OF MAPS TO A HOLOMORPHIC VECTOR FIELD ON ${f C}^n$ AND WELL-KNOWN EXAMPLES

Let $\mathfrak F$ be the holomorphic foliation on $\mathbb C^n$ defiened by the solutions of a holomorphic vector field X on $\mathbb C^n$. Let M be a smooth manifold of dimension 2n-2 or 2n-1 and ϕ a smooth map from M in $\mathbb C^n$.

DEFINITION 1.1 We say that the map $_{\varphi}$; M \longrightarrow C n is transverse to F if the following identity satisfies for all points p $_{\epsilon}$ M :

$$\phi_*(T_p(M)) + T_{\phi(p)}(\mathcal{F}) = T_{\phi(p)}(\mathbb{C}^n)$$

We shall here give the well-known examples.

EXAMPLE 1.2 ([1],[2]) Let $X = \sum_{i=1}^{n} \lambda_i z_i \partial/\partial z_i$ a linear holomorphic vector field on \mathbb{C}^n . We assume that $\lambda_i \notin \mathbb{R}\lambda_j$ for $i \neq j$. The convex hull of $\Lambda = \{\lambda_1, \ldots, \lambda_n\}$ in \mathbb{C} is denoted $\mathcal{H}(\Lambda)$.

- (i) If the origin 0 in C belongs to \mathcal{H} (Λ), then the 2n-1 dimensional unit sphere S^{2n-1} in \mathbb{C}^n is not transverse to \mathcal{F} .
- (ii) If the origin 0 in C does not belong to $\mathcal{H}(\Lambda)$, then S^{2n-1} is transverse to \mathcal{F} .

§ 2 Non-existence of transverse maps

First, the Fig.3 and 4 lead us to a theorem: Poincaré-

Hopf type theorem for holomorphic vector field.

THEOREM 2.1 ([3]) Let $\mathcal F$ be the holomorphic foliation on $\mathbb C^n$ defined by the solutions of a holomorphic vector field X on $\mathbb C^n$, $n \geq 2$. If a smooth imbedding ϕ from the 2n-1 dimensional sphere S^{2n-1} in $\mathbb C^n$ is transverse to $\mathcal F$, then X has only one singular point in the inside of ϕ (S^{2n-1}).

Secondly, in the special case of a linear vector field $X = \sum_{i=1}^{n} \lambda_{i} \sum_{i=1}^{2} \frac{\partial}{\partial z_{i}} \quad \text{on } C^{n}, \ n \geq 2, \ \text{we have some results.}$

COROLLARY 2.2 ([5]) Let $\mathcal F$ be the foliation on $\mathbb C^n$ -{0} defined by $X = \sum\limits_{i=1}^n \lambda_i z_i \ \partial/\partial z_i$ ($\lambda_i \neq 0$, $i=1,\ldots,n$). A smooth imbedding ϕ ; $S^{2n-1} \longrightarrow \mathbb C^n$ - {0} which is homotope to zero in $\mathbb I_{2n-1}$ ($\mathbb C^n$ - {0}) is not transverse to $\mathcal F$.

COROLLARY 2.3 ([5]) Let \mathcal{F} be the foliation on \mathbb{C}^2 -{0} defined by $X = \sum\limits_{i=1}^2 \lambda_i z_i \ \partial/\partial z_i$ ($\lambda_i \neq 0$, i=1,2). Let T^3 be the torus of dimension 3. A smooth imbedding ϕ ; $T^3 \longrightarrow \mathbb{C}^2$ - {0} which satisfies the following property (#) is not transverse to \mathcal{F} .

Property (#): There exists a smooth imbedding Φ ; $S^1 \times S^1 \times D^2 \longrightarrow \mathbb{C}^2 \text{ such that } \Phi \text{ satisfies } \Phi \mid_{\partial(S^1 \times S^1 \times D^2)} = \Phi$ and the image of Φ contains zero in \mathbb{C}^2 .

THEOREM 2.4 ([5]) Let \mathcal{F} be the foliation on \mathbb{C}^n - $\{0\}$ defined by $X = \sum_{i=1}^n \lambda_i z_i \ \partial/\partial z_i$ ($\lambda_i \neq 0$, i=1, ..., n).

Assume that at least one of $\lambda_{\mathbf{i}}/\lambda_{\mathbf{j}}$ ($\mathbf{i}\neq\mathbf{j}$) is a negative real number. Let M be a closed connected smooth manifold of dimension 2n-2 or 2n-1. Then there is not a smooth map $_{\varphi}$, M \longrightarrow c^n - {0} which is transverse to F.

THEOREM 2.5 ([4]) Let \mathcal{F} be the foliation on \mathbf{C}^n - $\{0\}$ defined by $\mathbf{X} = \sum\limits_{\mathbf{i}=1}^{\Sigma} \lambda_{\mathbf{i}} \mathbf{z_i} \ \partial/\partial \mathbf{z_i}$ ($\lambda_{\mathbf{i}} \neq 0$, $\mathbf{i} = 1, \ldots, n$). Assume that $\lambda_{\mathbf{i}} \notin \mathbf{R} \lambda_{\mathbf{j}}$ ($\mathbf{i} \neq \mathbf{j}$) and $0 \in \mathcal{H}(\Lambda)$. Let \mathbf{M} be a closed connected smooth manifold of dimension 2n-1. Then there is not a smooth map Φ ; $\mathbf{M} \longrightarrow \mathbf{C}^n - \{0\}$ which is transverse to \mathcal{F} .

§ 3 EXISTENCE OF TRANSVERSE MAP AND STRUCTURE THEOREMS

Let $\widehat{\mathcal{H}}$ be the holomorphic foliation on \mathbf{C}^n - $\{0\}$ defined by a linear vector field $\mathbf{X} = \sum_{\mathbf{i}=1}^{n} \lambda_{\mathbf{i}} \mathbf{z}_{\mathbf{i}} \ \partial/\partial \mathbf{z}_{\mathbf{i}} \ (\lambda_{\mathbf{i}} \neq 0, \ \mathbf{i} = 1, \ldots, n)$. Assume that all $\lambda_{\mathbf{i}}/\lambda_{\mathbf{j}}$ ($\mathbf{i} \neq \mathbf{j}$) are positive rational numbers. Then the 2n-1 dimensional unit sphere \mathbf{S}^{2n-1} in \mathbf{C}^n is transverse to $\widehat{\mathcal{H}}$ and the foliation on \mathbf{S}^{2n-1} defined by $\widehat{\mathcal{H}}$ is a generalized Seifert structure. Now, we have a structure theorem.

THEOREM 3.1 ([5]) Let \mathcal{F} be the foliation on \mathbf{C}^n - {0} defined by $\mathbf{X} = \sum\limits_{\mathbf{i}=1}^{\Sigma} \lambda_{\mathbf{i}} \mathbf{z_i} \ \partial/\partial \mathbf{z_i}$ ($\lambda_{\mathbf{i}} \neq \mathbf{0}$, $\mathbf{i} = \mathbf{1}$, ..., \mathbf{n}). Assume that all $\lambda_{\mathbf{i}}/\lambda_{\mathbf{j}}$ ($\mathbf{i} \neq \mathbf{j}$) are positive real numbers. Let \mathbf{M} be a closed connected smooth manifold of dimension $\mathbf{2n-1}$. If a smooth map ϕ ; $\mathbf{M} \longrightarrow \mathbf{C}^n$ - {0} is transverse to \mathcal{F} , then

M is diffeomorphic to the sphere S^{2n-1} of dimension 2n-1.

Because of the existence of 2-field on a manifold M which is transverse to $\mathcal F$ defined by a holomorphic vector field X on $\mathbb C^{2n}$, $n \, \geqq \, 1$, we have other structure theorem.

THEOREM 3.2 ([5]) Let \mathcal{F} be the foliation on \mathbb{C}^2 defined by a holomorphic vector field X on \mathbb{C}^2 . Let M be a closed connected smooth manifold of dimension 2. If a smooth map ϕ ; M \longrightarrow \mathbb{C}^2 is transverse to \mathcal{F} , then M is diffeomorphic to the torus \mathbb{T}^2 . Moreover, in the case of a linear vector field $X = \sum_{i=1}^{\infty} \lambda_i z_i \frac{\partial}{\partial z_i}$ ($\lambda_i \neq 0$, i=1,2 and $\lambda_1/\lambda_2 \notin \mathbb{R}$), we can construct a smooth map ϕ ; $\mathbb{T}^2 \longrightarrow \mathbb{C}^2$ such that ϕ is transverse to \mathcal{F} .

Finally, we shall give some examples of transverse maps.

EXAMPLE 3.3 ([5]) Let \mathcal{F} be the foliation on \mathbf{c}^2 - {0} defined by $\mathbf{X} = \sum\limits_{\mathbf{i}=1}^{\Sigma} \lambda_{\mathbf{i}} \mathbf{z}_{\mathbf{i}} \ \partial/\partial \mathbf{z}_{\mathbf{i}}$ ($\lambda_{\mathbf{i}} \neq 0$, i=1,2 and $\lambda_{\mathbf{1}}/\lambda_{\mathbf{2}} \ell \mathbf{R}$) Let \mathbf{M} be \mathbf{T}^3 or $\mathbf{S}^2 \times \mathbf{S}^1$. Then we can construct a smooth map $\mathbf{\phi}$; $\mathbf{M} \longrightarrow \mathbf{c}^2$ - {0} such that $\mathbf{\phi}$ is transverse to \mathcal{F} . (cf. §2 Corollary 2.3)

EXAMPLE 3.4 ([4]) Let \mathcal{F} be the foliation on \mathbb{C}^n - {0} defined by $X = \sum_{i=1}^n \lambda_i z_i \partial/\partial z_i$ ($\lambda_i \neq 0$, $i = 1, \ldots, n$). Assume that $\lambda_i \notin \mathbb{R}\lambda_j$ ($i \neq j$) and $0 \notin \mathcal{H}(\Lambda)$. then there exists a smooth imbedding ϕ ; $S^1 \times S^{2n-3} \times S^1 \longrightarrow \mathbb{C}^n$ - {0} which is transverse to \mathcal{F} .

REFERENCES

- [1] V.I.Arnold: Chapitres supplémentaires de la théorie des équations différentielles ordinaires. Editions Mir Moscou (1980).
- [2] C.Camacho, N.H.Kuiper and J.Palis: The topology of holomorphic flows with singularity. Publ. Math. I.H.E.S., 48 (1978), 5-38.
- [3] T.Ito: Poincaré-Hopf type theorem for holomorphic vector field. J. of Toyota College of Technology 21 (1988), 109-112.
- [4] T.Ito: Transversality of linear holomrphic vector field on Cⁿ. Stability theory and related topics in dynamical systems (1989), 73-79.
- [5] T.Ito: Existence et non-existence d'applications variété fermée de dimension deux ou trois dans ${\bf C}^2$ $\{0\}$ transverse à un champ de vecteurs linéaires. in preparation