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Almost coinciding famxilies and gaps in P(w)
AR mX#%Kk ( Shizuo Kamo )

1. Introduction. In [DSV], Dow, Simon and Vaughan introduced
the notion of almost coinciding families and showed the following
Proposition 1~3. ‘

Proposition 1 [DSY, Theorem 2.4]. -~ If d = a>1,then there exists a

nontrivial almost coinciding family indexed by o

Proposition 2 [DSY, Theorem 3.1]. The proper forcing axiom (PFA)

implies that every almost coinciding family indexed by Yo is

trivial.

Proposition 8 [DSV, Theorem 4.1, Lemma 4.2, 4.3]. If there exists

a nontrivial almost coinciding family indexed by aﬂ), then there
exists an unfilled (b,b)-gap in F(w). So, in Kunen’s model of
"ZFC + Martin’s Axiom + 2% = @, + A unfilled (e¢,c)-gap”, there

doesn’t exist a nontrivial almost coinciding family indexed by Y .

In this paper, we shall show

Theorem 1. Let P be the poset { p ;Ej'xc wo(Ixl<w§ p:x—>2) }
adjoining a)z‘Cohen genefic reals. Then, in VP, there doésn’t exist

a nontrivial almost coinciding family indexed by “o .

Theorem 2. Let £k = k% and Wy < K. Then, there is a poset

P with the a)r-chain condition such that, in VP, 29 = k + Martin’s

Axiom + Junfilled (K, x)-gap + there doesn’t exist a nontrivial



almost coinciding family indexed by (Da).

Since, in Theorem 1, I~ p "ph = W, d %mz ”ﬁ, the dssunption

d = © 4 in Proposition 1 can’t be replaced by b = @ .

Question. Is ” ZFC + d > 0yt there is a nontrivial almost

coinciding family indexed by ®» * consistent?

2. Definitions and the proof of Theorem 1. Let @ be the set of
natural numbers and “© the set of all functions on a)
¥ x ( +++ x +++ ) means that { x ; not --+ x +-- } is finite.
Define the pseudo-ordering < on %@ by
t<g iff Yon<o (f(n) <g)).
Let F be a subset of “w. F is said to be bounded, if there exists
a g E %  such that V te€F (1<g). F is called a dominating

family if, for any g £ ©o, there exists f € F such that g<{.
The cardinals b and d are defined by

b = min { IF1 ; F is not bounded },

d = min { 'F1 ; F is a dominating family }.

For f € %, Lf denotes the set { (n,0) Ewxw ; m = f(n) }.

. . . X . .
Define the quasi-ordering C and the equivalence relation ~ by

X <* Y ift X\Y is finite,

X ~ X iff XAY is finite.
Let &y, B be subsets of P(w). HLIB means that ANB ~ ¢, for
any AEd, BEB. & <<B means that A C* B, for any AEdy, BEB.
d and B can be separated, if there is an X such that dy<< {X} and
B L {X}. A r-sequence{ X la<k)> of subsets of @ is called

-a K -tower,if Xac: Xﬁ, for any a<fB<k. A Kk -sequence

KKy ¥Yy) ta<k) is called a (k,k)-gap, if { X la<x) and



w

< Yala</c> are towers and { Xy 5 @<k 1L Y, : a<k }.
A (k,k)-gap <(X,.Y,) ta<k)> is unfilled, if { X 5 @<x } and
{ Yoi a<k '} can’t be separated. ) Finally, an indexed set
< ¢f.l f€F > is called an almost coinciding family indexed by F, if
(i) for any fEF, ¢, ' Ll; » o,
(ii) for any f, g € F ( <l’fl*(Lfr"1Lg) ~ <l)g!‘ (LgNLy) ).
An almost coinciding family <¢, 1 f€F > is trivial, if there

exists a ¢ : WX ® -> ® such that { <.bf ;s TEF } << o.

To prove Theorem 1, We need the following lemma which is a little
"modification of Lemma 4.3 in [DSV] and is easily verified by using
Fact 2.2. which appears below.

Lemma 2.1. Let Fc S “». Suppose that <Py 1t ESD s

a nontrivial almost coinciding family indexed by S and that F is an

unbounded subset of com which consists strictly increasing functions.
Then, <¢f I f € F ) is nontrivial.

Fact 2.2.(well-known/clear) Suppose that F ia an unbounded subset

of % vhich consists strictly increasing functions. Then, it holds
that, for any infinite subset A of ®,

Vi€ % Jg € F 3% € A (1) < gln) ).

Let Q be the poset { ¢ : In <w( g :n = @ )} and P the poset
{p: d3xCo,Cixt <& p:ix=>2)]}.

Lenma 2.3. Suppose that § is an unbounded subset of “® which
consists strictly increasing functions and (sb'f I €S ) isa
nontrivial almost coinciding family indexed by §. Let g be the
canonical generic real on Q. Then, in VQXP,_ (o1t € 8D

can not be extended to an almost coinciding family indexed by SwW({g}.
Proof. To get a contradiction, suppose that ' :



(1) (q,p)E QOxP & ¢ : QxP-name,
(2) 0% P ’<p :‘Ls - o,

w —
(3) (qa,p) - QxP Vi€ SV x € Lft"-‘nLg ( $(x) = <l>f(x) ).
Because Qx P satisfies the wl-chain condition, there exists an

A Ccoz such that

AWl =0 & p € PFA & ¢ isa QxP} A-name.
By using (3), for each f € S, take an ny < @ and (qf.pf) in

QxPMA such that
(4) don(qf) C ng & (qf,pf) = (q,p),

(5) (qf’pf) "_QXP VX E LfﬁLg\(an G)) ( ¢(X) = ¢f(X) ).
Since 1QxPF Al =@ and S is unbounded in c‘)co, ihere exist an
n’ < o, (¢',p') € QxPFA and a subset F of S such that
(8) F is unbounded in coco,
(1 VI € FCnp=n" & qp=4q" & p;=7p" ).
By (6) and Lemma 2.1,
(8) <¢’f I'f € F D> is nontrivial.

Claim 1. Vx € Lf M Lh\(n’xw) ( sbf(x) = </)h(x) )

, for any f, h € F.
Proof of Claim 1. Let f, h € F and x =(m,k) € Lfﬂ Lh and

n’ = nm Take q” € Q such that
” = ¢ & m € dom(q”) & q"(m) > k.
Then, since (q”,p’) =" x € Lgr‘lLf\(n’xco) ”, it holds that

(a”,p") = ¢ (x) = ¢,(x).
Similary, (q”,p’) - ¢ (x) = ¢h(x). Hence, ¢f(x) = ¢h(x). QED.

By Claim 1, it holds that
T = U{ sbfl‘ (Lf\(n’xco)) ; 1 € F} is a function.

So, <</’]. I f € F > is trivial. This contradicts (8). a

Proof of Theorem 1. To get a contradiction, suppose that

Il--P R ¢ <l)f 1 £ £ Yo > is a nontrivial alndst coinciding

family indexed by Qo ”,



Since, I=p" b= @, 7, We can take an A Cw, and a P} A-name S

such that 1Al Swl .and lF—P;’ VS’ is an unbounded sub‘seit of %
consisting increasing functions &v 1IS1 = o, " Since P satisfies
the a)l-chain condition, there exists a B Co, such that

ACB & BISw & < Py 1 fESD> isa PP B-nene.
Since Iy ” § is unbounded and consists of increasing functions ”,
by Lemma 2.1,

I=p ”(’(Pf I'f € §> is nontrivial ”,
From this and the fact that the formula "x is nontrivial”™ is TII,
it holds that. ,

ok '”<¢f I £ € § > is nontrivial ”.

Since P} ((oz\B) is isomorphic to P, by replacing a ground model
V to VPrB, we can assume that S and (sbf 11T € § > are sets in V.

Since ro(P) is isomorphic to ro(Qx’P), by Lemma 2.3, in VP,
(sbf I f € S > can’t be extended to an almost coinciding family
indexed by % . But this contradicts the fact that, in VP,

(sbf [ = w(o > is an almost coinciding family. d

8. The proof of Theorem 2.

Lenma 3.1. The following (a), (b) and‘(b’) are equivalent.

(a) There exists a nontrivial almost coinciding family indexed by

Y.

(b) There exist a dominating family F € “» and an indexed set
< (AgpsBg) 1 f € F D such that
(b.1) VI € F ( (A¢,Bp) is 2 partition of Le ),

(b.2) Af i f € F } and ¢ Bf ; T € F } can’t be separated,

(b.3) Vi, 8 € F(if f<g then A,C* A, & B,C* B, )



(b’) . For any dominating family F C az), there exists an indexed set
< (Af,Bf) I £ € F > which satisfy (b.1)~(b.3).

Proof. [t is easy to see thatv(b) and (b') are equivalent to the
following (c) and (c'),respectively.

(c) There exists a dominating family S ¢ ) and a nontrivial
almost coinciding family (sbf I f € S > such that, for every

(c’) For any dominating family S C “%, there exists a nontrivial
almost coinciding family (Sbf’ I f € S > such that, for every

f €8S, ¢‘fil.f->2.”
Also, it is easy to see that (c) and (¢’) are equivalent.

So, it suffices to show that (¢) and (a) are equivalent. The
implication from (c) to (a) is clear. To show from (a) to (c), let

< ¢,f (I “o > be a nontrivial almost coinciding family indexed

by Yo . For each finite sequence s =¢ a; l'i<n) !n=-> o,

X -
s” denotes the finite sequence

<0,1,:--,1,0,1,>++ ,0,1,°--,1,0>,

| : ®n-1

For each g : ©w -» w, ¢ :Lg = © and n < ,let S¢ n denotes

{¢,i) 1t i <gln) >. For eachf : @ = @, define f~ ! ® =
and qrf- : Lfa = 2 by

f (n)

' X
‘the length of (s f»“) ,
qrf-a = the unique ¢ : Lf~ = 2 such that, for any n < o,
x _
(S(Pf,n) ‘S(I)’n.
Then, it is easy to see that { £~ ; £ € “ } is-a dominating

subset of “» and (‘Iff~ 1 f E Do > is a nontrivial almost

coinciding family indexed by { " ;: f € % }. 0

The next lemma is due to Kunen(see [B, p.931 Theorem 4.21).
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Lemma' 3.2. = Let T is an unfiLled'(aml,a)l)*gap,_then there is a
poset P with the a)l-chainvcbndition such that, |PI = ©y an¢ in

VP, T remains unfilled for any generic extension preserving . @ -

In fact, any finite product of any such posets satisfy the o, -

chain condition (see Appendix A). So, we get

Lenma 3.3. There is a poset Q such that
(1) Q satisfies the @ -chain condition,
® 4 '
(2) 11 =2 4,
(3) for any unfilled (a>1,a>1)—gap T,

w—o * T remains unfilled for any generic extension preserving

@y

The next lemma follows from Lemma 3.3 and the standard forcing
arguments.

Lewma 3.4. Llet o< x, & K - k and & < k. Suppose that

&F = < Ay! a<k), B = < Bgl E<F D> are sequenceé of subsets of

P(co)i such that & and 8 are towers and & L &

Then, there exist a poset Q and Q-names f, B such that
(9) Q satisfies the ® (-chain condition & 101 = k,

(10) 1 ” 29 = k¢ + Martin’s Axiom ”,

ayy "+ %" & - " h <1 ", for any h € %0,
(12) =" &1{B} & B << {B} ”,

(13) whenever X Co and & L{X}, - "B Z.* X ”,
(14) if T 1is an unfilled (ﬂ)l,ail)-gap, then, in . VQ, T remains

unfilled for any generic extension preserving ® 4 .

~ (Outline of a proof) Let Q; be the poset as in Lemma 3.3.  Since

Q1= « and Q; 'satisfies the .@  -chain condition, it holds that
Q
q,” K = k<% 7. So, inV 1 take 2 poset 0, such that

0 /
1 2



satisfies the a)l-chain condition and (10)~(18) except that

Q%0
'II—Q » Martin’s Axiom ”. Then, in V , take a poset 03 such that
2 4

Q3 satisfies the'ml’-chain condition and n—-Q » g o= x Kk g

»

Martin’s Axiom (Such a poset exists under the assumption that

Kk = k%> ® . (see e.g., [B2, Remark after Lemma 3.5, p.16]1))
Then, the poset Q = 01*02*03 is as required. O
To prove Theorem 2, assume that x = K<K and Oy <K. By

replacing the ground model to a certain generic extension, we may
assume that there exists a &k -tower & = < Aala<lc) in P(w).

By using Lemma 3.4, we can construct a kx -stage finite support

iteration Pa’ Qa‘ and Pa-names fa’ Ba(for a <k ) such that
P

, in V %,

(9°) 0, satisfies the @ (~chain condition & 1Q,1 = &,

(10°) < Bglf$a> is a tower & 1 { Bf; E<a },

(11') for any X C@, if & L{X}, then o "B &% X 7,
a

(12°) Qa forces ” 2% = x + Martin’s Axiom ”,

’ » @ ” ,
(13") Q, forces faE © & g<f, , for any g € @,

(14) if T 1is an unfilled (col,col)-gap, then Q _ forces that

a
» T remains unfilled for any generic extension preserving @4 ”,
Set P = dir lim ( Pala<lc ). It is easy to see that P

satisfies the requirement in Theorem 2 except that

"_P ” there doesn’t exist a nontrivial almost coinciding family
indexed by “w ”. _
To show this by a contradiction, assume that pOE P forces the

existence of a nontrivial almost coinciding family indexed by wm.
Then, by Lemma 3.1, there exist P-names ((Xa,Ya) la<k ) such that

(15) ”(Xa,Ya) is a partition of Lfa ”,

(1) = " X,C*Xg & Y ,C* Vg " if a<B<x,



(1n Py I ” X ia<k 3, { Y, ja<k } can’t be separated ”.

Set S ={ <k ; lind & cfd = :a)"‘l & Xa' , Ya are Qa'—nam'esb,
for any a<d }. Since P satisfies the col-chain condition, S is
unbounded in k and a)l-closed. By (147),

Po n—-6” < (Xa’Ya)l a<8 ) is filled ”, for any § &£ S.
By this and the fact that P satisfies the (ol-chain condition, it

holds that, for any & € S, there is a B <& such that
(x) EPﬂ-name C ( Pg - 5" { Xa;a<6}<<{C} & Ya;a<6}_l_{C} ” ).

So, we can define the function # from S to x by
‘7 (8) = the least B8<8 such that »(*) holds.
’Ffor each § € S, take a Pn(a)—name 06 such that
Po IF g O Xa;a<6}<< {Ca} & { Ya;a<6}_|_{06} .

Since w: S - Kk 1is regressible, there exist a stationary set §$’ C S
and B < k such that

Py € Pﬂ & =#n(8) = B, for any § € §’'.

Clain. Llet §, € §° and B<d<7p. Then, it holds that
poll—ﬁ” Ca\(ﬂ)((()):'cn\(n)((o)’ for some n < @ .

Proof of Claim. To get a contradiction, let &§ ,7 €S’ and plép0

such that
B<d<n & Py - g Vn<o(Cs\Nhxw) # Cn\(nxa)) ).

Take a Pﬂ-name g such that
o "8 0 =-> © 7 & Py =" Lgﬁ(CaACn) is infinitg »
Since g, g<fg ”, it holds that
Py gy » Lfﬁn(cé‘ACn) is infinite ”.
But this contradicts that

Po - Lfﬁ nca~ XB‘~ Lfﬁ r"lCn . QED. of Claim.

Take & €S’ such that B < &. By Claim, since S’ is cofinal in x,
it holds that : |

)po\lr— Ca separates { Xa ;a"‘<lc} and { Ya ya<Kk ).

But, this contradicts (17). a
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Appendix A. ¥Ye. start some definitions. Let T =
{(ay.by) ta < @;>)> been (0;,0;)-gap. For each & < @,

set b’a =ba\aa. Define the poset PT by
PT={(s,u);3n<w(s:n—*2) ¢ uCw; &lul <0 &

) a. MU b’
aEu * q €Eu @

(s,u) = (t,v) iff tCs & vCu & Wk € dom(s\t)
[(k € U a = s(k) =1)

C dOlﬂ(S) },

atcy o
§8(kEU_ b, = sk =0)1
aE&v

For each a < ®q, set p, = (d,{a}). Define the poset QT by
Gp={uC o lui<o & {p, @ Eu} is an antichain of Py }

u = v iff v C u.
The following theorem is due to Kunen (see [B, p.931 Theorem 4.2]).

Theorem A. Let T be an (a>1,a)1)-gap. Set P = Py and Q = Q.

(a) If T is filled, then P satisfies the countable chain condition.
(b) If T is unfilled, then
(b.1) q w—Q ®» P has an uncountable antichain ”, for some ¢ € 4Q,

(b.2) . Q satisfies the countable chain condition.

¥e shall show

Theorem B. Let n < @ and Ti be an unfilled (a)l.a)l)-gap. for

each i < n. Then, the productbof (QT li<n) satisfies the countable

chain condition.

Renark. Let T be an unfjlled (a)l,a)l)-gap.u, Then, under the

assumption of MA+-1CH, Theorem B is a trivial consequence of Theorem A
, because ény poset which sétisfies the cduntable chainvcondition |
~also satisfies Knaster’s condition. The next theorem claims that

the assumption of MA+=CH (or some assunptlon as this) is necessary to
show that Qp satisfies Knaster’s condition.

_10_
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Theorem C. - There are a poseft R and an R-name X such that
(1) R satisfies the countable chain condition and IRl = @,

(2) =g ” X is an unfilled (a)l,a)l)-gap and Qy doesn’t satisfy

”

Knaster’s condition.

Theorems B, C shall be proved in Appendix B, C (respectively).
The rest of this appendix is

Proof of Lemma 3.3. For each unfilled (a>1,a)1)—gap T, by using
Theorem A (b.1), take a ay € Qp such that
ap = ” P, has an uncountalbe antichain ”,
and set 0y = { @ € Qy 5 @ = qp }J. Set Q = the finite support
product of <Qi 1 T is an unfilledv(a)l,a>l)'sap> . Then, by

theorem B, Q 1is as required. a

Appendix B. ¥e first show the following combinatorial lemma.

Lemma B.1. Let n < ® and ((aia,bia)l a < col) be an unfilled

(@, w )-gap, for each i < n. Then, there are a,f < @, such that
sl Ably # ¢, for all i <n.
To show Lemma B.1, we need the following definition.
Definition. For each gb/‘={aaia < a51> and U C a)l; s‘et

l‘imugb/ = N U ap.
<o, BEU\a

Sublemma. Let d be an @ -tower and U a cofinal subset of ® .

Then, it holds that & << { lijd§ 3.

Proof. Let & = (aczl a < a>1> be an a>1—tower and Ua cofinal

co-11-
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subset of @ . Set x = lilué‘y. - To get a contradiction, assume
that a ,\x 1is infinite, for some a < ;. Since

¥ € oN\x 3:3<a)1(nEU ' 8,
ry EUNB
take a B < @4 such that
a < B & (aa\x)r‘\(U 8,
y EUNAB
Since U is cofinal in @5 take a ¥ € UN\RB. Then, it holds that

) = ¢&.

(aa\x) M 8, = ¢ . But, this contradicts that

3, C 3., and aa\x is infinite. O
Proof of Lemma B.1. Letn < ® and T, = ((aia,bia)l @ <o)

an unfilled (wl,a)l)—gap, for each i < n. Set Seq = U Lo and

i<n
Seq)'< = U ico. Define Us C @, (for s € Seq*) and Xg:¥g C @,
i=n
Ty < @ (for s € Seq) by induction on length(s) as follows:
Set U¢ = (ol.

Asumme that s € Seq and Us is defined. Set i = the length of s.
{the definition of x_,v  and 7 g7

Case 1. Us is not cofinal in @ .

Set xs=ys'=¢and 'rs=0.

Case 2. otherwise.

Set xg = lilUs<aiala<col). Since { al, 5 @<w} << {x},
take a 'fs < @y such that
7,< 74 foranyt C s (t#s) & x, N bi?,s is intinite.
Set yg = xg N bl

S

{the definition of U (for k < )

s <k>
‘ - . i

Set Us“<k>-{a E US ’ k E aa }'-
Set :9=sup{'rt;t€Seq}.

Claim. There are k.i < o (for j < n) such that

co-l2-



<k0"oo,k > ’

(1 k€ bl
g oY j-1

j for each j < n.

Proof of Claim. By induction on j < n. Suppose that j < n and
k, (for m'<j) are chosen which satisfy (1). Set t = <kgs ek

Then, it holds that Ut is cofinal in (ol. So, Yy is infinite.

From this and the fact that Yy - bj,r C* b‘fg, ve can take a kj

t
which satisfies (1). QED'of Claim.

Let s = <k0,'°',kn_l> be as in Clain. Since Us is cofinal in

@ s take an a &£ Us such that B8 < «a. Then, for each i < n,

.

since a € U it holds that k, € al,.

<k0’ ...,ki>’

i i JUTT
So,kiEaaﬁbﬁ,foreach1<n. O

Now we are ready to prove Theoem B. The proof is similar to the
proof of Theorem A (b.2) (in [B, p.932]) except we need Lemma B.1.

Let n < @ end T; = <(ala,bia)l a < co1> an unfilled (col,a)l)—

gap, for i < n. - Sét @ = the product of (QT 1 i <n). To get a
| T :

contradiction, suppose that <wal a < a)1> is an antichain of Q.

For each a < a>1, let w

a‘ = (w?x,"',w'gl). By using A-systen

argment, we may assume that there are ko,“",kn_1 € o \ {0} such that

, for each i < n,

2 wioo= k.

a i for each a < @

(3) if @ < B, then wiar"l \jiﬁ= ¢ . and max(wia) < lin(wiﬂ).

For each-i < n and a < @ (s take m < ® such that

i,a
i : i : ' i i
af\mi,a C,an\mi,a and bf\'i,a C bn\mi,a ,

it &, n E wla and & < 7. Again without loss of generality, we
may assume that n, o, T , for-all i <'n and all o <‘(o1. For

each i < n and @ < a)ﬂl,‘set

-13-
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c.a = ag \u and dia = bif\m » Where £ = min(wia).

Then, it holds that ‘ ,
<(°ia»dia)' a < 601> an unfilled (a)l,a)l)—gap, for i < n.

So, by Lemma B.1, there are a, B < @ such that
¢l n d% # ¢, for all i < n.

So, LI and wg are compatible, a contradiction. a

Appendix C. A poset P is said to satisfy Knaster’s condition if
for any uncountable X ¢ P there is an uncountable Y C: X such that
any two members of Y are compatible. The following facts are well-
known.

(1) If P satisfies Knaster’s condition, then P satisfies the
countable chain condition,

(2) If P satisfies Knaster’s condition and Q satisfies the countable
chain condition, then PxQ satisfies the countable chain condition.
(3) MA + - CH implies the reverse implication of (1).

There are several examples of a poset which satisfies the countalbe
chain condition but does not satisfy Knaster’s condition, under some
set theoretical assumption (see e.g., [W] section 3). Theorem C
gives another such example.

We turn to a proof of Theorem C.

Lenma C. 1. Let R be a poset and X an R-name such that
(c.1) R satisfies the countable chain condition and IRl = @4
(c.2) VB = ” X is an unfilled (a)l,a)l)-gap. »

Suppose that there exists an R-name Y such that, 'in VR,

(c.3) Y is a poset and satisfies the countalbe chain condition,
(c.4) -y » X is filled ”.

Then, it holds that, in VR, Qy .doesn’t satisfy Knaster’s condition.
So, R and X satisfy (1) and (2) in Theorem C.

Proof. Set W = VR and W¥ = WY. By (c.4) and Theorem A (a),
it holds that ’

-14-



' W*fhﬁ Px“ satisfies the countalbe chain condition.

X

Since a)¥ = a>¥, it holds that
(c.5) ¥ = Py satisfies the countalbe chain condition.
Since

¥ = Jq& QX( q II-QX ? PX has an uncountable antichain ” ),
it holds that

(c.6) ¥ = QX><PX doesn’t satisfy the countalbe chain condition.

By (c.5) and (c.8),
¥ = Qx doesn’t satisfy Knaster’s condition. O

e shall construct a poset R and R-names X and Y which satisfy
(c.1)~(c.4). The method for doing this is due to Hechler [H] and
Dordal [D]. Hechler used it for adjoining a tower in a generic
extension and later Dordal generalized it for adjoining an arbitrary

partially order type of P(w)/finite in a generic extension.

Definition (Hechler and Dordal). Let A = (A,<A) be a partial

order type. Define the
poset P(A) by
P(A) = {p; JuChAdn<w( lui<w® & p :uxn=>2) 1},
and for any p, 4 € P(A) such that p : uxn = 2 and q : vxXm = 2,
P = ¢ o B v
iff qaC p & Va,bEv VkEIn,n) (a b= p(a,k)=p(b,k))

For each a &€ A, define P(A)-name Ha by

IA

- Hac:a) .

tn € H Il = { p€P(A) ; p(a,n)=1 }, for each n < ®.

The following lemma -is due to P. Dordal ([D, Lemma 5.4, p. 45]).

15

Lemma C.2. Let A = (A,<,) be a linear order type and B is a sub- '

order type of A.
(1) P(A) satisfies the countalbe chain condition.

(2) " If G is V-generic on P(A), then GNP(B) is V-generic on P(B).

..15_
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(3) If x is a P(A)-name such that I "xC @”, then there exists a
countable subset C of A such that x is a P(C)-nanme.

(4) For any a,b € A, a <, b if and only if I~ "H, ¥ Hp”.
(i.e., < Ha' a € A ) is a chain of P(w)/finite.)

Let Q denote the set of rationals. Set A = 0)<a)1)<2 and B = A
W{0}. Define the linear ordering <g on B by

(¢, @,0) < 0 <p(q,@,1) , for any ¢ € Q end any @ < @,

(0, 2,0) < (r,8,0) , if @ < B or (a = B and q < ).

(¢, @,1) B (r,B,1), if a@ > B or (¢ = B and q <r).

We regard B as the linear order type (B,<B) and A it's sub-order type.

Set the poset R = P(X). Define R-names a _,b  (for ct<a>1) by

o'«

8, = H(O,a,o) and ba = “’\H(O,a,l)’ for each a < @ -

Set ¥ = VR. In ¥, set X = ((aa,b )Ioa < wl) and take the

a

poset Y such that WY = VP(B). Then, by Lemma C.2 (4), it holds that

” Y

W= ” X is an (a)l.col)~gap and W' &= ” X is filled ”.

So, the next lemma completes a proof of Theorem C. The lemma is

proved by the same way in the proof of Theorem 5.3 in [D]. So, we
omit a proof.

Lenma C. 3. ¥ ”Xis unftilled. ”
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