<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Algebraic automorphic representations: an introduction to integral and automorphic forms and related research</td>
</tr>
<tr>
<td>Author(s)</td>
<td>WATANABE, T.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1990), 727: 174-183</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1990-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/101912</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Algebraic automorphic representations

(L. Clozel, Motifs et formes automorphes の紹介)

T. Watanabe

保型表現とMotifとの関係を記述するための1つの定式化が10年前前Langlandsによって与えられた。それは、Isobaric表現と呼ばれるGL_nの保型表現の或クラスIsobを定義し、

"Isob を表現圈として持つ群 G_{Isob}とMotifのカテゴリーを表現圈として持つ群 G_{Mot}との間に或準同型 $G_{Isob} \rightarrow G_{Mot}$ が存在する。"

というものである。ここで、G_{Isob}, G_{Mot}及び、"Motifのカテゴリー" はまだ仮想的なものである。しかしながら、IsobはMotifとの対応を考える上で、まだ"大きすぎる"と思われる。(c.f [5, p. 211], [3, p.189])。今回紹介する論文の中でClozelは、Isobaric表現の無限素点に於ける成分に或条件を付けることによって、Algebraic表現と呼ばれる保型表現のクラスAlgを定義した。そしてAlgの要素は"Q上定義"されかつ"Motifが対応"すると予想している。以下ではその定義と簡単な例、及び主な予想と結果について説明する。

体はすべて標数0

$G_n = GL_n$

$P = P(n_1, \ldots, n_r) \subset G_n$: standard parabolic subgroup with Levi part $\prod_i G_{n_i}$

1. Langlands subquotient.

L: local field

$\sigma: G_{n_i}(L)$の2乗可積分表現 (modulo the center)

$\exists s_i \in R : |\sigma_i(z)| = |z|_{L}^{s_i}$, $\forall z \in$ the center of $G_{n_i}(L) \cong L^{*}$

$\sigma = \sigma_1 \otimes \cdots \otimes \sigma_r$: $P(L)$の表現 (unipotent radical では trivial)

$\rho(\sigma) = \rho(\sigma_1, \ldots, \sigma_r) = \text{Ind}_{P(L)}^{G_n(L)} \sigma$: ユニタリ誘導表現とするとき

Langlands subquotient

$\exists J(\sigma_1, \ldots, \sigma_r): \rho(\sigma_1, \ldots, \sigma_r)$のirr. subquotient

(1.1) $J(\sigma_1, \ldots, \sigma_r) \cong J(\sigma_{\tau(1)}, \ldots, \sigma_{\tau(r)}), ($\forall \tau \in S_r$: permutations)

(1.2) $s_{\tau(1)} \geq s_{\tau(2)} \geq \cdots \geq s_{\tau(r)} \Rightarrow J(\sigma_{\tau(1)}, \ldots, \sigma_{\tau(r)})$は$\rho(\sigma_{\tau(1)}, \ldots, \sigma_{\tau(r)})$のunique irr. quotient

逆に$G_n(L)$の任意のirr. admissible rep. は適当な $J(\sigma_1, \ldots, \sigma_r)$ と同型になる

2. Isobaric 表現

F: 代数体

A: Fのアデール

σ_i: $G_{n_i}(A)$のcuspidal rep.
\[\sigma = \sigma_1 \otimes \cdots \otimes \sigma_r \] は \(P(A) \) の表現 (unipotent radical で trivial)
\[\rho(\sigma) = \rho(\sigma_1, \cdots, \sigma_r) = \text{Ind}_{P(A)}^{G_n(A)} \sigma = \otimes_v \rho(\sigma_v) \] (制限テンソル積)

このとき

\[\pi : G_n(A) \text{ の irr. automorphic rep.} \iff \pi \text{ は } 3 \rho(\sigma) \text{ の irr. subquotient} \]
が成立。更に

\[\sigma_i = \otimes_i \sigma_{i,v} : \text{ cuspidal rep.} \implies \sigma_{i,v} : \text{ generic} \]

\[\implies \sigma_{i,v} = \text{Ind}_{P_i(F_v)}^{G_n(F_v)} \tau_{i,v} \exists_{P_i} \subset G_{n_i}, \exists_{\tau_{i,v}} : \text{ square int.} \]

より、\(\tau_{i,v} = \tau_{i,v}^1 \otimes \cdots \otimes \tau_{i,v}^r \) すれば

\[\rho(\sigma_v) = \rho(\sigma_{1,v}, \cdots, \sigma_{r,v}) = \rho(\tau_{1,v}^1, \cdots, \tau_{i,v}^1, \cdots, \tau_{i,v}^2, \cdots, \tau_{i,v}^r) \]

だから、\(\rho(\sigma_v) \) の Langlands subquotient \(J(\sigma_v) \) がある。このことから、

Definition
\[\sigma = \sigma_1 \otimes \cdots \otimes \sigma_r : \prod_i G_{n_i}(A) \text{ の cuspidal rep.} \text{ に対して } \pi : \text{ irr. subquotient of } \rho(\sigma) \text{ s.t. } \pi_v \cong J(\sigma_v) \text{ for all } v \text{ なる表現は } G_n(A) \text{ の irr. automorphic rep になる} \]

\(\pi \) を isobaric 表現と呼び \(\pi = \sigma_1 + \cdots + \sigma_r \) とおく。ここで

(2.1) \[\pi : G_n(A) \text{ の irr. automorphic rep.} \iff \pi \text{ は } 3 \rho(\sigma) \text{ の irr. subquotient} \]

が成立する。

Isob(n): \(G_n(A) \) の isobaric 表現の集合

\[\text{Isob} = \coprod \text{Isob}(n) \]

\(\text{Isob} \) のなかの和と積

\[\pi^1 = \sigma_1 + \cdots + \sigma_r^1 \in \text{Isob}(a), \pi^2 = \sigma_1^2 + \cdots + \sigma_r^2 \in \text{Isob}(b) \text{ に対して} \]

\[\pi^1 + \pi^2 = \sigma_1 + \cdots + \sigma_r^1 + \cdots + \sigma_r^2 \in \text{Isob}(a+b) \]

とする。積については次の予想がある。\(\pi \in \text{Isob}(n) \) について \(\pi_v \) が不成分のとき \(t_{\pi,v} \) を \(\pi_v \) に対応する \(\prod G^0_n = G_n(C) \) のなかの対角行列とするとき

Conjecture A

\[\pi^1 \in \text{Isob}(a), \pi^2 \in \text{Isob}(b) \text{ に対して} \]

\[3 \pi \in \text{Isob}(ab) \text{ s.t. } t_{\pi,v} = t_{\pi^1,v} \otimes t_{\pi^2,v} \text{ for almost all } v \]

このとき \(\pi = \pi^1 \times \pi^2 \) とおく。
3. アルゴリズム映射

簡単のため F は完実と仮定する。

$H_n \subset G_n$: diagonal matrices

H_n^0: complex diagonal matrices

$X^*(H_n) = \text{Hom}(H_n, G_1) = X^*(LH_n^0) = \text{Hom}(G_1, LH_n^0) \cong \mathbb{Z}^n$

$\mathcal{H} = X^*(LH_n^0) \otimes \mathbb{C} = \text{Hom}(\text{Lie}(H_n), \mathbb{C}) \cong \mathbb{C}^n$

$\mu = (\mu_1, \cdots, \mu_n) \in \mathcal{H}, z \in \mathbb{C}^*$ に対して

$z^\mu = \text{diag}(z^{\mu_1}, \cdots, z^{\mu_n}) \in LH_n^0$

とけば $r \in \text{Hom}(\mathbb{C}^*, LH_n^0)$ は

$r(z) = z^\mu \overline{z}^\nu \quad \mu, \nu \in \mathcal{H}, \quad \mu - \nu \in X^*(H_n)$

と表せる。一方 Harish-Chandra isomorphism: $Z(\mathcal{G}) \cong \mathcal{U}(\text{Lie}(H_n))^{S_n}$ より

$$
\text{Hom}(Z(\mathcal{G}), \mathbb{C}) \xrightarrow{\cong} \mathcal{H}/S_n
$$

$\chi_\lambda \quad \mapsto \lambda$

をもととして、

$W_R = \mathbb{C}^* \times \{c\}$: Weil group of R, $c^2 = -1, czc^{-1} = \overline{z}$

$\Phi_n(W_R)$: semisimple admissible rep. $W_R \to LG^0_n$ の同値類

$Irr(G_n(R))$: $G_n(R)$ の irr. admissible rep. の同値類

とおけば、全単射

$$
\text{Irr}(G_n(R)) \leftrightarrow \Phi_n(W_R)
$$

$r(z) = z^\mu \overline{z}^\nu \quad (z \in \mathbb{C}^*)$

がある。（χ_π は π の infinitesimal character)。この対応で

$p(\pi) = \mu - (\frac{n-1}{2}, \frac{n-1}{2}, \cdots, \frac{n-1}{2}) = (\mu_1 - \frac{n-1}{2}, \mu_2 - \frac{n-1}{2}, \cdots, \mu_n - \frac{n-1}{2}) \in \mathcal{H}/S_n$

とおく。

Definition

I: set of all real places of F

$\pi = \otimes \pi_v \in Isob(n)$ について

π: algebraic $\quad \overset{\text{def}}{\leftrightarrow} \quad p(\pi_v) \in X^*(H_n)/S_n \quad (\forall v \in I)$

と定義する。このとき $p(\pi) = (p(\pi_v))_{v \in I} \in (\mathbb{Z}^n/S_n)^I$ を π の "infinite type" という。

$Alg(n)$: $G_n(A)$ の algebraic 表現の集合

$Alg^0(n)$: $G_n(A)$ の cuspidal algebraic 表現の集合。
$\text{Alg} = \coprod \text{Alg}(n)$

$\pi \in \text{Isob}(n)$ のとき、$\pi \cdot |^s : g \mapsto \pi(g)|^s$ とする。
$\pi^1 \in \text{Alg}(a), \pi^2 \in \text{Alg}(b)$ に対して、
$$\pi^1 \cdot T + \pi^2 = \left(\pi^1 \cdot |^{\frac{1-a}{2}} + \pi^2 \cdot |^{\frac{1-b}{2}} \right) \cdot |^{\frac{a+b-1}{2}} \in \text{Alg}(a+b)$$

Conjecture A のもとで、
$$\pi^1 \times \pi^2 = \left(\pi^1 \cdot |^{\frac{1-a}{2}} \times \pi^2 \cdot |^{\frac{1-b}{2}} \right) \cdot |^{\frac{a+b-1}{2}} \in \text{Alg}(ab)$$

と定義する。次が成立。

(3.1) \(\forall \pi \in \text{Alg}(n) \exists \pi^i \in \text{Alg}^0(n_i) \mid \pi \cong \pi^1 + T \pi^2 + T \ldots + T \pi^r \)

Examples

(1) $n = 1$ の場合。
$\pi = \otimes \pi_v : G_1(A) \rightarrow C^*$：Grössencharakter
$\pi_v \leftrightarrow r_v \in \Phi_1(W_R), \quad (v \in I)$
$S = (W_R : W_R) = \{ z \in C \mid |z| = 1 \}$：derived group of W_R
従って、
$$\begin{array}{cccc}
1 & \rightarrow & C^* & \rightarrow & W_R & \rightarrow & \text{Gal}(C/R) & \rightarrow & 1 \\
\downarrow & & & & \uparrow & & & & \downarrow \\
1 & \rightarrow & C^*/S & \rightarrow & W_R/S & \rightarrow & \text{Gal}(C/R) & \rightarrow & 1
\end{array}$$

より、$r_v|_{C^*} = \pi_v|_{R^*_+} \equiv \cdot |^{s_v}$. 故に
$$\pi \in \text{Alg}(1) \iff \mu_v \in \mathbb{Z}, \quad (v \in I) \iff \pi : \text{algebraic Hecke character}$$

(2) $n = 2, \quad F = \mathbb{Q}$ の場合。
$G_2(R)$ の irr. admissible rep. の分類。$SL_2(R)$ への制限がユニタリのものを考える。
$\alpha = |^s : \mathbb{R}$
$\pi(\xi_1, \xi_2) = J(\xi_1, \xi_2), \quad \xi_i = \alpha^s \text{sgn}^\epsilon_i \quad (s_i \in \mathbb{C}, \quad \epsilon_i \in \mathbb{Z})$: Langlands subquotient
$\sigma(\xi_1, \xi_2) = \rho(\xi_1, \xi_2) / \pi(\xi_1, \xi_2)$ if $|s_1| \leq |s_2|$
principal series : $\pi(\xi_1, \xi_2) \begin{cases} s_1 - s_2 \in \sqrt{-1}\mathbb{R} & \epsilon_1 = \epsilon_2 \\
 s_1 - s_2 \in \sqrt{-1}\mathbb{R} \setminus \{0\} & \epsilon_1 \neq \epsilon_2
\end{cases}$
complementary series : $\pi(\xi_1, \xi_2) \quad s_1 - s_2 \in (-1, 1) \setminus \{0\} \quad \epsilon_1 = \epsilon_2$
limit of discrete series : $\pi(\xi_1, \xi_2) \quad s_1 - s_2 = 0 \quad \epsilon_1 \neq \epsilon_2$
trivial rep. : $\pi(\xi_1, \xi_2) \quad s_1 - s_2 = 1 \quad \epsilon_1 = \epsilon_2$
discrete series : $\sigma(\xi_1, \xi_2) \quad 0 > s_1 - s_2 \in \mathbb{Z} \quad \epsilon_1 + \epsilon_2 \equiv s_1 - s_2 - 1 (\text{mod } 2)$
π: は上記の表現の一つと同型であり、このとき $p(\pi) = (s_1 - 1/2, s_2 - 1/2)$ だから、

$$\pi \in \text{Alg}(2) \iff p(\pi) \in \mathbb{Z}^2 \iff s_1 - s_2 \in \mathbb{Z}$$

故に、π_∞ は次のいずれかになる。

(1) $\pi(\alpha^s, \alpha^s) \quad s \in \frac{1}{2} + \mathbb{Z}$ 重量 0 の変型形式
(2) $\pi(\alpha^s, \alpha^s \text{sgn}) \quad s \in \frac{1}{2} + \mathbb{Z}$ 重量 1 の変型形式
(3) $\sigma(\alpha^s, \alpha^{s+k} \text{sgn}^{k+1}) \quad 1 \leq k \in \mathbb{Z}, s \in \frac{1}{2} + \mathbb{Z}$ 重量 $k + 1$ の変型形式
(4) $\alpha^s \circ \det \quad s \in 2\mathbb{Z}$

4. The field of rationality of an automorphic representation

一般に

G: 純粋なトポロジカルな群

(π, V): G を越した滑らかな表現

$\sigma \in \text{Aut}(C)$ について $(\sigma \pi, \sigma V)$: G を越した滑らかな表現

π_∞ は π の \mathbb{Z} 上の元で、$\pi_\infty = \pi$ である。

$E = Q(\pi)$ は π_∞ が存在するに必要な条件を満たす。

(4.1) $\exists_{V_{E}} \subset V$: $G_{n}(A_f)$-invariant subspace over E such that $V = V_{E} \otimes_{E} C$
(4.2) V_{E} is unique up to complex homotheties
(4.3) $Q(\pi) = \prod_{v: \text{finite}} Q(\pi_v)$

不変事象の場合

L: p-adic field

$\chi = (\chi_1, \cdots, \chi_n)$: unramified character of $H_n(L)$

$\pi^T(\chi) = J(\chi_1| \cdot |^{\frac{n-1}{2}}, \cdots, \chi_n| \cdot |^{\frac{n-1}{2}})$: Langlands subquotient

$t_{\chi} = (\chi_1(\varpi_L), \cdots, \chi_n(\varpi_L)) \in L H_n^0$

とおく。このとき

(4.4) $\sigma(\pi^T(\chi)) \cong \pi^T(\sigma \chi)$ for any $\sigma \in \text{Aut}(C)$
(4.5) $Q(\pi^T(\chi)) = C$ の $\{ \sigma | \sigma(t_{\chi}) \in S_{n}t_{\chi} \}$ による固定体

が成立。$\pi = \pi^T(\chi)$ のとき $t_{\pi}^T = q_L^{1/n} t_{\chi} \in L H_n^0 / S_n$ とおく。

Euler factor との関係

π: $G_n(L)$ 上の任意の表現
$L(\pi, s)$: (Goedement - Jacquet type) Euler factor of π, i.e.

\[
P.G.C.D. \left\{ \int_{G_{n}(L)} \Phi(g) f(g) |\det g|^{\frac{n-1}{2}+\frac{\alpha_{L}}{2}} d^\times g \mid \Phi \in \text{Schwartz space of } M_{n}(L) \right\}
\]

(4.6) $L(\pi, s + \frac{1-n}{2}) = P(q_{L}^{-s})^{-1}$, ($P \in C[X], P(0) = 1$) とするとき $L(\sigma \pi, s + \frac{1-n}{2}) = \sigma P(q_{L}^{-s})^{-1}$ \forall $\sigma \in \text{Aut}(C)$. (σP は P の係数に σ を作用させたもの)

Infinite type への $\text{Aut}(C)$ の作用

$\pi \in Alg(n)$

$p(\pi) = p = (p_{i})_{i \in I} \in \left(\mathbb{Z}^{n}/S_{n} \right)^{I}$: infinite type of π

$\sigma \in \text{Aut}(C)$ に対して、σp を $(\sigma p)_{i} = p_{\sigma^{-1}i}$ ($i \in I$) で定義する。

5. 予想と結果

Conjecture B

$\pi \in Alg^{0}(n)$ のとき、

(1) $E = \mathbb{Q}(\pi)$ は有限次代数体になる。

(2) $\forall \sigma \in \text{Aut}(C), 3 \sigma \pi \in Alg(n)$ s.t. $(\sigma \pi)_{f} = \sigma \pi_{f}$ and $p(\sigma \pi) = \sigma p(\pi)$

和”$+$”と $\text{Aut}(C)$ の作用との compatibility 及び (3.1) から、予想がすべての $\pi \in Alg^{0}(n)$ について正しいならば、同じ事がすべての $\pi \in Alg(n)$ についても成立することが分る。また上の予想が正しいとき、(4.6) と合せて π の L-関数の有限部分 $L_{f}(\pi, s + \frac{1-n}{2})$ は E に係数をもつ Dirichlet 級数と成ることが分る。特に、不分解点では

\[t_{\pi, v}^{T} \in (L H_{n}^{0}/S_{n})(E)\]

を導く。逆に次が予想される。

Conjecture C

π: irr. automorphic rep. of $G_{n}(A)$ について

^{3}E : 有限次代数体 s.t. $t_{\pi, v}^{T} \in (L H_{n}^{0}/S_{n})(E)$ for almost all $v \Rightarrow \pi \in Alg(n)$

これは $n = 1$ のとき、Weil によって予想され Waldschmidt によって証明された。Conjecture B に関する結果を述べる。

Definition

$\pi \in Alg(n)$

$p(\pi) = (p_{i})_{i \in I} = ((p_{i,1}, \cdots, p_{i,n}))_{i \in I}$: infinite type of π とするとき、

π: regular $\iff \forall i \in I, p_{i,i} \neq p_{i,j}$ if $i \neq j$
と定義する。
(例：\(\pi \in \text{Alg}(2) \) : regular \(\Rightarrow \pi_\infty \cong \sigma(\alpha^s, \alpha^{s+k}\text{sgn}^{k+1}) \) or \(\alpha^s \circ \det \))

Theorem (Clozel)

\[\pi \in \text{Alg}^0(n) : \text{regular} \Rightarrow \pi \text{について Conjecture B は正しい。} \]

6. 定理の証明の概略
簡単のため \(F = \mathbb{Q}, n = 2m \) の場合を説明する。以下のように記号を定める。

\(A = \) connected component of the center of \(G_n(\mathbb{R}) \)
\(\mathcal{A} = \text{Lie}(A) \)
\(\mathcal{G} = \text{Lie}(G_n(\mathbb{R}))_C = \mathcal{G}^1 \oplus A : \) Langlands decomposition
\(K_\infty = O_n(\mathbb{R}) : \) maximal compact subgroup of \(G_n(\mathbb{R}) \)
\(K \subset G_n(A_f) : \) open compact subgroup
\(S_K = G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K, \quad \tilde{S} = \lim_{\rightarrow} S_K \)
\(S_{K}^1 = AG(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K \)

さて

\(\pi \in \text{Alg}^0(n) : \) regular
\(p(\pi) = (p_1, \cdots, p_n) : \) infinite type of \(\pi \) \((p_1 > p_2 > \cdots > p_n \) としてよい）
\((\bar{\tau}, \bar{V}) : \) rational representation of \(G_n \) of highest weight \((p_1, p_2 + 1, \cdots, p_n + (n-1)) \)
(このとき \(\tau \) と \(\pi \) は同じ infinitesimal character を持ち、また \(\bar{\tau}|_A = \pi|_A \) となる）
\((\tau, V) : \) contragredient representation of \((\bar{\tau}, \bar{V})\)
\(\mathcal{V} : \) local system on \(S_K \) (or \(S_{K}^1 \)) defined by \(V \)

とする。このとき \(V \) に係数を持つ各種のコホモロジーは次の関係を持つ。

\[
\begin{align*}
H^\bullet(S, \mathcal{V}) & \hookrightarrow H^\bullet(S, \mathcal{V}) \cong H_B^\bullet(S, \mathcal{V}_Q) \otimes_{\mathbb{Q}} \mathbb{C} \\
\bigoplus_{\xi} H^\bullet(G^1, K_\infty \cap \xi \otimes V) \otimes \xi^K \bigoplus_{\xi|_A = \bar{\tau}|_A} & \cong H^\bullet(S^1, \mathcal{V}) \hookrightarrow H^\bullet(S^1, \mathcal{V}) \cong H_{(2)}^\bullet(S^1, \mathcal{V}) \\
\bigoplus_{\xi} H^\bullet(G^1, K_\infty \cap \xi \otimes V) \otimes \xi^K & \cong H^\bullet(S^1, \mathcal{V}) \hookrightarrow H^\bullet(S^1, \mathcal{V}) \cong H_{(2)}^\bullet(S^1, \mathcal{V})
\end{align*}
\]

ここで

\(H_B^\bullet(S, \mathcal{V}_Q) : \) Betti cohomology with coefficients in the \(\mathbb{Q} \)-vector space \(V_Q \)
\(H^\bullet(S, \mathcal{V}) \cong H^\bullet(G, K_\infty ; C^\infty(S_K) \otimes V) \)
$H_{cusp}^*(S_K, \mathcal{V}) = \text{Im}(H^*(\mathcal{G}, K_{\infty}; C^{\infty}(S_K) \cap L^2_{cusp}(S_K) \otimes V) \to H^*(\mathcal{G}, K_{\infty}; C^{\infty}(S_K) \otimes V))$

$H_{c!}^*(S_K, \mathcal{V}) = \text{Im}(H_{c!}^*(S_K, \mathcal{V}) \to H^*(S_K, \mathcal{V}))$

$\arrow\overline{H}_{(2)}(S_K^1, \mathcal{V}) = \{\phi \in \Omega^i_{(2)}(S_K^1, V) \mid d\phi = 0\}/d\Omega^i_{(2)}(S_K^1, V)$

$\Omega^i_{(2)}(S_K^1, V) =$

$\{\phi \mid V\text{-valued } i\text{-form on } S_{K_i'}^1 \text{ s.t. } \phi \text{ and } d\phi \text{ are square integrable}\}$

また、$H^*(\tilde{S}, \mathcal{V}) = \varinjlim H^*(S_K, \mathcal{V}), \cdots$ とおく。(S_K^1) についても同様。

さて π の regularity の仮定は次を導く。

(6.3) $H^i(G^1, K_{\infty}; \pi_{\infty} \otimes V) \cong \wedge^{i-m^2}C^{m-1}$

従って、π_f, π^K_f は、それぞれ、$H^*(\tilde{S}, \mathcal{V}), H^*(S_K^1, \mathcal{V})$ の中に実現される。このとき、(6.1) と次の事実は $Q(\pi)$ が有限次代数体に成ることを示す。

(6.4) If W is a $G(A_f)$-irreducible subquotient of $H^*(\tilde{S}, \mathcal{V})$, then there exists a finite extension E of Q such that W is defined over E

次に $\sigma \in \text{Aut}(\mathbb{C})$ に対して Conjecture B (2) の条件をみたす $^\sigma \pi \in Alg^0(n)$ を構成する。K を $\pi^K \neq \{0\}$ と取る。$H^*(S_K^1, \mathcal{V})$ は Q 上定義されているから σ で不変。よって、$^\sigma \pi^K_f$ も $H^*(S_K^1, \mathcal{V})$ の中に実現される。(6.2) より、$\overline{H}_{(2)}(S_K^1, \mathcal{V})$ に現れる既約部分表現 $\xi \subset L^2_{\text{disc}}(G(\mathbb{Q})/G(A))$ で $\xi^K_f = ^\sigma \pi^K_f$ と成るものを取れば、それが求める $^\sigma \pi$ である。実際、既約性と $H^*(G^1, K_{\infty}; \xi_{\infty} \otimes V) \neq 0$ より $^\sigma \pi_f = \xi_f, p(\pi) = p(\xi)$ が従う。また、誘導表現についての議論から ξ が cuspidal であることも分る。

7. l-進表現との対応

以下、基礎体 F を明示するために、$Alg, Alg(n), \cdots$ の代わりに $Alg(F), Alg(n, F), \cdots$ とおく。

Motif

F 上の smooth projective variety (の圈) に付随する各種のコホモロジー理論を統合する object (の圈) が存在すること予想されている。その conjectural な圈を $\mathcal{M}(F)$ とおく。

Algebraic 表現の weight

$\pi \in Alg(n, F)$

$\pi_i \leftrightarrow r_i \in \Phi_n(W_R), (i \in I)$

$r_i(z) = z^{\mu_i} \overline{z}^{\nu_i}, (z \in \mathbb{C}, \mu_i, \nu_i \in \mathcal{H})$

とする。もし

$^3^3 \omega \in \mathbb{Z} \text{ s.t. } \mu_i + \nu_i = (\omega + n - 1, \cdots, \omega + n - 1) \text{ for all } i \in I$

が成立つとき π は pure weight ω を持つという。次に証明できる。

(7.1) $\forall \pi \in Alg^0(n, F), \ 3^3 \omega \in \mathbb{Z} \text{ s.t. } \pi$ は pure weight ω を持つ

(この結果は一般的基礎体における (6.3) の証明にも使われている。)
Conjecture B が正しいとの仮定のもとで、motif と algebraic 表現との対応関係を示す次の予想がある。

Conjecture D
\[
\pi \in \text{Alg}^0(n, F) \\
\omega : \text{weight of } \pi \\
E \subset \overline{Q} : \text{field of definition of } \pi
\]
とする。このとき

3E': finite extension of E

3$M \in \mathcal{M}(F)$: irreducible motif of degree n and weight ω with coefficients in E' s.t.

\[
L(\pi_v, s + \frac{1-n}{2}) = L_v(M, s) \quad \text{for all finite place } v \text{ of } F
\]

そこで

\[
L_v(M, s) = \det((1 - \mathcal{F}_v q_v^{-s})|_{H_\lambda(M)^{I_v}})^{-1}
\]

但し

$H_\lambda(M)$: λ-adic realization of M

$I_v \subset \text{Gal}(\overline{F}_v/F_v)$: inertia group

\mathcal{F}_v: Frobenius element of v

とする。

最後に、Conjecture D との関連で、algebraic 表現に対する ℓ-進表現の構成についての結果を述べる。

Theorem (Clozel)
\[
\pi \in \text{Alg}^0(n, Q) : \text{regular かつ } \pi \cong \tilde{\pi} \text{ を次をみたすとする。}
\]

\[
4 \mid n \implies 3p_0 = p_1 \quad \text{s.t. } \pi_{p_0} \text{ is square integrable}
\]

\[
4 \mid n \implies 3p_0 \neq p_1 \quad \text{s.t. } \pi_{p_0} \text{ and } \pi_{p_1} \text{ are square integrable}
\]

更に

F: imaginary quadratic field in which p_0 and p_1 split

π_F: base change lift of π to F

とする。このとき

3E: 有限次代数体

3S: 素数の有限集合

3$a(\pi) > 0$: 整数

3(W_λ, r_λ): compatible system of λ-adic representations of $\text{Gal}(\overline{F}/F)$ s.t.

\[
\text{if } p \notin S \text{ and } \lambda \nmid p,
\]

\[
\text{trace}(r_\lambda(F_v^m)) = a(\pi)\text{trace}((t_{\pi_F,v}^T)^m q_v^{m(n-1)})
\]

for all finite places $v \mid p$ of F and $m \geq 0$.

9
この結果の証明は現時点では詳しく述べられていないが、概略は、Jacquet-Langlands 対応により π_F に対応する division algebra の乗法群の表現 τ_F を考えると、これが \mathbb{Q} 上定義されたユニタリ群の表現 τ の base change lift によって得られる事が分り、一方、ユニタリ群の表現 τ には最近の Kottwitz の結果（まだ未発表）により ℓ-進表現を対応させることができるというものである。

Remark. 論文では上と同様の結果が \mathbb{Q} を総実体で置き換えても成立すると注意されている。

References