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Existence of periodiclsolutions and Sokes coefficients for ODE

HEHMILAY EHIEE (Masafumi YOSHINO)
‘Department of'Mathematics, Tokyo Metropolitan University

Fukazawa, Setagaya-ku, Tokyo 158 JAPAN

Summary. We consider one dimensional Shrdinger equation with
analytic periodic potential. We show that the existence of periodic
solutions is completely characterized by the special values of Stokes

coefficients, which can be written down explicitly.

1. Notatiohs and results. In this note we consider one dimensional .

Shrodinger equation on R
(1.1) Hu= - (gf)Zu - 21’0%1—:11 + V(t)u + Cu =,

where ¢ is a complex number and where V(t) is 7 periodic and is analytic

function of the form

bt ~Znit
(1.2) Vit) = 3 a_e y 8 = 0, a; # 0,
n=--

where we assume that the series converges for all complex value of teC.
The following fact is well-known (cf.[3]). There exists ©6€R such that

for every k = +1,%2,..., there exists in the domain SZk =z {teC;, -6 +
2kn-31/2 < Re t < -6 + 2kn+3n/2)},a unique solution Uy of (1.1) which

decreases exponentially when Re t = -6 + Zkn, Im t 5 — w. Similarly,
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there ex1sts a unlque solution Upt1 of (1.1) in the domain ‘52}r+1 =
{teC; -6 + (Z2k¥1)n-3n/2 < Re t < -© + (Zk+l)n+3n/2} which decreases

exponentially when Re t = -6+(2k+1)n, Im t > —0 for every k=x1,*2,..

The systems of solutions (u2k+1, qu), (u2k+1, u21r+2) form fundamental
systems of solutions of (1.1) in S.Zk n 32k+1 and Soper N 821{'+2
respectively. Hence, in the domain SZk n 321r+1 N S2k+1 ”’Szmz = S2_k n

S2k +2 there is a linear relation between these systems.

1 S(le) )
uge) (9

(1.3) gy Ugiez) = (Ugiesrr j

Similarly, there are linear relations between two fundamental systems

‘('u2k+2, u2k_+1), (u2k+2, u2k+3) of solutions in the domain S2k+1 N

Sok+3°

1 s(2h+1))
o i)

(1.4)  (Ugy,ps Ugeys) = (Ugg,ns Ugpyy

We call the coefficients s(2k) and s(2k+1) in (1.3) and (1.4) Stokes

coefficients. Our result is the following

Theorem 1.1. Under the >assumptions above the equatioh (1.1) has a .
periodic solution if and only if s(2k) = s(2k+1) = -1 (-enic+e—'nic) for

all k = +1, *2,... .

We give some consequences of Theorem 1.1. Let us consider the

equation
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(1.5) Pu= - (%E)Zu + Vit)u = u.

Let A(x) be the Hill’s discriminant of (1.5), and let X be any solution

of the equation A\) = €€ + e "€, We know that this equation has

infinite number . of solutions X.{cf.[2]). Then we have

Corollary 1.2. Let )\ be any solution of the equation A(\) =

MC1e™IC  pan we have s(2k) = s(2k+1) = —iA(\) for all k = +1, +2,...

Corollary 1.3. The equation (1.5) has a W periodic solution if and

only if s(2k) = s(2k+1) = -2i for all k = 1, +2,... The equation (1.5)

has a solution such that u(t+n) = -u(t) for éll t if and only if s(2k) =

s(2k+1) = 2i for all k = 1, +2,...

We shall give an application of our results. We denote by C.°°( TZ ) the

2

set of smooth funct_ions on T°= R2 /21[22 . We say that a differential

2 2

operator @ on T is locally hypoelliptic if, for any subdomain Q ¢ T
and any distribution u in Q such that Qu is smooth in Q it follows ’that

u is smooth in Q. On the other hand, we say that @ is globally

hypoelliptic if, for any distribution u in TZ such that Qu is smooth in

2 2 . Then we have

T it follows that u is smooth in T

Corollary 1.4. The operator P;)\ given by (1.5) is not (locally)

hypoelliptic on C”(’l‘z)‘. P-\ is globally hypoelliptic if and only if
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either s(2k) # +21 or s(2k+1) # *2i is satisfied for some integer k. The

last condition is satisfied except for countable number of \.

Remark 1.5. By Corollary 1.4 we obtain infinitely many globally
hypoelliptic but not (locally) hypoelliptic operators. We also see the
existence of not globally hypoelliptic operators. In aﬁy case these
operators do not satisfy a vector field condition of HSrmander ‘t,vpe or
its general version because these equations depend only on one variable.

(cf. [11,[4]).

8§2. Proof of Theorems.
Proof of Theorem 1.1. We set z = eit in (1.1). Then (1.1) is written
§ -2n

a z .

(2.1) zg(gz)zb + 20(;-311 + ;/’('z)u = U, ;/’(z) = -n

n=-1

2

We set a_ 1 u . Let k be an integer. Then, by the general theory in [3]

and [5] we have a solution :12k(z) of {(2.1) in the sector 521{ =z {z € C;

- ©+2kn -3n/2 < Arg z < - ©+2kn+3n/2}. We have an asymptotic expansion

u2k(z) ~ e—iuzz-c-l/z for z € SZk’ z30, where Arg(iu) = 6. The solution

is unique except for a constant factor. Hence, we normalize u2k(z) such

that :1 Zk( Zz )eiuZZCI/ 2

> 1 when z € SZk’ z 2 w. Similary, in the sector
Spsy = (2 €C; - 0+(2UH1)M-31/2 < Arg z < - O+(Zk+1 Jn+3n/2} there

exists a unique solution uy, ., (z) of (2.1) which has an asymptotic

{
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it

~inz,otl/8 | g por z/ESﬂ(_,_i, z > . Since z = 1t we

expansion u2k+1(z)e
may take the branch of t so that Re t = Arg z, Im t = -log|z|. Hence we

have the solutions u2k(t) and u2k+1(t) in thg doma‘ins S o and Sopst?

respectively.
Suppose that there exists a 7 periodic solution v(t) to (1.1).
Because the equation is analytic in t, v(t) is analytic and 7 periodic

in C, v(t+#n) = v(t) for all teC. In SZk N S2k+1 we have an expression
(2.2) vit) = a u2k(t) +b u2k+1(t) for some a and b.

Similarly, in SZ]H-Z n 32k+3 we have
(2.3) vit) = a*u2k+2(t) + b*u21r+3(t) for some ::14Y and b*.

Because v(it- ©+2kn) = v(it- e+2kn+n) for all t<0, it follows from

(2.2) and the asymptotic expansions that

(2.4) | b = ae(Ct1/2)i

Similarly, by comparing the asymptotic behavior of both sides of the

identity v(it- ©+2kn+2n) = v(it— e+2kn+3n) for all t(O we have

(2.5) PR a*e"“(C”/Z)i.

On the other hand, since v(it- 0+2kn) = v{(it- o+2kn+2n) for all t<0 by
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assumption it follows from (2.2) and (2.3) that-
(2.6) b = pfe~M(ctl/2)1
Hence it.follows from (2.2), (2.3), (2.4), {2.5) and (2.6) that

“f(c+l/2)i

(2.7) u2k(t) + e u2k+1(t)

T(ct+tl/2)1

_ on(ctl/2)i
= e Ugpyol(t) + e

Ugpp3(t)

We note that (2.7) is valid for all t in C by analytic continuation. By

(1.3) and (1.4) which are valid for all t in C by analytic continuation

we have
| . 1 s(2k+1) )
(2.8) (Ugerzr Ygiers) = (zeezr Uzeer 0 57 )
_ TN 0V(1 s(2k+1) )
'(%m'”mwzﬁsum)zj(o 1 J

(u u }[ 1 s(2k+1) )
2k’ “2k+1'\s(2k) s(2k)s(2k+1)+1}"

It follows from (2.7) and (2.8) that

-n(c+1/2)i

Uy (t) + e Upepy(t) = & CH/E 4 (t)1s(2i)uy,, (t)

+ e”(0*1/2)1[3(2k+1)u2k(t) + (s(2k)s(2kt1)+1)uy,, (t)].
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Hence we have

7 = e2n(c+1/2)i+ éu(c+1/2)is(2k+1)’

(2.9)

TCHL/2) _ ZW(cH/2)ig oy o JCHI/20E (pp)ciora)e).
Therefore we have
(2.10) . s(2k) = s(2k+1) = -i(e"CL ¢+ 7T,

This proves the sufficiency.
Conversely, let us assume that (2.10)Vis satisfied. By definition the

functions ul(t) and ul(t+n) are solutions of (1.1) in the domain Ay :‘{t\
€C; -6 N/2<(Re t < - & #M/2}. Since ul(t+n) and uo(t) are decreasing
in Ay as t > @ we get, from the uniqueness that,ul(tfn) = kuo(t) in A,
for some k. This identity is valid if t€A0+n. Hence we have that

ul(t+2n) = kuo(t+n) in Ay By’comparing the asymptotic behavior as tw

~N(c+l/2)i

we have that k=-e . Hence we have

eﬁn(c+1/2)i

(2.11) A ul(t+n) = uo(t).

We note that (2.11) is valid for all t in C because both sides of (2.11)
are analytic functions of ¢t.

_ Next we show that
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e {c+l/2)i

(2.12) uz(t+n) = uI(t), t € C.

Indeed the functions u2(t+n) and ul(t) are decreasing solutions of (1.1)
in the domain A0+n. Hence thefe eﬁists k such that u2(t+n) = k ul(t) in
Ag#n. Sinée this is valid in A0+2ﬂ we have thgt u2?t+2n) = k ul(t+n) in
Aptn. By comparing the asymptotic behavior as t»w we have that k =

e—n(c+1/2)i. Hence we have (2.12).

It follows from (1.3) with k=0 and (2.10) that uz(t):st)ul(t)+u0(t)

Ncl

= —i(enci + e_nCi)ul(t) + uo(t). This implies that u2{t+H)= -ife +

e—nci)ul(t+n) + uo(t+n). Hence it follows from (2.11) and (2.12) that

enci. -nci -N{c+l/2)i u1(t) +

'uo(t+n) = u2(t+n) + 1f + e )u1(t+n) - e

i(MC1y Ol TOH/2IE 1) = gOH/ZNE y 4) 4 (1 + &)y ().

In view of (2.11) this implies that

-N(ct+l/2)i e-n(c+1/2)i ~2nci

Uy (t+n) + e ul(t+n) = u, (t) + (1 +e )uo(t) +
e M(ctl/2)i -m(ctl/2)i uy(t) = uy(t) + g N(ctl/2)i u(t),

showing that the function v(t) = uo(t) + e—ﬂ(c+1/2)i ul(t) is 7 periodic

in t. Hence we have proved the sufficiency. This proves Theorem 1.1.
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