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On Reductive Dual Pairs

KoicHl TAKASE r'ﬂ; iAh Jf’ -
(T Ans k)

§0 Introduction

The reductive dual ‘pair is, by the definition (Howe [H1]), the pair (.Gl, G+9) of reductive
subgroup of the symplectic group Sp(n, R) such that the centralizer of G; in Sp(n, R)
1s Gz and vice versa. On the other hand, there exists a non-trivial two-fold covering
group %(n,R) of Sp(n,R) vﬁth a projection p (the fundamental group of Sp(n,R)
is isomorphic to 7), and a unitary representation (w, L2(R™)) of Sp(n, R) called the
Weil repfesentation. Let A; be the von-Neumann algebra generated by w(G;) (G =1,2)
| where éj = p~1(G}) is the pull-back of G; in Sf},)(n, R). It is proved (Weil [Wi]) that the
pull-backs Gy and G are mutually commutative, and we have A; C A5 and Az C A},

where, as usual, A] (resp. A5) denotes the commutant of A; (resp. As).

Roger Howe [H2| proved the following theorem which plays the central role in the

theory of the theta correspondence;
THEOREM. A; = A, or equivalently A, = A].

Our purpose in this note is to characterize the reductive dual pairs by the mutual
commutancy of the von-Neumann algebras. The Weil representation is constructed
 via a natural action of the sympléctic group on the Heisgnberg group. But why the
sympléctic group, why the Heisenberg group? My original motivatioﬁ of this sfudy is

to find an answer to these naive questions.

We will recall in §1 some basic facts on the Weil representation. In §2; we will give

- a general framework in which our characterization of the reductive dual pair is given.

In §3, divided into three parts, we will give our main results (Theorem 3.2.2, 3.2.3, 3.3.3
and Corollary. 3.3.4, 3.3.5). |
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REMARK 0.1. In this note, we will consider only over the field of real numbers. Our
theory is based on Kirillov’s theorem (Theorem 2.1) which holds over any local fields or
over adele rings of global fields (Moore [M]). So the main results in this note may hold

over any local fields or even over adele ring of global fields.

§1 Review on Weil representation

Let (V,<,>) be a symplectic R-space, that is, a finite dimensional R-vector space V
with a non-degenerate alternating bilinear form <,>. Let G = Sp(V,<,>) be the
symplectic group of (V,<,>), that is the group consisting of ¢ € GLg(V) such that
< zo,woe >=< z,w > forall z,w € V. Let H = H(V, <,>) be fhe Heisenberg group
associated with (V, <, >). The group H is defined as follows; H =V xR as a topélogical
space and the group operation is defined by (z,1) - (w,u) = (= -Fw, t+ut < z,w> [2).
The center Z(H) of H is identified with R via (0,t) =¢. The quotient group H/Z(H)
is isomorphic to V, so the Heisenberg group is a two-step-nilpotent real Lie group which

is connected and simply connected.

Let (7, H) be an irreducible ﬁnitary representation of H. By Schur’s lemma, the
restriction of 7 to the center of H is a character x, of the center (the central character
of ). If x, = 1, then = factors through H/Z(H) which is abelian, and so we have
dimm = 1. We have

THEOREM 1.1. (Stone-von Neumann) The set {r € H|dimr > 1} correspond bijec-

tively to the set {1 # x € ﬁ.} via the mapping ™ +— Xr.

Let x be a non-trivial character of R and (m, ) the irreducible unitary repre-
sentation of H corresponding to x¥ by Theorem 1.2. The group G acts on H as an
automorphism group by (z,t) - ¢ = (z0,t) for 0 € G and (z,t) € H. For any ¢ € G, the
twisted representation (77, M) of H is defined by #?(h) = n(h-o) for all h € H. Then, by
Theorem 1.1, the two representations m and 7% are unitarily equivalent. So there exists

- a unitary operator W, () € U(H) of H such that 7r(h -0) = W, (o)~ om(h) o W, () for
all h € H. The unitary operator W, (o) is well-defined up to the scalar multiplication.

2



13

- For any o,7 € G, by Schur’s lemma, there exists a.ay(o,7)-€ T = {z E C ||z =1}
-such that Wy (g) o WX(‘T) = a0,7) - Wy(o - 7). Then oy : G x G — T is a 2-
cocycle, and the cohomology class [o,] € H?(G,T) is well-defined. - Tt is proved by
Weil [Wi] that the cohomology class [a,] has order 2 in H?(G,T). Then there exists
a 2-fold covering group p : G — G and ai ‘group homdmorphism Wx .G > U (H)
such that W, op = Wx- More explicitly, there exists a mapping #: G — T such that
a,(0,7)? = B(r)B(or)"1B(0) for all o, 7 € G. Then G = {(¢,0) € Tx G | &> = f(o)~1}
with the group law (e, ) - (,7) = (enay (o, 7),07), and p(e,0) = o (see Remark 1.6

below). The representation Wx is called the Weil representation associated with x.
DEFINITION 1.2. A pair of groups (Gh,G32) is called a reductive dual pair in G =
Sp(V,<,>) if L
1) G; is a reductive subgroup of G (j =1,2),
2) G, is the centralizer of G1 in G and vice versa.
The reductive dual pair is the direct sum of the irreducible réductive dual pairs,
and the irreducible reductive dual pairs are completely classified (Howe [H1])
Let (G1, Gq) be a reductive dual pair in G = Sp(V, <, >), and put G; = p~1(G;) C
G. The following proposition is proved by Weil [Wi];

ProrosiTION 1.3. él and éz are mutually commutative.

Let A; be the von-Neumann algebra generated by W, (G;), that is, A; = W, (G;)".
Here we used the usual notations; ' = {T'€ L(H) | ToS=So T for all S € S} for
all the subset S of the C*-algebra L(H) of the bounded operators on H. Then we have
A1 C A, and Ay C A} by Proposition 1.3. The following thébre‘m is provéd'by Howe
[H2];

THEOREM 1.4. A; = Aj or equivalently A; = Aj.
The meaning of the mutual commutancy of the v‘on—Neumann algebra is this;

- PROPOSITION 1.5. Let G; be a locally compact unimodular group of type I (j = 1,2),
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and (w, H) a unitary representation of G, X Ga. Let .A_,- be the von-Neumann algebra
generated by Q(Gj) (j = 1,2). Suppose that A, = A}, (or equivalently Ay = Aj). Then
1) (w, H) is multiplicity-free, ' ' | |

2) for any m € @1, there exists at most dne my € @2 such that m; ® w9 Is a subrepre-

sentation of w.

Because of Theorem 1.4 and Proposition 1.5, the Weil representation restricted to
the reductive dual pair works as the graph of the theta correspondence, and this is the
basis of the theory of theta correspondence. So what is important is not the mutual
centralizer of groups (Zs,(G1) = G2, Zsp(G2) = G1) but the mutual commutancy of
the von-Neumann algebras (A; = A;, A; = A}). Proposition 1.5 is considered as the
infinite dimensional version of Weyl’s reciprocity law which is the basis of his famous
book Weyl [Wy] (see Remark 1.7 below). So the theory of the theta correspondence is |

the infinite dimensional (or transcendental) invariant theory (Howe [H1]).

REMARK 1.6. Depending on the normalization of W, (o), we have the following two

explicit formula of oy, ;

ExpriciT ForMULA I. Let X be a Lagrangean subspace of V, that 1is, a subspacé
of V such that < z,w >= 0 for all z,w € X and dimgrX =‘-}5dimRV. For any
Lagrangean subspace X' and X" of V, define a quadratic form Qx x/ x» on X x
X' x X" by Qx x' x»(z,y,2) =< z,y >+ < y,z > + < z,z >. We will denote by
[X, X', X"] the element of the Witt group Wg over R which contains the quadratic form
@x,x' x». The Witt group Wr 1s the cyclic group of infinite order whose generator
is Q1(z) = 2% (z € R). Let v, be the group homomorphism from Wgr to C* such
that 7, (Q1) = exp(mv/—1 - sign(a)/4) where x(z) = exp(27v/—1 - az). Then o, (0, 7) =
Y ([X, X7, Xo7])~! for all 0,7 € G. For the details, see Lion-Vergne [LV].

- ExpriciT FormMuLA II. Let H, be the Siegel upper half space of degree n on which
G acts by a(W) = (aW + b)(cW + d)~! for (Z Z) €Gand W eH, Putd =
{T € M,(C) |*T =T, Re(T) > 0}. Then X is a connected simply connected complex
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manifold, and there exists uniquely a holomorphic function det'/? on X such that
1) (det'/?T)? = detT for all T € X,
2) det!/2T = (detT)!/? for all T € X N M, (R).

Put det™ 2T = (det!/2T)™ for all T € X and m € Z. We have
det™'T = / exp(—mz - T - z)dz

forall T € X. Put

W' —-W
2v/—1
e(o; W, W) =y(a(W'), e (W)) /W', W)

~+(W' W) =det1/? ( > - (det ImW*)/* . (det TmW)'/4,

for all W,W' € H, and o € G. Then the cohomology class [a,] € H*(G,T) contains
the 2-cocycle aw for all W € H,, where

aw(o,7) =e(r7 07 (W), W)

for all o, 7 € G. We have aw(0,7)2 = Bw(7) - Bw(o7)~! - Bw(o) for all o, 7 € G where
Bw (o) = detJ (o=, W)/|detJ (=1, W)| with J(o, W) = cW +d for o = (Ccl Z) €q.
In this case, Gw = {(e,0) € T x G | €2 = Bw(c)~'} with group law (¢,0) - (,7) =
(enaw(a,7),07) is a connected Lie group and p : Gy — G with p(e, ¢) = o is a 2-fold
covering group as a topological group. The groups Gw for any W € H,, are isomorphic

each other. For the details, see Satake [S1].

REMARK 1.7. Let K be an algebraically closed field and V' a K-vector space of finite
dimension. Let A be a semi-simple K-subalgebra of Endg (V). Put

B={b€Endg(V)|aob=boa for all « € A}.

Then V is a left A®gk B-module by (a @ b)v =aob(v)fora€ A, b€ Bandve V. We

have

1) B is a semi-simple K-algebra,
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2) A= {a€Endg(V)|aob=0boafor all b€ B},

3) V =0]_,M; ®k N; as a AQk B-module where Mi,---, M, (resp. N1, -+ ,N;) is
the complete system of representatives of the simple A-modules (resp. B-modules)

modulo isomorphism.

This 1s Weyl’s reciprocity law.

§2 A generalization

Let N be a connected simply connected nilpotent Lie group. Let L be a topological
group acting continuously on N from right as an automorphism group. Then we have
a continuous group homomorphism p : L — Aut(N). The differential of p is a represen-
tation dp : L — GLr(N) of L on the Lie algebra N' = Lie(N) of N. Let <,> be the
natural pairing of A and its (real) dual space N'*. The contragradient representation
of dp is denoted by d*p : L — GLr(N™), that is, < X, d*p(0)F >=< Xdp(o), F >
for X €e N,F € N* and o € L. Let Ad* be the co-adjoint representation of N, that
is, the contragradient representation of the adjoint representation Ad: N — GLgr(N).
For any F € N*, put Nr = {n € N | Ad*(n)F = F}. Then the Lie algebra of N is
Nrp={XeN]| <[X,)Y,F>=0forallY e N'}.

The unitary equivalence classes of the irreducible unitary representations of N is

described by (Kirillov [K1])

THEOREM 2.1. There exists a bijection between N and the orbit space Ad*(N)\N™ of

the co-adjoint representation of N.

The bijection of Theorem 2.1 is defined as follows (Kirillov [K1]). Let € be a
Ad*(N)-orbit in N*, and take an element F € Q. The orbit € is a symplectic manifold
and its tangent space Tr(Q2) = N /N F at F € 2 has a symplectic structure induced by
the alternating form Bp(X,Y) =< [X,Y], F > on N. There exists a R-Lie subalgebra
NF CH C N suchthat Bp(X,Y) =0forall X,Y € H and dim(H/Nr) = 3dimT#(Q2),
that is, H/NF is a Lagrangean subspace of Tp(2). Put H = expH and define a
unitary character Ap of H by Ap(exp X) = exp27yv/—1 < X, F >. Then the induced
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representation Ind ¥ Ar is an irreducible unitary representation of N, aqd, up to unitary
equivalence, it depends only on the orbit 2. Then the mapping 2 — Indg/\p gives the
bijection of Theoréle.l.

Fix a Ad*(N)-orbit  in N* with the corresponding irreducible unitary repreéen-
tation (w,H) of N. For any o € L, define the twisted representation (77,H) of N
by 77(n) = n(n - o). Then the irreducible unitary representation (77, H) of N corre-
sponds to the Ad*(N)-orbit d*p(¢)Q in N*. Put Lo = {o € L | d*p(a)2 = 2} which
1s a closed subgroup of L. Then, for any o € Lg, the twisted representa,tion (7, H)
is unitarily equivalent to (7, H), and there exists a unitary operator Wq(o) € U(H)
on H such that w(n - o) = Wu(o)™? o m(n) o Wa(o). The unitary operator Wo(o)
‘isbwell—deﬁned up tb scalar multiplication. By the Schur’s lemma, thev unitary oper-
ators Wq(o) define a 2-cocycle aq : Lg x Lg — T = {z € C | |z| = 1} such that
Wg(a) o Wq(r) = aq(s,7) - Wo(or) for all 6,7 € Lo. Then the cohomology class
[aq] € H*(Lq,T) is well-defined. By the results of Lion [L], the 2-cocycle ag can be
éxpréssed by the eighth root of unity, and we have [ag]® = 1 in H%(Lg,T). Our first

problem is
PROBLEM 2.2. Determine the order of [ag] € H*(Lq, T).

Take an integer £ such that [ag]* = 1in H?(Lg,T). Then we have a £-fold covering
group p : Lo — Lq, may be trivial, and a group homomorphiém Wa:la—U (H)
such that Wqop = WQ They are defined as fbllows. Let Lg be the group extension
associated with the 2-cocycle ag, that is, Lo = T'x Lo with the group operation (e,0)-
(n,7) = (enag(e, 7),07). There exists a mapping 8 : Lg — T such that ag(e,7)! =
ﬂ(T)ﬂ(aT)‘lA-ﬂ(a) for all o, 7 € Lg. Then Lq = {(e,0) € fg | g2 = (o)~} whichis a
normal subgroup of Lg, and p : Lq — Lg is the projection. The group homomorbhism

Wa is defined by Wg(a, o) =c¢-Wal(os).

Let G; and G5 be subgroups of Lg, and put C~¥j = p~!(G;). Our second problem
to be consider is
- PROBLEM 2.3. Define canonically the subgroups G; and G of Lg such that 6}1 and

T
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6’2 are mutually commutative.

Let A; = Wq(G;)" be the von-Neumann algebra generated by Wa C~¥) If Problem
j i _ i

2.3 is solved, then we have A; C Aj and A, C Aj. Our last problem is

PROBLEM 2.4. Characterize the case where the equality A; = A, (or equivalent]
2 q Y

Az = A7) holds.

This is our general program to characterize the reductive dual pairs by the mutual
commutancy of the von-Neumann algebras. The first step is to find a natural system
of a nilpotent‘ Lie group N and a topological group L operating on N. Such a natural
system is constructed as follows. Let G be a semi-simple real Lie group and P a parabolic
subgroup of G. The parabolic subgroup P has the Levi decomposition P = L - N where
N is a nilpotent group and L is a reductive groupy. Because N is a normal subgroup of

P, the group L acts on N by conjugation.

In the rest of this note, we will consider in detail the case where G is the classical

group of adjoint type.

§3.1 General setting

Let A be a semi-simple R-algebra (dim A < co) with an involution i (i.e. anti-R-algebra

isomorphism of order two), and put
G = {0 € Autr(A) | coi=1io00, o|z) = id}

where Z( A) is the center of A. The R-algebra A is a direct sum of its simple components,
and the involution ¢ induces a permutation on the sirhple components. Then, because

i is of order two, it is enough to consider the following two types of R-algebras;
I) Ais a simple R-algebra,

II) A= A, ® A, is a direct sum of isomorphic simple R-algebras 4; (j = 1,2) such
that i(41) = As. |
Then the group G exhausts all the classical simple real Lie groups of adjoint type. More

'p’rec'isely,’ if A is of type I, then G is the group of the similitude for some sesqui-linear
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form modulo the center. If A is of type I, then G is isomorphic to AY, the multiplicative

group of A;, modulo the center.

Let G be the Lie algébra of G. Fix a Cartan involution 8 of g andbthe corresponding
Cartan decomposition G = K @ V (K is the maximal compact subalgebra of G). Let T
~ be the maximal abelian subalgebra of V, and (7*,X) the restricted root system of G
with respect to 7. Fix a fundamental root system ¥ of (77, X).

Let P be the standard parabolic subalgebra of G correspondiﬁg to a subset S of ¥.
The parabolic subalgebra P has the Levi decomposition P =L ®N with the nilpotent
part N and the reductive part £. Put N = expN and L = {¢ € G | Ad(o)H =
Hforall H € Ts} where Ts = {H €T | a(H) = 0 for all @ € S}. The Lie algebra
of L (resp. N)is L (resp.” N). The reductive group L normalizes the nilpotent group
N. Let Ady be the adjoint representation of the parabolic subgroup P = L- N on_
N. The dual space N* of N is identified with A via a non-degenerate bilinear form
< X,Y >= —B(X,0Y) where B is the Killing form of G. Let Ad}, be the contragradient
representation of Adar. The group L acts from right on N vid the continuous group

1

homomorphism p : L — Aut(N) such that n-p(c) = o~ no, and we will use the

notations of §2. Then we have d*p(a) = Ad}/ (o) for all o€l

Except for the cases of G = so(p, p+¢, R) or so(2p+¢, C), (T, Ls) is a root system
where g = {0 # Al75 | A € £}, Put ¥y = {A € £5 | 2) € £s}. Then the reduced root
system (75, X%) is of type Cp, (resp. A,,) if the R-algebra A is of type I (resp. type
IT) where m is the rank of the parabolic subalgebra P. Even in the exceptional case of
G = so(p,p+ q,R) or so(2p + ¢, C), which corresponds to a type I simple R-algebra,
(T%,Xs) is a root system and (7%, X%) is of type C,,, with the rank m of P, outside

some boundary cases (see Remark 3.1.3 below).

Let AS be the long roots in X' which are invariant under the automorphism of the
Dynkin diagram of (7%,%%). Put C = 3, G* where Y, is the summation over the
positive Toots A € X with respect to ¥ such that M|z, € A%, and G* is the root space
of A. Then we have E
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ProposITiON 3.1.1. C is an abelian subalgebra of N such that
1) ZIW)CCCNF forall F € C (Z(N) is the center of N),
© 9) Np={h e N|A&(R)F € C} for all F € C such that Ny = C,

3) Ad'(g)C=C forallg € L.

Suppose that the Ad} (NV)-orbit Q contains a F € C such that g = C. Then
Lo = {g € L|Ad}/(g)F = F} by 2) and 3) of Proposition 3.1.1. The group Lq acts on
Q fixing F, and Lq acts also on the tangent space Tr(Q) = N /N of Q at F. The
operation is via Ada. The orbit §2 is a symplectic manifold and T#(Q2) = N /NF has a
symplectic structure induced by Br(X,Y) (Kirillov [K2,§15]). Then, for any ¢ € Lq,
Adp(o) induces an element of the symplectic group Sp(Tr(Q), BF) Using this fact,

we have

PrOPOSITION 3.1.2. If Q contains a F' € C such that Nr = C, then [ag)® = 1 in
H2(La, T).

By Proposition 3.1.2, there exists a two-fold covering group, may be trivial, p :

ZQ — Lg of Lg and a group homomorphism Wg : 2';9 — U(H) such that Wgop = WQ

REMARK 3.1.3. In the exceptional cases of G = so(p, p+¢, R) or so(2p+¢, C), (T s*,X5s)
may or may not be a root system. If (T, Xs) is a root system, the reduced root system
(T, X%) is of type B,, or Cy, if ¢ > 0 and of type B,,, Cy, or Dy, if ¢ = 0. Here m is
the rank of the parabolic subalgebra P.

10
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§3.2 Parabolic subalgebra of type RDP

DEFINITION 3.2.1. The parabolic subalgebra P is called to be of type RDP if Z(N')= C

and N is not abelian.
Then we have our nrst main resutts;

THEOREM 3.2.2. Suppose that the parabolic subalgebra P is of type RDP and that
the Ad},(N)-orbit © contains a F € Z(N') such that Ny = Z(N'). Put .

Gy ={o€lLg |’Ad}"v(0')T =T forall T € Z(N)}
‘ G2 = {O'E Lq I [O',G1] = 1}.

Then

1) the mapping ¢ — Adp(c) is an injective group homomorpbism from Gj into

2) (G4, G3) is an irreducible reductive dual pair in Sp(Tr (), Br).

THEOREM 3.2.3. All the irreducible reductive dual pairs are obtained by the way de-
scribed in Theorem 3.2.2.

These two theorems are proved by the classification of the simple real Lie algebras
(Satake [S2]) and the irreducible reductive dual pairs (Howe [H1]), and by the case-by-

case calculation.

REMARK 3.2.4. If P is of type RDP, the nilpotent group N is a two-step-nilpotent
group which may be called the Heisénberg group of higher degree. In this case, for each
Ad}(N)-orbit Q in N containing F' € C such that Np = C, there exists a canonical
surjective group homomorphism from N to the Heisenberg group H associated with
(T#(R), Br) such that the representation (x, ) € N corresponding to 2 factors through

H. Then Wg] 5'_ is, in fact, the Weil represéntation restricted to the reductive dual pair
7

(G1,G).

11
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REMARK 3.2.5. The irreducible reductive dual pairs are divided into two types; type
I and type II (Howe [H1]). The irreducible reductive dual pair obtained in Theorem
3.2.2 is of type I (resp. type II) if the R-algebra A is of type I (resp. type II).

§3.3 A characterization of the reductive dual pairs

DEerFINITION 3.3.1. The parabolic subalgebra P is called admissible if there exists a
standard parabolic suba]gebra P = L @& N' of type RDP such that P C P' and
CcZ(N).

Suppose that the parabolic subalgebra P is admissible and let P’ be the standard
parabolic subalgebra of type RDP as in Definition 3.3.1. Such P’ is unique and we have
L C L' and N' C N. Define subgroups G; of Lg (j = 1,2) by

Gir={0c € Lg | Adj(o)T =T for all T € Z(N")}
Gqy = {0’ € Lq | [0’, Gl] = 1}.

Put é,- =p~HGj) C Lq. Then we have

ProrosITION 3.3.2. [C~¥1,C~¥2] =1.

The proposition is proved by using the explicit formula of the cocycle aq(o, 7)
expressed by the Maslov (or Kashiwara) index (Lion [L]) and then reduced to the case
of the reductive dual pairs in which case the proposition is proved by Weil [Wi].

Let © be a Ad%(N)-orbit in N containing a F' € C such that N = C. Let A; be
the von-Neumann algebra generated by Wq(G;). We have A; C A} and A, C A by

Proposition 3.3.2. Our main result is

THEOREM 3.3.3. Suppose that the parabolic subalgebra P is admissible. Then A; =
A5 (or equivalently A; = A}) if and only if P is of type RDP.

The proof of the if-part of the theorem is given by Howe [H2]. The only-if-part of
the theorem is proved by using the explicit construction of (r, ) € N corresponding

to Q and the explicit formula of Wq(o) obtained from the results of Lion [L].
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We can prove that the mapping o — Ad(c) is an injective group homomorphism
from G; into Sp(Tr(?), Br), and we will identify G; with its image in Sp(Tr(2), Br).
Then Theorem 3.3.3 is restated as follows;

CoroLLARY 3.3.4. Suppose that the parabolic subalgebra P is admissible. Then
Ay = Aj (or equivalently Ay = A}) if and only if (G1,G>) is a reductive dual pair
in SP(TF(Q)) BF)

Recalling Remark 3.2.4, we will restate Theorem 3.3.3 again

CoROLLARY 3.3.5. Suppose that the parabolic subalgebra P is admissible. Then A; =
Aj, (or equivalently Ay = A} ) if and only if the nilpotent group N is two-step-nilpotent
or the Heisenberg group of higher degree (see Remark 3.2.4).

These results may be an answer to the questions arised in §0.

$4 Examples

In this section, we will consider the case of G =quaternionic orthogonal group.

4.1 Let H be the Hamilton’s quaternions which is given by a matrix algebra
H = {(_my g—) € M3(C)}. Let z = ( T %) — Z = (f —y) be the canon-

-y y =z
ical involution on H over R. Put j = _01 (1] € Hand put 2 = j-7-;57! and
Zt=%F=j-2-57! thatis, 7 = (:c —_y) and 2zt = ( ¢ y) for z = ( T g) € H.
y T -y x - \-7 T

For any matrix X = (2i;) € Mp,(H), put ‘X = (2;;) € M, ,»(H) the transposed
matrix of X and X = (%), X = (&), X! = (2],).

Quaternionic orthogonal group (GO, O) and quaternionic unitary group (U) are
defined by |
GO(E,H) = {g € GL(n,H)| ‘GEg = v(g)F, v(g) € R*}
. O(E,H) ={g€ GO(E,H)| v(g) =1}
U(F,H) = {g € GL(n,H)| ‘gFg = F}
where E, F € M, (H) such that 'E = F and F = F.

13
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I, 0
GO(J,H) be the quaternionic orthogonal group associated with. J. The center of
GO(2p,H) is R* - I5,, and put G = GO(2p,H)/R* - I,. The Lie algebra G = Lie(G)

of G is

4.2 Put J = ) with the unit matrix I, of size p. Let. GO(2p,H) =

G = so(2p, H) = {X € My, (H)| ' XJ + JX = 0}.

According to the block decomposition of J, any element g € G (resp. X € G) is denoted

by 2 x 2 blocks g = (CCL Z) (resp. X = (é, g)) Then

g={<‘é _‘?;1> € My (H)| B+t B=0, C+ & =0}.

Let 6 be a Cartan involution on G defined by §(X) = —*X. ‘CorrespondingCa,rtan

~ decomposition G =K PV is

ICz{( A B) € My, (H)|A+' A =0, B4+'B =0},

A B — —
V={(_Bt _AT)Gsz(H)ItA=A, *B = B},

and
T:{(f)1 _OA) EM2P(H)|A= (a? ),a,-eR}

A 0

is the maximal abelian subalgebra of V. Define A\; € T* by A; ( 0 —A

> = a;j. Then
the restricted root system (7%, %) is

T={tXx) #£0/1<i<j<p}
The fundaménﬁal root sysfem ¥ of (’T*, E) is
U ={o; = A — Aj31, o =2),|1 < j < p}
| Take a proper subset S of ¥ and put

{1<j<ploj¢St={mn<,,<rm} (r0=0, rmp1=p).

14



The A-part of any element of G is decomposed into (m + 1) x (m +1) blocks A;; so that
the k-th diagonal block Agx € My, _,,_,(H). |

Let P=N EB L be the standard parabolic subalgebra of G correspondmg to S. We

will consider two cases separately;

Case I; o, ¢ S. In this case, we have

0 Az Az ... Aimsr
0 Az ... Aymtr
A B
N = (0 _t;{)eglA= 0 Asrfz+1
0

and

el ()

The center of N is

Z(/\/’)'z{(g }g)eng:(% g),BleMrl(H)}.

The special abelian subalgebra C defined in §3.1 is

h
C= (g %) €g|Q= ) Qk EMrk—rk_l(H)
Qm+1
0 1
ForanyF:(O %)ECWithQ: , we have
Qm+1

Nrp=C < Qi € GL(ry — 41, H) fork=1,---,m

Case II; , € S. In this case, we have

/\fz{(f)1 _?;1) €G] (*)}

where the condition (*) is

0 Aip Az ... Aipp
0 Az ... Asmnr B B
=1 0 ... Azmir = L 2
A‘ - :+ y B (_th 0 ), B]_EMrm(H).
0

15
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The reductive part L is

where the condition (**) is
Ay
: 0 0

A = .. ) Ak G MTk"Tk-—l(H)) B = 0 B ,

m+1
Am+1
= 0 0 A Am+1 Bm+1
C“(oaMJ M'(aleAﬂlewWanHy

The center of N is

_ 0 B _ (B O
sn={(5 5)ean=( ) emm}
The special abelian subalgebra C defined in §3.1 1s
1
0 .
C= (0 COQ) Gng: ' Q ) leM"‘k—'rk—l(H)
0
o

0 @ .
For any F = € C with Q = , we have

0 0 Qm

0
Np=C <> Qi €GL(ry —r5_1,H) fork=1,--- m.

4.3 The standard parabolic subalgebra P is of type RDP if and only if P is maximal
and a, € S. The standard parabolic subalgebra P is admissible if and only if a, € S.
Fix a F = (0 Q) € C such that Np = C. We have only to consider Case II. Put

0 0

Q1

Q= 0 with Qk € GL(ri — rx—1, H). Then

0

( (I,m 0

Gh = ¢ a bl ecrep ) (¢ ) co@p-rn) H

0 I, c d

. \ c d
( (w 7 1

G2={ \ t’i——l €GL(2p,H)|a:= ( ) ) wkEU(]Qk,H)
\ I Tm
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(I is the unit matrix of size p — r,). Here {(j- Q) = Q- j = —j Qv = j - Qx
and the group U(j - Qx, H) is weli—deﬁhed. Any way, G, (resp. G,) is isomorphic to
O(2(p—rm), H) (resp. [[1e, U(7-Qx, H)). If (and only’ if) P is of type RDP (i.e. if and
only if m = 1), the pair of groups (G, G2) is a reductive dual pair in Sp(TF(Q), Br).

44Putp=n+2(n>0)and S={d, s, ,0n, Fny1,nt2} Where &; denotés
that «; is dropped. Then m = 2, ry =1, 1 = n+1 Put F = (8 %) with
—j ,
Q= —j- I, . Then we have G; ~ O(2,H) and G2 ~U(1,H) x U(n,H) =
0

Sp(1) x Sp(n) (Sp(m) is the compact real form of Sp(m,R)). The pair of groups
(G1,G2)is NOTa reductive dual pair in S p(Tr(£2), Br), but this example is particularly
interesting. By the sporadic isomorphism of classical Lie algebras, we have so(?, H) ~
sl(2,R) x sp(1). Then, up to a compact factor in so(2, H), we are coﬁsidering the pair
(sl(2,R), sp(1)xsp(n)). On the other hand, Ibukiyama-Ihara [II] shows that there exists
a nice correspondence between automorphic forms on SL(2,R) and on Sp(1) x Sp(n)
via Weil repfesentation. This example suggests that the pair of groups (G1,G2) may
play an important role in the theory of theta correspondence of automorphic forms even

if they are NOT a reductive dual pair in Sp(Tr(2), Br).
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