An algorithm of constructing the integral of a module [Acceptable]

- an infinite dimensional analog of Gröbner basis

NOBUKI TAKAYAMA

Department of Mathematics, Kobe University Rokko, Kobe, 657, Japan

(February 8, 1990)

Abstract.

Let K be a field of characteristic zero. The Weyl algebra:

$$K(x_1,\cdots,x_n,\partial_1,\cdots,\partial_n)$$

is denoted by A_n . We have

$$[x_i,\partial_j]=x_i\partial_j-\partial_jx_i=\left\{egin{array}{ll} -1,&i=j,\ 0,&i
eq j, \end{array}
ight.$$
 eft ideal of A_n . We put $M=A_n/\mathfrak{A}$. M is a left A

in the Weyl algebra. Let \mathfrak{X} be a left ideal of A_n . We put $M = A_n/\mathfrak{X}$. M is a left A_n module. The purpose of this paper is an explicit construction of the left A_{n-1} module:

$$\int M dx_n := M/\partial_n M$$

by introducing an analog of Gröbner basis of a submodule of a kind of infinite dimensional free module. We call $M/\partial_n M$ the *integral* of the module M. The non-commutativity of A_n prevents us from using the usual Buchberger algorithm to construct $M/\partial_n M$. (If A_n is commutative, then $M/\partial_n M \simeq A_n/(\partial_n, \mathfrak{A})$. There is no problem.) We must consider a sum of left and right ideal of A_n . We overcome this difficulty by using an infinite dimensional analog of Gröbner basis.

The algorithm of constructing the integral of a module is not only important to mathematicians, but also has many impacts on the classical fields of computer algebra. It plays central roles in mathematical formula verification [Zei1], [Tak2], computation of a definite integral [AZ], [Tak2] and an asymptotic expansion of a definite integral with respect to parameters. However, a complete algorithm of obtaining $M/\partial_n M$ had not been known. We give a complete algorithm in this paper. The algorithm is an answer to the research problem of the paper [AZ].

We refer to [Buch1], [Buch2], [MM], [FSK] for the Gröbner basis of a polynomial ideal and free module, to [Gal], [Cas], [Tak1], [Nou], [UT] for the Gröbner basis of the ideal of Weyl algebra, to [Ber], [Bjo] for holonomic system and Weyl algebra. We remark that [Berg] also considered infinite set of reduction systems.

$\S 1. \, \, \mathbf{A} \, \, \mathbf{simple} \, \, \mathbf{example}$

We explain an idea by using a simple example.

Example 1.1 We compute a differential operator that annihilates the function:

$$I(x) = \int_{-\infty}^{\infty} f(x,t)dt, \quad f(x,t) = e^{-xt^2}.$$

We have $\ell_1 f = \ell_2 f = 0$ where

$$\ell_1 = \partial_x + t^2, \quad \ell_2 = \partial_t + 2xt.$$

We put $x_2 = t$ and $x_1 = x$. Let \mathfrak{X} be the left ideal of A_2 generated by ℓ_1 and ℓ_2 . The Gröbner basis of \mathfrak{X} by the lexicographic order $t \succ \partial_t \succ x \succ \partial_x$ is

$$G = \left\{ t^2 + \partial_x, 2xt + \partial_t, t\partial_t - 2x\partial_x, \partial_t^2 + 4x^2\partial_x + 2x \right\}.$$

The Hilbert function of A_2/\mathfrak{X} is k^2+3k+1 . We put $R=\mathbb{C}\langle x,\partial_x,\partial_t\rangle$ and define a map

$$\psi: \mathbb{C}\langle t, x, \partial_t, \partial_x \rangle \ni \sum_{k=0}^{m-1} t^k f_k \longmapsto (f_0, \cdots, f_{m-1}) \in \mathbb{R}^m$$

where $f_k \in R$. We have

$$\psi(G) = \{(\partial_x, 0, 1, 0, \cdots), (\partial_t, 2x, 0, \cdots), (-2x\partial_x, \partial_t, 0, \cdots), (\partial_t^2 + 4x^2\partial_x + 2x, 0, \cdots)\}
\psi(tG) = \{(0, \partial_x, 0, 1, 0, \cdots), (0, \partial_t, 2x, 0, \cdots), \cdots\}
\cdots
\psi(t^{m-3}G) = \{(0, \cdots, 0, \partial_x, 0, 1), \cdots\},$$

and we use

$$\{(\partial_t, 0, \cdots), (1, \partial_t, 0, \cdots), (0, 2, \partial_t, 0, \cdots), (0, \cdots, m-1, \partial_t)\}.$$

(1.2) is obtained from

$$\partial_t t^k = t^k \partial_t + k t^{k-1}$$
.

 R^m has a left R module structure defined in the beginning of the section two. Let \mathcal{M}_m be a left R submodule of R^m generated by (1.1) and (1.2). We remark that

$$\psi^{-1}(\mathcal{M}_m) \subset \partial_t A_2 + \mathfrak{A}.$$

We apply the algorithm of Gröbner basis of submodule ([MM], [FSK]) to \mathcal{M}_m . Then we obtain, for example,

$$sp((1,\partial_t,0,\cdots),(-2x\partial_x,\partial_t,0,\cdots))=(1+2x\partial_x,0,\cdots),\cdots etc.$$

The above equation is equivalent to

$$\partial_t t - (t\partial_t - 2x\partial_x) = 1 + 2x\partial_x, \quad \partial_t t \in \partial_t A_2, t\partial_t - 2x\partial_x \in \mathfrak{A}.$$

Therefore we have

$$\partial_t(tf) - (t\partial_t - 2x\partial_x)f = \partial_t(tf) = (1 + 2x\partial_x)f.$$

We conclude that

$$(1+2x\partial_x)I(x)=\int_{-\infty}^{\infty}\partial_t(tf)dt=0 \quad (x>0).$$

§2. Gröbner basis for submodule of $R_{\infty} = \lim R^m$

Let us consider the general situation. We put

$$R = K\langle x_1, \cdots, x_{n-1}, \partial_1, \cdots, \partial_n \rangle = A_{n-1}[\partial_n].$$

We define a left R module structure to R^m in the following way. For

$$R^m \ni \vec{f} = (f(0), \dots, f(m-1)), \ a \in A_{n-1},$$

we put

(2.1)
$$a\vec{f} = (af(0), \cdots, af(m-1))$$

and for $a = \partial_n$,

$$(2.2) a\vec{f} = (af(0) + f(1), \dots, af(k) + (k+1)f(k+1), \dots, af(m-1)).$$

The Weyl algebra A_n has a left R module structure in the standard way. The map

$$\varphi: R^m \ni \vec{f} \longmapsto \sum_{k=0}^{m-1} x_n^k f(k) \in A_n$$

is homomorphism of left R module.

We can define the notions of addmissible order, reducible, S-polynomial (sp) and Gröbner basis of the ring R in a similar way to the case of the polynomial ring. Let us explain some of them to avoid misunderstandings. We define an order \prec_1 between monomials of R by

$$(2.3) x_1^{\alpha_1} \cdots x_{n-1}^{\alpha_{n-1}} \partial_1^{\beta_1} \cdots \partial_n^{\beta_n} \prec_1 x_1^{\gamma_1} \cdots x_{n-1}^{\gamma_{n-1}} \partial_1^{\delta_1} \cdots \partial_n^{\delta_n}$$

 \Leftrightarrow

$$(\alpha_1, \dots, \alpha_{n-1}, \beta_1, \dots, \beta_n) \prec_2 (\gamma_1, \dots, \gamma_{n-1}, \delta_1, \dots, \delta_n)$$

where \prec_2 is the total degree order in \mathbb{N}_0^{2n-1} . We use the order in the sequel. Let r and s be elements of R. We put

head(r) = head term of r by the order
$$(2.3) = cx^{\alpha} \partial^{\beta}$$
, $c \in K$

and head(s) = $dx^{\gamma}\partial^{\delta}$, $d \in K$. We define

$$lcm(\alpha, \gamma) = (max\{\alpha_1, \gamma_1\}, \cdots, max\{\alpha_{n-1}, \gamma_{n-1}\}),$$

$$lcm(\beta, \delta) = (max\{\beta_1, \delta_1\}, \cdots, max\{\beta_n, \delta_n\}).$$

Iff $lcm(\alpha, \gamma) = \alpha$ and $lcm(\beta, \delta) = \beta$, r is reducible by s. Put $\xi = lcm(\alpha, \gamma)$ and $\eta = lcm(\gamma, \delta)$. We define

$$\operatorname{sp}(r,s) = x^{\xi-\alpha} \partial^{\eta-\beta} r - \frac{c}{d} x^{\xi-\gamma} \partial^{\eta-\delta} s.$$

Let r be reducible by s and $t = \operatorname{sp}(r, s)$, then the situation is denoted by " $r \longrightarrow t$ by s". Let \to^* be a transitive closure of \to . A finite subset G of R is called Gröbner basis of an ideal \mathfrak{A} if $\forall r_i, r_j \in G$, $\operatorname{sp}(r_i, r_j) \longrightarrow^* 0$ by G and $\mathfrak{A} = RG$. It is well known that every left ideal of R has a Gröbner basis [Gal], [Cas], [Tak1], [Nou], [UT].

Consider R^m . [MM] and [FSK] extended the notion of Gröbner basis to free modules. We can apply their extension to R^m . Let us review their extension (See [Tak1] for proofs in the case of a free module over a non-commutative ring). We define

$$topIndex(\vec{f}) = k, \quad \vec{f} \in \mathbb{R}^m,$$

iff f(i) = 0 $(k < i \le m-1)$ and $f(k) \ne 0$. Let \vec{f} and \vec{g} be elements of R^m .

DEFINITION 2.1 \vec{f} is reducible by \vec{g} iff $k = \text{topIndex}(\vec{f}) = \text{topIndex}(\vec{g})$ and f(k) is reducible by g(k) in R.

DEFINITION 2.2

$$\operatorname{sp}(\vec{f}, \vec{g}) := \begin{cases} 0, & \text{if } \operatorname{topIndex}(\vec{f}) \neq \operatorname{topIndex}(\vec{g}) \\ c_1 \vec{f} - c_2 \vec{g}, & \text{if } k = \operatorname{topIndex}(\vec{f}) = \operatorname{topIndex}(\vec{g}), \end{cases}$$

where $sp(f(k), g(k)) = c_1 f(k) - c_2 g(k)$.

DEFINITION 2.3

(2.4)
$$\vec{f} \succ \vec{g} \iff \frac{\text{topIndex}(\vec{f}) > \text{topIndex}(\vec{g})}{\text{or } \left(\text{topIndex}(\vec{f}) = \text{topIndex}(\vec{g}) = k \text{ and } f(k) \succ_1 g(k)\right)}$$

We use the order (2.4) of \mathbb{R}^m in the sequel. We remark that other order in \mathbb{R}^m can be used in our theory. The use of good orders leads us to a fast termination of Buchberger algorithm.

We put

$$\mathcal{G} = \{\vec{g}_1, \cdots, \vec{g}_p\}$$

DEFINITION 2.4 If there exists an element $\vec{g_i}$ of \mathcal{G} such that \vec{f} is reducible by $\vec{g_i}$, then we write the situation as follows.

$$\vec{f} \longrightarrow \vec{h}$$
 by \mathcal{G}

where $\vec{h} = \operatorname{sp}(\vec{f}, \vec{g}_i)$.

We remark $\vec{h} \prec \vec{f}$. Let \to^* be transitive closure of \to . Suppose $\vec{f} \to^* \vec{h}$. We remark that \vec{h} is not uniquely determined by \vec{f} . It depends on the sequence of reductions.

DEFINITION 2.5 \mathcal{G} is a Gröbner basis of a left R submodule \mathcal{M} of R^m iff

- (1) $\forall i, j, \operatorname{sp}(\vec{g}_i, \vec{g}_j) \longrightarrow^* 0 \text{ by } \mathcal{G}.$
- (2) \mathcal{G} generates \mathcal{M} over R.

Any left submodule \mathcal{M} of \mathbb{R}^m has a Gröbner basis ([MM], [FSK], [Tak1]). $\vec{e_i}$ denotes *i*-th unit vector, i.e.,

$$\vec{e}_0 = (1, 0, \dots, 0), \ \vec{e}_1 = (0, 1, 0, \dots, 0), \dots$$

 \vec{g}_i can be decomposed into a sum of (monomial of R) × (unit vector) which is written as

$$ec{g}_i = \sum_j c_i^j ec{e}_{k_j}, \quad c_i^j ext{ is a monomial of } R.$$

 \mathcal{G} is a reduced Gröbner basis of \mathcal{M} iff \mathcal{G} is a Gröbner basis of \mathcal{M} ,

$$\forall i, j : c_i^j \vec{e}_{k_j} \longrightarrow^* c_i^j \vec{e}_{k_j} \text{ by } \mathcal{G} \setminus \{\vec{g}_i\}$$

and the head coefficients of \vec{q}_i is 1.

We define these notions on

$$R_{\infty} = \lim R^m \simeq K[x_n] \otimes_K R.$$

Any element \vec{f} of R_{∞} can be written as

$$\vec{f} = (f(0), f(1), \dots), \quad \exists k, i > k \Rightarrow f(i) = 0 \text{ and } f(k) \neq 0.$$

The number k is denoted by topIndex (\vec{f}) . Therefore we can consider \vec{f} as the element of R^m , $m \geq k$. We define the notions of reducibility, s-polynomial and order \prec identifying the element \vec{f} of R_{∞} with the element $(f(0), \dots, f(m-1))$ of R^m , $(m \geq k)$.

$$\mathcal{G} = \{\vec{g}_1, \vec{g}_2, \cdots\}, \quad \vec{g}_i \in R_{\infty}.$$

We do not assume that \mathcal{G} is finite set. Put

$$G(k) = {\vec{g} \in G | \text{topIndex}(\vec{g}) \le k}.$$

Assumption 2.1

$$\forall k, \ \#\mathcal{G}(k) < +\infty.$$

We consider the existence of a Gröbner basis under Assumption 2.1 in the sequal.

DEFINITION 2.6

$$\vec{f} \longrightarrow \vec{h}$$
 by $\mathcal{G} \iff \exists i, \exists m, \vec{g}_i \in \mathcal{G}$, topIndex $(g_i) \leq m$, topIndex $(f) \leq m$ and $\vec{f} \longrightarrow \vec{h}$ by \vec{g}_i in R^m .

 $\vec{f} \longrightarrow \vec{h}$ is called reduction of \vec{f} .

PROPOSITION 2.1 For any element $\vec{f} \in R_{\infty}$, any sequence of reduction of \vec{f} by \mathcal{G} terminates in finite steps.

Proof. Put $m = \text{topIndex}(\vec{f})$. Note that any sequence of reduction of \vec{f} uses the elements of $\mathcal{G}(m)$. Since $\mathcal{G}(m)$ is the finite set, the sequence terminates in finite steps.

It follows from Proposition 2.1 that we can take a transitive closure of \rightarrow in finite steps. The transitive closure is denoted by \rightarrow^* .

Definition 2.7 $\mathcal G$ is a Gröbner basis of a left R submodule $\mathcal M$ of R_∞ iff

- (1) $\forall i, j, \operatorname{sp}(\vec{g}_i, \vec{g}_j) \longrightarrow^* 0 \text{ by } \mathcal{G}.$
- (2) \mathcal{G} generates \mathcal{M} over R, i.e., $\forall \vec{f} \in \mathcal{M}, \exists I \subset \mathbb{N}, \exists a_i \in R \text{ such that } \#I < \infty \text{ and }$

$$\vec{f} = \sum_{i \in I} a_i \vec{g}_i.$$

(3) (local finiteness)

$$\forall m, \ \#\mathcal{G}(m) < +\infty.$$

PROPOSITION 2.2 If G is a Gröbner basis of an R submodule $\mathcal{M} \subset R_{\infty}$, then

$$\forall \vec{g}_i, \vec{g}_j \in \mathcal{G}(m), \ \operatorname{sp}(\vec{g}_i, \vec{g}_j) \longrightarrow^* 0 \ \operatorname{by} \ \mathcal{G}(m).$$

Proof. We have $\operatorname{sp}(\vec{g}_i, \vec{g}_j) \longrightarrow^* 0$ by \mathcal{G} . Since $\operatorname{topIndex}(\operatorname{sp}(\vec{g}_i, \vec{g}_j)) \leq m$, we have $\operatorname{sp}(\vec{g}_i, \vec{g}_j) \longrightarrow^* 0$ by $\mathcal{G}(m)$.

THEOREM 2.1 Let \mathcal{M} be a left R submodule of R_{∞} and \mathcal{G} be a Gröbner basis of \mathcal{M} . If $\vec{f} \in \mathcal{M}$, then $\vec{f} \longrightarrow^* 0$ by \mathcal{G} .

Proof. Since \mathcal{G} is a set of generators of \mathcal{M} , there exist an index set I and elements $a_i \in R$, $i \in I$ such that $\#I < +\infty$ and $\vec{f} = \sum_{i \in I} a_i \vec{g_i}$. Put $m = \max_{i \in I} \{ \text{topIndex}(\vec{g_i}) \}$. We can consider \vec{f} as an element of R^m . It follows from Proposition 2.2 that $\mathcal{G}(m)$ is a Gröbner basis of $R\mathcal{G}(m)$ in R^m . Since $\vec{f} \in R\mathcal{G}(m)$, we have $\vec{f} \longrightarrow^* 0$ by $\mathcal{G}(m)$ for any sequence of reduction.

Let \mathcal{H}_m , $m=0,1,2,\cdots$ be subsets of R_∞ that satisfy the conditions:

Suppose that \mathcal{M}_{∞} is the left R submodule generated by $\bigcup_{m=0}^{\infty} \mathcal{H}_m$. We have

$$\mathcal{M}_{\infty} = \bigcup_{m=0}^{\infty} R\mathcal{H}_m = \lim_{\longrightarrow} R\mathcal{H}_m.$$

THEOREM 2.2 Let \mathcal{G}_m be the reduced Gröbner basis of $R\mathcal{H}_m$ in R^m .

$$\mathcal{G}_{\infty} = \bigcup_{m=0}^{\infty} \mathcal{G}_m$$

is a Gröbner basis of \mathcal{M}_{∞} .

Proof. We prove the local finiteness condition: $\#\mathcal{G}_{\infty}(m) < +\infty$. We remark that $\mathcal{G}_{\infty}(m) \neq \mathcal{G}_m$ in general. Put

$$\mathcal{G}_{\pmb{k}}(m) = \{ \vec{f} \in \mathcal{G}_{\pmb{k}} | \mathrm{topIndex}(\vec{f}) \leq m \}.$$

 $\mathcal{G}_k(m)$ is a Gröbner basis of $R\mathcal{G}_k(m)$ in R^m . Since $\cdots \subseteq R\mathcal{G}_k(m) \subseteq R\mathcal{G}_{k+1}(m) \subseteq \cdots$ in R^m , there exists k_0 such that $\forall k \geq k_0$, $R\mathcal{G}_k(m) = R\mathcal{G}_{k_0}(m)$. \mathcal{G}_k is the reduced Gröbner basis, then we have $\forall k \geq k_0$, $\mathcal{G}_k(m) = \mathcal{G}_{k_0}(m)$. Hence $\#\mathcal{G}_{\infty}(m) < +\infty$.

Other conditions are easily verified.

COROLLARY 2.1 For any m, we can obtain $\mathcal{G}_{\infty}(m)$ in finite steps.

Algorithm 2.1

INPUT: \mathcal{H}_m : generators of a submodule that satisfy the condition (2.5).

OUTPUT: \mathcal{G}_m : m-th approximation of Gröbner basis \mathcal{G}_{∞} of the submodule \mathcal{M}_{∞} .

(1) $\mathcal{G}_m := \text{the reduced Gr\"{o}bner basis of } R\mathcal{H}_m \text{ in } R^m.$

REMARK 2.1 If m is large number in Algorithm 2.1, then it follows from Corollary 2.1 that we have $\mathcal{G}_m(k) = \mathcal{G}_{\infty}(k)$ for small number k where \mathcal{G}_{∞} is a Gröbner basis of \mathcal{M}_{∞} . However, we do not have an algorithm of deciding $\mathcal{G}_m(k) = \mathcal{G}_{\infty}(k)$ or not.

§3. Computation of the integral of A_n module

Let \mathfrak{A} be a left ideal of A_n and M be A_n/\mathfrak{A} . We have

$$M/\partial_n M \simeq A_n/(\partial_n A_n + \mathfrak{A})$$
 as A_{n-1} module.

The set $\partial_n A_n + A_n \mathfrak{X} = \partial_n A_n + \mathfrak{X}$ is not left A_n module. Let us note that R is a subalgebra which is commutative to ∂_n . Therefore $\partial_n A_n + \mathfrak{X}$ has a left R module structure. We will show that $\partial_n A_n + \mathfrak{X}$ is the left R submodule of R_{∞} , prove the existence of a Gröbner basis (with the local finiteness property) of the module and present a construction algorithm of the basis.

Let

$$(3.1) G = \{g_1 \cdots, g_p\}$$

be generators of the left ideal \mathfrak{A} of A_n . g_k can be written as

$$g_k = \sum_{j=0}^{s_k} x_n^j g_{kj}, \quad g_{kj} \in R.$$

We put

$$\psi(\partial_n x_n^k) = (0, \dots, 0, k, \partial_n, 0, \dots, 0) \in \mathbb{R}^m,$$

and

$$\psi(x_n^i,g_k) = (0,\cdots,0,g_{k0},g_{k1},\cdots,g_{ks_k},0,\cdots,0) \in \mathbb{R}^m.$$

Let $\mathcal{H}_m \subset \mathbb{R}^m$ be

(3.2)
$$\left(\bigcup_{k=0}^{m-1} \{ \psi(\partial_n x_n^k) \} \right) \bigcup \left(\bigcup_{k=1}^p \bigcup_{i=0}^{m-s_k-1} \{ \psi(x_n^i g_k) \} \right).$$

We have $\cdots \subseteq \mathcal{H}_m \subseteq \mathcal{H}_{m+1} \subseteq \cdots$ and $\#\mathcal{H}_m < +\infty$. $\mathcal{M}_{\infty} = \bigcup_{m=0}^{\infty} R\mathcal{H}_m$ is the left R submodule of R_{∞} . It follows from Theorem 2.2 that \mathcal{M}_{∞} has a Gröbner basis \mathcal{G}_{∞} . We can compute approximations of \mathcal{G}_{∞} by Algorithm 2.1.

THEOREM 3.1.

$$R_{\infty}/\mathcal{M}_{\infty} \simeq A_n/(\partial_n A_n + \mathfrak{A}) = \int M dx_n$$

as left A_{n-1} module.

Proof. We define a map:

$$\theta: R_{\infty} \ni \vec{f} = (f(0), f(1), \dots, f(m), 0, \dots) \mapsto f(0) + x_n f(1) + \dots + (x_n)^m f(m) \in A_n$$

where $m = \text{topIndex}(\vec{f})$.

We prove if $\vec{f} \in \mathcal{M}_{\infty}$, then $\theta(\vec{f}) \in \partial_n A_n + \mathfrak{A}$. Since $\vec{f} \in \mathcal{M}_{\infty}$, there exists $a_j, b_j \in R$ such that

$$\vec{f} = \sum_{i} a_{j} \psi(\partial_{n} x_{n}^{k_{j}}) + \sum_{i} b_{j} \psi(x_{n}^{i_{j}} g_{k_{j}})$$

where \sum_{i} is a finite sum. Then we have

$$\begin{split} \theta(\vec{f}) &= \sum_{j} a_{j} \partial_{n} x_{n}^{k_{j}} + \sum_{j} b_{j} x_{n}^{i_{j}} g_{k_{j}} \\ &= \sum_{j} \partial_{n} (a_{j} x_{n}^{k_{j}}) + \sum_{j} (b_{j} x_{n}^{i_{j}}) g_{k_{j}} \in \partial_{n} A_{n} + \mathfrak{A}. \end{split}$$

Therefore we can define a map:

$$\hat{\theta}: R_{\infty}/\mathcal{M}_{\infty} \longrightarrow A_n/(\partial_n A_n + \mathfrak{A}),$$

by $\hat{\theta}([\vec{f}]) = [\theta(\vec{f})].$

It is easily verified that $\hat{\theta}$ is A_{n-1} homomorphism and surjective.

We will show that $\hat{\theta}$ is injective. We assume that $\theta(\bar{f}) = \partial_n h + g \in \partial_n A_n + \mathfrak{A}$, $h \in A_n, g \in \mathfrak{A}$. h can be written as $h = \sum_k h_k x_n^k$, $h_k \in R$. Then we have $\partial_n h = \sum_k h_k (\partial_n x_n^k)$. g can be written as $g = \sum_k c_k g_k$. c_k has an expression of the form $c_k = \sum_j b_{kj} x_n^j$, $b_{kj} \in R$. Then we have $g = \sum_{k,j} b_{kj} x_n^j g_k$. Since θ is injective, then we have

$$\vec{f} = \sum_{k} h_{k} \psi(\partial_{n} x_{n}^{k}) + \sum_{k,j} b_{kj} \psi(x_{n}^{j} g_{k}) \in \mathcal{M}_{\infty}.$$

Therefore $\hat{\theta}$ is injective.

COROLLARY 3.1 If M is holonomic, then there exists a number m such that

$$R^m/R\mathcal{G}_{\infty}(m)\simeq\int Mdx_n$$

as A_{n-1} module where \mathcal{G}_{∞} is a Gröbner basis of $\mathcal{M}_{\infty} = \bigcup R\mathcal{H}_m$ of (3.2).

Proof. If M is holonomic, then $R_{\infty}/\mathcal{M}_{\infty}$ is finitely generated. Let $\vec{h}_1, \dots, \vec{h}_p$ be generators. Assume $\vec{h}_i, i = 1, \dots, p$ are irreducible by \mathcal{M}_{∞} . Put $m = \max_{i=1}^{p} \{ \text{topIndex}(\vec{h}_i) \}$. Let us consider a map ρ :

$$\rho: R^m/R\mathcal{G}_{\infty}(m) \longrightarrow R_{\infty}/\mathcal{M}_{\infty}$$

where \mathcal{G}_{∞} is a Gröbner basis of \mathcal{M}_{∞} . If an element \vec{f} of R^m is irreducible by $\mathcal{G}_{\infty}(m)$, then \vec{f} is irreducible by \mathcal{G}_{∞} . Therefore the map ρ is injective. Since $\vec{h}_1, \dots, \vec{h}_p$ are generators, then the map ρ is surjective.

The lexico-total degree order is

$$\{x_n\} \succ \{x_1, \dots, x_{n-1}, \partial_1, \dots, \partial_n\}$$

and the lexicographic order is

$$(3.4) x_n \succ \partial_n \succ x_{n-1} \succ \cdots \succ x_1 \succ \partial_1.$$

We will show an application of our theory to the zero recognition problem [Zei1] [Tak2] and the study of definite integral with parameters [AZ] [Tak2]. Algorithm 3.1 can be used in Algorithm 1.2 of [Tak2] and is "correct" algorithm in the sense of [Tak2].

ALGORITHM 3.1 (Computation of differential equations for a definite integral with parameters) INPUT: $G = \{g_k\}$, generators (3.1) of a left ideal \mathfrak{X} of A_n . We assume that $M = A_n/\mathfrak{X}$ is holonomic.

OUTPUT: $\mathcal{G}(0)$, a Gröbner basis in R such that $R/R\mathcal{G}(0)$ is holonomic A_{n-1} module, i.e., $\mathcal{G}(0)$ is a very large system of differential equations such that $\mathcal{G}(0) \subseteq \partial_n A_n + \mathfrak{A}$.

- (1) G := a Gröbner basis of G in A_n by the lexicographic order (3.4) or the lexico-total degree order (3.3).
- $(2) m := \max\{s_k + 1\}; \ \mathcal{G} := \emptyset;$
- (3) repeat
- $(4) \qquad \mathcal{H}_m := (3.2);$
- (5) $\mathcal{G} := \mathcal{G} \cup \{ \text{ reduced Gr\"{o}bner basis of } R\mathcal{H}_m \text{ in } R^m \text{ by the order (2.4) } \};$
- (6) m := m+1;
- (7) until $(R/R\mathcal{G}(0))$ is holonomic)

For the computation of the Gröbner basis of the step (1), it is fast to call Algorithm 4.3 of [Tak2] and construct a Gröbner basis from the output of Algorithm 4.3 by pure Buchberger algorithm by the order (3.4) or (3.3).

THEOREM 3.2 Algorithm 3.1 stops.

Proof. It follows from Corollary 2.1 that we can obtain $\mathcal{G}_{\infty}(0)$ by finite iterations where \mathcal{G}_{∞} is a Gröbner basis of \mathcal{M}_{∞} . Since $R/R\mathcal{G}_{\infty}(0)$ is A_{n-1} submodule of $R_{\infty}/\mathcal{M}_{\infty} = \int M dx_n$, then $R/R\mathcal{G}_{\infty}(0)$ is holonomic A_{n-1} module.

THEOREM 3.3 Assume a function f of x_1, \dots, x_n is rapidly decreasing with respect to x_n . Let \mathfrak{A} be an ideal of A_n such that $\mathfrak{A}f = 0$. If A_n/\mathfrak{A} is holonomic, then the integral

$$\int_{-\infty}^{\infty} f dx_n$$

is annihilated by differential operators $\mathcal{G}(0)$ where \mathfrak{X} is the input of Algorithm 3.1 and $\mathcal{G}(0)$ is the output. $R/R\mathcal{G}(0)$ is holonomic A_{n-1} module.

Example 3.1 This is continuation of Example 1.1. We consider in \mathbb{R}^m , m=3. Put

$$h_1 = (\partial_x, 0, 1) h_2 = (\partial_t, 2x, 0) h_3 = (-2x\partial_x, \partial_t, 0) h_4 = (p_0, 0, 0) h_5 = (\partial_t, 0, 0) h_6 = (1, \partial_t, 0) h_7 = (0, 2, \partial_t)$$

where $p_0 = \partial_t^2 + 2x + 4x^2\partial_x$. We set $\mathcal{H}_3 = \{h_i | i = 1, \dots, 7\}$. We compute Gröbner basis of $R\mathcal{H}_3$. We have, for example,

$$sp(h_1, h_7) = \partial_t h_1 - h_7 = (\partial_t, 2, \partial_t \partial_x) - (\partial_t, 2, 0) \to 0$$
 by h_5 .

We have the reduced Gröbner basis:

$$\{h_1, (0, 2x, 0), (1 + 2x\partial_x, 0, 0), h_5, h_6\}.$$

Therefore we have

$$R^3/R\mathcal{H}_3 \simeq A_1/(1+2x\partial_x) + tA_1/(x)$$

as A_1 module. The output of Algorithm 3.1 is $\{1+2x\partial_x\}$ which is a differential equation for I(x).

§4. A fast algorithm of obtaining differential operators for a definite integral

We must compute a Gröbner basis with lexicographic order or lexico total degree order in step (1) of Algorithm 3.1 and we must use the lexicographic order (2.4) in \mathbb{R}^m , but the orders spend much time and very large memory. We will state an efficient algorithm. Put

$$R = K(x_1, \dots, x_{n-1}) \langle \partial_1, \dots, \partial_n \rangle.$$

The theory of the first part of the section two is valid in this case. Let us define the notions of reducibility, s-polynomial etc. to avoid misunderstandings. We define a left R module structure to R^m in the following way. For $f \in R^m$ and $a \in K(x_1, \dots, x_{n-1})(\partial_1, \dots, \partial_{n-1})$, we define $a\vec{f} =$ the right hand side of (2.1) and for $a = \partial_n$, $a\vec{f} =$ the right hand side of (2.2). A monomial of R can be written as $c\partial^{\alpha}$, $c \in K(x_1, \dots, x_{n-1})$. Monomials of R are ordered as

$$\partial^{\alpha} \prec_3 \partial^{\beta} \iff \alpha \prec \beta$$
 by the total degree order in \mathbb{N}_0^n .

Let r and s be elements of R. We put

head(r) = head term of r by the above order $\prec_3 = c\partial^{\alpha}$

and head(s) = $d\partial^{\beta}$ where $c, d \in K(x_1, \dots, x_{n-1})$. r is reducible by s iff $lcm(\alpha, \beta) = \alpha$. Put $\xi = lcm(\alpha, \beta)$ and assume $c = c_1/c_2$, $d = d_1/d_2$, c_i , $d_i \in K[x_1, \dots, x_{n-1}]$. We define

$$\mathrm{sp}(r,s) = \frac{d_1 d_2 c_2}{e} \partial^{\xi - \alpha} r - \frac{c_1 c_2 d_2}{e} \partial^{\xi - \beta} s$$

where $e = \gcd(d_1d_2c_2, c_1c_2d_2)$. Let r be reducible by s and $t = \operatorname{sp}(r, s)$. The situation is denoted by " $r \longrightarrow t$ by s".

Consider R^m . Let $c, d \in K(x_1, \dots, x_{n-1})$. We define

$$(4.1) k + |\alpha| > \ell + |\beta|$$

$$c\partial^{\alpha}\vec{e_{k}} \succ d\partial^{\beta}\vec{e_{\ell}} \iff \text{or } k + |\alpha| = \ell + |\beta| \text{ and } k > \ell$$

$$\text{or } k + |\alpha| = \ell + |\beta| \text{ and } k = \ell \text{ and } \partial^{\alpha} \succ_{3} \partial^{\beta}.$$

Let \vec{f} and \vec{g} be elements of R^m . We put

(20) while $(d = \infty)$

 $(21) \quad G := \{e_{Q \cup \{\gamma\}} | \gamma \in G(I)\}$

head
$$(\vec{f})$$
 = head term of \vec{f} by the above order $(4.1) = c\partial^{\alpha}\vec{e}_{k}$

and head $(\vec{g}) = d\partial^{\beta} \vec{e}_{\ell}$. In the above situation, we put topIndex $(\vec{f}) = k$ and lpp $(\vec{f}) = \partial^{\alpha}$. We define reducibility, s-polynomial, reduction and Gröbner basis by using Definition 2.1, 2.2, 2.4 and 2.5. There exists a Gröbner basis for any submodule of R^m .

We state our improvement of Algorithm 3.1. The improved algorithm is based on solving systems of linear equations (see [Buch2] method 6.11) and is a modification of Algorithm 4.3 of [Tak2]. We refer to [Tak2] for the notations k(I) and e_Q . It is not proved that Algorithm 4.1 stops. Therefore if Algorithm 4.1 fails, we must call Algorithm 3.1 that always stops.

ALGORITHM 4.1 (Finding differential equations for an integral of a module)

INPUT: A left ideal \mathfrak{A} of A_n such that A_n/\mathfrak{A} is holonomic.

OUTPUT: G, generators of a zero dimensional ideal of $K(x_1, \dots, x_{n-1}) \langle \partial_1, \dots, \partial_{n-1} \rangle$ such that

$$G \subset \partial_n A_n + \mathfrak{A}.$$

(1) $G = \{g_1, \dots, g_p\} := a$ Gröbner basis of $\mathfrak X$ constructed in the ring

$$K(x_1,\cdots,x_{n-1})\langle x_n,\partial_1,\cdots,\partial_n\rangle$$

by the total degree order in the varibles $x_n, \partial_1, \dots, \partial_n$.

```
(2) m := \max_{k} \{ \text{degree of } g_k \text{ with respect to } x_n \} + 1
(3) Do
(4)
                  \mathcal{H}_m := (3.2)
                   \mathcal{G} := \text{reduced Gr\"{o}bner basis of } R\mathcal{H}_m \text{ by the order } (4.1)
(5)
                  for k := 1 to n - 1 do
(6)
                             d_k := \# \left( \mathbb{N}_0^{n-1} \setminus \bigcup_{\vec{f} \in \mathcal{G}, \mathrm{topIndex}(\vec{f}) = k, \mathrm{lpp}(\vec{f}) = \partial^{\alpha}} (\alpha + \mathbb{N}_0^{n-1}) \right)
(7)
(8)
                   endfor
                  d := \sum_{k=1}^{n-1} d_k
(9)
                    if d < \infty then
(10)
                               Select a monoideal I \subseteq \mathbb{N}_0^{n-1} such that k(I) \leq d
(11)
                                Q := \mathbb{N}_0^{n-1} \setminus I
(12)
                               for all \gamma \in G(I) do
(13)
                                          Reduce \partial^k, k \in Q \cup \{\gamma\} by the Gröbner basis \mathcal{G} and obtain a similar equation of
(14)
                                           (4.4) of [Tak2] and solve it.
(15)
                                          if d_{\gamma} = 0 then goto (11)
(16)
                                           else obtain e_{Q \cup \{\gamma\}} \vec{e_0} of (4.5) or (4.6) of [Tak2]
(17)
                               endfor
(18)
                    endif
(19)
                    m := m + 1
```

Acknowledgement. The author thanks to Prof. Noumi for his encouragement of considering the problem of the paper.

References

- [AZ] Almkvist, G., Zeilberger, D., The method of differentiating under the integral sign, preprint, Univ. of Lund, Drexel Univ.
- [Berg] Bergman, G.M., The Diamond Lemma for Ring Theory. Adv. Math., 29 (1978), 178-218.
- [Ber] Bernstein, I.N., The analytic continuation of generalized functions with respect to a parameter. Funk. Anal. 6(1972), 26-40.
- [Bjo] Björk, J.E., Rings of Differential Operators. North-Holland, New York, 1979
- [Buch1] Buchberger, B., Ein algorithmisches kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aeq. Math., 4 (1970), 374-383.
- [Buch2] Buchberger, B., An algorithmic method in polynomial ideal theory, N.K. Bose ed., Recent Trends in Multidimensional Systems Theory, D.Reidel Publ. Corp., 1985.
 - [Cas] Castro, F., Calculs effectifs pour les idéaux d'opérateurs différentiells, Géométrie algébrique et application III. J.M. Aroca, T. Sancheg-Giralda, J.L. Vicente eds., Travaux en Cours 24 (1987), 1-19.
 - [FSK] Furukawa, A., Sasaki, T., Kobayashi, H., Gröbner basis of a Module over $K[x_1, \ldots, x_n]$ and Polynomial Solutions of a System of Linear Equations. Char, B.W. ed., Proc. SYMSAC'86, ACM Press, (1986), 222-224.
 - [Gal] Galligo, A., Some algorithmic questions on ideals of differential operators. Lect. Note in Comp. Sci., 204(1985), 413-421.
 - [MM] Möller, H.M., Mora, F., New Constructive Methods in Classical Ideal Theory. J. of Algebra, 100 (1986), 138-178.
 - [Nou] Noumi, M., Wronskian determinants and the Gröbner representation of a linear differential equation, in Algebraic Analysis. Ed. by M. Kashiwara, T. Kawai. Academic Press, 1989.
 - [Tak1] Takayama, N., Gröbner basis and the problem of contiguous relation. Japan J. Appl. Math. 6(1989), 147-160.
 - [Tak2] Takayama, N., An approach to the zero recognition problem by Buchberger algorithm. preprint, Kobe Univ.
 - [UT] Tajima,S., Uchida,M., Computation of an integral of deRham system corresponding to a resolution of singularity (in Japanese). RIMS Kokyuroku 693 (1989), 41-68.
 - [Zeil Zeilberger, D., A holonomic systems approach to special functions identities. to appear, Drexel Univ.

Appendix: An implementation

(March 2, 1990)

The algorithms of the paper "An algorithm of constructing the integral of a module" is implemented by the language C. The implementation is the first software of the NMA(ma)thematical libraries for C, C++ or other object oriented languages. The NMA project aims at a compiler oriented computer algebra system that has high performance (NMA's not MAthematica or REDUCE).

The program "lexgrob" computes the Gröbner basis of an input by the lexico-total degree order (3.3). The program "modulegrob -rank m" computes the Gröbner basis in R^m by the order (2.4). From an input, "modulegrob" obtains generators \mathcal{H}_m of (3.2) and computes the Gröbner basis of \mathcal{H}_m .

The data structure of a polynomial that is used in the programs is described by the figure 5.1.

We show examples of computations.

Example 5.1 Put

(5.2)
$$\ell_1 = \partial_x + t^2 \text{ and } \ell_2 = \partial_x + 2tx.$$

We have $\ell_1 f = \ell_2 f = 0$ where

$$f = e^{-xt^2}.$$

Let the input of "lexgrob" be (5.2). The figure 5.5 is a program readable form of (5.2) where $x_4 = t$, $\partial_4 = \partial_t$, $x_3 = x$ and $\partial_3 = \partial_x$. The order is

$$\{x_4\} \succ \{\partial_4, x_3, \partial_3, x_2, \partial_2, x_1, \partial_1, x_0, \partial_0\}.$$

The output of "lexgrob" is the figure 5.6. Let the input of "modulegrob -rank 3" is the figure 5.6. The output is the figure 5.7.

Example 5.2 Put

(5.3)
$$\ell_1 = (1 + xt + t^p)\partial_x - \lambda t \text{ and } \ell_2 = (1 + xt + t^p)\partial_t - \lambda(x + pt^{p-1}).$$

We have $\ell_1 f = \ell_2 f = 0$ where

$$f = (1 + xt + t^p)^{\lambda}.$$

Put p=3. Let the input of "lexgrob" be (5.3). The figure 5.8 is a program readable form of (5.3) where $x_4=t$, $\partial_4=\partial_t$, $x_3=x$, $\partial_3=\partial_x$ and $x_2=\lambda$. We cannot obtain an output by four minutes. However, we can obtain an annihilator of the integral of f by "modulegrob-rank 7" without preprocessing the input (5.3) by "lexgrob". The output of "modulegrob-rank 7" is the figure 5.9. It is remarkable that "modulegrob" runs faster than "lexgrob | modulegrob" where | denotes a pipe. We remark that the output of "modulegrob-rank 5" does not contains an annihilator of the integral of f. There exists the variable x_4 in all expressions of the output.

EXAMPLE 5.3 (Gauss hypergeometric differential equation) Put (5.4)

$$\ell_1 = (1 - xy)y(1 - y)\partial_y - \alpha xy(1 - y) - (\beta - 1)(1 - xy)(1 - y) + (\gamma - \beta - 1)(1 - xy)y$$

$$\ell_2 = (1 - xy)\partial_x - \alpha y$$

We have $\ell_1 f = \ell_2 f = 0$ where

$$f = (1 - xy)^{-\alpha} y^{\beta - 1} (1 - y)^{\gamma - \beta - 1}.$$

Let the input of "lexgrob" be (5.4). The figure 5.10 is a program readable form of (5.4) where $x_4 = y$, $\partial_4 = \partial_y$, $x_3 = x$, $\partial_3 = \partial_x$, $x_2 = \gamma$, $x_1 = \beta$ and $x_0 = \alpha$. The output is the figure 5.11. We can obtain Gauss hypergeometric equation using "modulegrob -rank 5" where the input is the figure 5.11. The output of "modulegrob" is the figure 5.12.

We can also obtain an annihilator of the integral of f that is hypergeometric operator by "modulegrob -rank 5" without preprocessing the input (5.4) by "lexgrob". The output of "modulegrob -rank 5" is the figure 5.13. It is remarkable that "modulegrob" runs faster than "lexgrob | modulegrob".

Timing data

the second secon		and the second second	
Problem and algorithm	Input	Output	Time on SUN3 260C
Example 5.1, lexgrob modulegrob -rank 3	Fig 5.5	Fig 5.7	0.7s
Example 5.2, lexgrob modulegrob -rank 5	Fig 5.8		more than 210s
Example 5.3, lexgrob modulegrob -rank 5	Fig 5.10	Fig 5.12	182.4s
Example 5.2, modulegrob -rank 5	Fig 5.8		0.8s
Example 5.2, modulegrob -rank 7	Fig 5.8	Fig 5.9	4.9s
Example 5.3, modulegrob -rank 5	Fig 5.10	Fig 5.13	11.4s


```
2 Figure 5.5
    +2 *x3 *x4 +1 *D4 ;
    +1 *x4^2 +1 *D3 ;
    +1 *x4 *D4 -2 *x3 *D3
    +4 *x3^2 *D3 +1 *D4^2 +2 *x3 ; Cf. Example [ ] , 6
 1 Figure 5.6
    +2 *x3 *x4 +1 *D4 ;
    +1 *x4^2 +1 *D3;
-2 *x3 *D3 -1; \( \) cf. Example 3.1
    +1 *D4
    +1 *x4 *D4 +1
 1 Figure 5.7
   (1+x3*x4+x4^3) *d3-x2*x4;
   (1+x3*x4+x4^3) *d4-x2*(x3+3*x4^2);
  C Figure 5.8
    +1 *x4^3 *D3 +1 *x3 *x4 *D3 -1 *x2 *x4 +1 *D3 ;
-3 *x2 *x4^2 -3 *x4^2 +1 *x3 *x4 *D4 -1 *x2 *x3 +1 *D4
    +1 *D4
    +1 *x4 *D4 +1
   +1 *x4^2 *D4 +2 *x4 ;
+1 *x4^3 *D4 +3 *x4^2 ;
+3 *x2 *x4^3 +4 *x4^3 -1 *x3 *x4^2 *D4 +1 *x2 *x3 *x4
  -1 *x4 *D4
                   +5 *x4^4 -1 *x3 *x4^3 *D4 +1 *x2 *x3 *x4^2
    +3 *x2 *x4^4
    -1 *x4^2 *D4
                   +6 *x4^5 -1 *x3 *x4^4 *D4 +1 *x2 *x3 *x4^3
    +3 *x2 *x4^5
    -1 *x4^3 *D4
    +1 *x4^4 *D3
                  +1 *x3 *x4^2 *D3 -1 *x2 *x4^2 +1 *x4 *D3
    +1 *x4^5 *D3 +1 *x3 *x4^3 *D3 -1 *x2 *x4^3 +1 *x4^2 *D3
            to be continued
```

```
+1 *x4^6 *D3 +1 *x3 *x4^4 *D3 -1 *x2 *x4^4 +1 *x4^3 *D3
       +1 *x4^4 *D4
                                              -3 *x2 *x4^3
                                                                                        +1 *x3 *x4^2 *D4
                                                                                                                                                -1 *x2 *x3 *
 x4 +1 *x4 *D4
                                              -3 *x2 *x4^4
       +1 *x4^5 *D4
                                                                                        +1 *x3 *x4^3 *D4 -1 *x2 *x3 *
 x4^2 +1 *x4^2 *D4
                                             -3 *x2 *x4^5 +1 *x3 *x4^4 *D4 -1 *x2 *x3 *
       +1 *x4^6 *D4
 x4^3 +1 *x4^3 *D4 ;
       -27 *x2^2 *x4 -45 *x2 *x4 -18 *x4 +4 *x2 *x3^3 *D3 +4
 *x3^3 *D3 +2 *x3^2 *D3 *D4 -6 *x2^2 *x3^2 -8 *x2 *x3^2 +
 6 \times 2 \times 3 \times D4 - 2 \times 3^2 + 6 \times 3 \times D4 + 27 \times 2 \times D3 + 27 \times D3;
       +9 *x2 *x4 *D3 +9 *x4 *D3 -2 *x2 *x3^2 *D3 -2 *x3^2 *D3
       -1 *x3 *D3 *D4 +3 *x2^2 *x3 +4 *x2 *x3 -3 *x2 *D4 +1 *
 x3 -3 *D4
      +4 *x2 *x3^3 *D3^2 +4 *x3^3 *D3^2 +2 *x3^2 *D3^2 *D4 -1 (
 2 *x2^2 *x3^2 *D3 -6 *x2 *x3^2 *D3 +3 *x2 *x3 *D3 *D4 +9
 *x2^3 *x3 +6 *x3^2 *D3 +8 *x3 *D3 *D4 +6 *x2^2 *x3 +27 *
 x2 *D3^2 -9 *x2^2 *D4 -5 *x2 *x3 +27 *D3^2 -9 *x2 *D4
 2 *x3 ;
 0;
                                                                                                                    This is an annihilator of
           C Figure 5.9
                                                                                                                      (fdt.
-(1-x3*x4)*x4*(1-x4)*d4+x0*x3*x4*(1-x4)+(x1-1)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x4)*(1-x3*x
x4) - (x2-x1-1)*(1-x3*x4)*x4;
-(1-x3*x4)*d3+x0*x4;
0 ;
             2 Figure 5.10
```

-1 *x3 *x4^3 *D4 +1 *x2 *x3 *x4^2 -1 *x0 *x3 *x4^2 +1 * x3 *x4^2 *D4 -2 *x3 *x4^2 +1 *x4^2 *D4 -1 *x1 *x3 *x4 +1 -1 *x4 *D4 +2 *x4 +1+1 *x3 *x4 -1 *x2 *x4 *x0 *x3 *x4 *x1 -1 +1 *x3 *x4 *D3 +1 *x0 *x4 -1 *D3 -1 *x0 *x4^2 *D4 +1 *x4^2 *D4 +1 *x1 *x3^2 *x4 *D3 -1 * x0 *x3^2 *x4 *D3 +1 *x0 *x3 *x4 *D3 +1 *x0 *x1 *x3 *x4 -1 *x0^2 *x3 *x4 -1 *x3 *x4 *D3 +1 *x0 *x2 *x4 +1 *x0 *x4 * D4 -1 *x2 *x4 -2 *x0 *x4 -1 *x4 *D4 +2 *x4-1 *x1 *x3 * +1 *x3 *D3 -1 *x0 *x1 +1 *x1 +1 *x0 -1 -1 *x0 *x4 *D3 *D4 +1 *x3 *x4 *D3 +1 *x4 *D3 *D4 +1 *x0 *x4 -1 *x0 *x3^2 *D3^2 +1 *x3^2 *D3^2 +1 *x0 *x3 *D3^2 -1 *x0 *x1 *x3 *D3 -1 *x0^2 *x3 *D3 -1 *x3 *D3^2 +1 *x1 * x3 *D3 +1 *x0 *x2 *D3 +1 *x0 *D3 *D4 -1 *x0^2 *x1 +1 *x3 *D3 -1 *x2 *D3 -1 *x0 *D3 -1 *D3 *D4 +1 *x0 *x1 to be continued

```
-1 *x0^2 *x4 *D4 +1 *x0 *x4 *D4 +1 *x0 *x3^3 *D3^2 -1 *
x3^3 *D3^2 -1 *x0 *x3^2 *D3^2 +1 *x0 *x1 *x3^2 *D3 +1 *x0
^2 *x3^2 *D3 +1 *x3^2 *D3^2 -1 *x1 *x3^2 *D3 -1 *x0 *x2 *
x3 *D3 -1 *x0 *x3 *D3 *D4 +1 *x0^2 *x1 *x3 -1 *x3^2 *D3
+1 *x2 *x3 *D3 +1 *x3 *D3 *D4 -1 *x0 *x1 *x3 +1 *x0 *D3 *
    -1 *D3 *D4 -1 *x0^2 +1 *x0
  +1 *x0 *x3^3 *D3^3 -1 *x3^3 *D3^3 -1 *x0 *x3^2 *D3^3 +1
 *x0 *x1 *x3^2 *D3^2 +2 *x0^2 *x3^2 *D3^2 +1 *x3^2 *D3^3
-1 *x1 *x3^2 *D3^2 +2 *x0 *x3^2 *D3^2 -1 *x0 *x2 *x3 *D3^2 -1 *x0^2 *x3 *D3^2 -1 *x0 *x3 *D3^2 *D4 +2 *x0^2 *x1 *x3
 *D3 +1 *x0^3 *x3 *D3 -4 *x3^2 *D3^2 +1 *x2 *x3 *D3^2 -1 *x0 *x3 *D3^2 +1 *x3 *D3^2 *D4 +2 *x0^2 *x3 *D3 +1 *x0 *
D3^2 *D4 -1 *x0^2 *x2 *D3 -1 *x0^2 *D3 *D4 +1 *x0^3 *x1 +2 *x3 *D3^2 -2 *x1 *x3 *D3 -1 *x0 *x3 *D3 -1 *D3^2 *D4
-2 *x3 *D3 +1 *x2 *D3 +1 *D3 *
    -1 *x0 *x1
                                           This is an annihilator of (fdy,
     I Figure 5.11
                                           but it is a third order operator.
   +1 *x2 *x3 *x4^2 -1 *x0 *x3 *x4^2 +1 *x3 *x4^2 *D4
                                                                                +1 *
x3 *x4^2 +1 *x4^2 *D4 -1 *x1 *x3 *x4 +1 *x0 *x3 *x4
                                                                                +1 *
x3 *x4 -1 *x2 *x4 -1 *x4 *D4 +2 *x4 +1 *x1
   +1 *x3 *x4 *D3 +1 *x0 *x4 -1 *D3 ;
+1 *x0 *x2 *x4 -1 *x0^2 *x4 +1 *x0 *x4 *D4 -1 *x2 *x4
+1 *x0 *x4 -1 *x4 *D4 -1 *x0 *x3 *D3 +1 *x3 *D3 +1 *x0 *
D3 -1 *x0 *x1 -1 *D3 +1 *x1 +1 *x0 -1 ;
-1 *x0 *x3^2 *D3^2 +1 *x3^2 *D3^2 +1 *x0 *x3 *D3^2 -1 *
x0 *x1 *x3 *D3 -1 *x0^2 *x3 *D3 -1 *x3 *D3^2 +1 *x1 *x3 *D3 +1 *x0 *x2 *D3 +1 *x0 *D3 *D4 -1 *x0^2 *x1 +1 *x3 *D3
   -1 *x2 *D3 -1 *D3 *D4 +1 *x0 *x1 ;
                                                        This is hypergeometric
   +1 *x4 *D4 +1
   +1 *x4^2 *D4 +2 *x4;
+1 *x4^3 *D4 +3 *x4^2;
+1 *x4^4 *D4 +4 *x4^3;
                                                        differential operator($)
                                                         by D4 ->0.
   +1 *x2 *x3 *x4^3 -1 *x0 *x3 *x4^3 +1 *x3 *x4^3 *D4 +2 *
x3 *x4^3 +1 *x4^3 *D4 -1 *x1 *x3 *x4^2 +1 *x0 *x3 *x4^2 +1 *x3 *x4^2 -1 *x2 *x4^2 -1 *x4^2 *D4 +2 *x4^2 +1 *x1 *
    -1 \times 4
 +1 *x3 *x4^2 *D3 +1 *x0 *x4^2 -1 *x4 *D3 ;
+1 *x3 *x4^3 *D3 +1 *x0 *x4^3 -1 *x4^2 *D3 ;
+1 *x3 *x4^4 *D3 +1 *x0 *x4^4 -1 *x4^3 *D3 ;
+1 *x0 *x2 *x4^2 -1 *x0^2 *x4^2 +1 *x0 *x4^2 *D4 -1 *x2
*x4^2 +2 *x0 *x4^2 -1 *x4^2 *D4 -1 *x4^2 -1 *x0 *x3 *x4
*D3 +1 *x3 *x4 *D3 +1 *x0 *x4 *D3 -1 *x0 *x1 *x4 -1 *x4
       +1 *x1 *x4 +1 *x0 *x4 -1 *x4
 *D3 +1 *x1 *x4 +1 *x0 *x4 -1 *x4 ;
+1 *x0 *x2 *x4^3 -1 *x0^2 *x4^3 +1 *x0 *x4^3 *D4 -1 *x2
*x4^3 +3 *x0 *x4^3 -1 *x4^3 *D4 -2 *x4^3 -1 *x0 *x3 *x4
^2 *D3 +1 *x3 *x4^2 *D3 +1 *x0 *x4^2 *D3 -1 *x0 *x1 *x4^2
   -1 *x4^2 *D3 +1 *x1 *x4^2 +1 *x0 *x4^2 -1 *x4^2 ;
0;
     1 Figure 5.12
```

```
+1 *x2 *x3 *x4^2 -1 *x0 *x3 *x4^2 +1 *x3 *x4^2 *D4
x3 *x4^2 +1 *x4^2 *D4 -1 *x1 *x3 *x4 +1 *x0 *x3 *x4
x3 * x4 - 1 * x2 * x4 - 1 * x4 * D4 + 2 * x4 + 1 * x1 - 1 ;
 +1 *x3 *x4 *D3 +1 *x0 *x4 -1 *D3 ;
 +1 *D4 ;
 +1 *x4 *D4 +1
 +1 *x4^2 *D4 +2 *x4
 +1 *x4^3 *D4 +3 *x4^2
 +1 *x4^4 *D4 +4 *x4^3
 +1 *x2 *x3 *x4^3 -1 *x0 *x3 *x4^3 +1 *x3 *x4^3 *D4 +2 *
x3 *x4^3 +1 *x4^3 *D4 -1 *x1 *x3 *x4^2 +1 *x0 *x3 *x4^2
+1 *x3 *x4^2 -1 *x2 *x4^2 -1 *x4^2 *D4 +2 *x4^2 +1 *x1 *
x4 - 1 * x4 ;
                                -1 *x4 *D3 ;
 +1 *x3 *x4^2 *D3 +1 *x0 *x4^2
 +1 *x3 *x4^3 *D3 +1 *x0 *x4^3 -1 *x4^2 *D3
 +1 *x3 *x4^4 *D3 +1 *x0 *x4^4 -1 *x4^3 *D3
 -1 *x0 *x2 *x4^2 +1 *x0^2 *x4^2 -1 *x0 *x4^2 *D4 +1 *x2
 *x4^2 -2 *x0 *x4^2 +1 *x4^2 *D4 +1 *x4^2 -1 *x1 *x3 *x4
 *D3 +1 *x0 *x3 *x4 *D3 -1 *x3 *x4 *D3 -1 *x0 *x4 *D3 +1
 *x4 *D3 -1 *x1 *x4 -1 *x0 *x4 +1 *x4 +1 *x1 *D3
 -1 *x0 *x2 *x4^3 +1 *x0^2 *x4^3 -1 *x0 *x4^3 *D4 +1 *x2
 *x4^3 -3 *x0 *x4^3 +1 *x4^3 *D4 +2 *x4^3 -1 *x1 *x3 *x4
^2 *D3 +1 *x0 *x3 *x4^2 *D3 -2 *x3 *x4^2 *D3 -1 *x0 *x4^2
 *D3 +1 *x4^2 *D3 -1 *x1 *x4^2 -2 *x0 *x4^2
                                               +1 *x4^2 +1
 *x1 *x4 *D3 +1 *x4 *D3 ;
 +1 *x0 *x2 *x4 -1 *x0^2 *x4 +1 *x0 *x4 *D4 -1 *x2 *x4
+1 *x0 *x4 -1 *x4 *D4 -1 *x0 *x3 *D3 +1 *x3 *D3 +1 *x0 *
D3 -1 *x0 *x1 -1 *D3 +1 *x1 +1 *x0 -1
 +1 *x0 *x3^2 *D3^2 -1 *x3^2 *D3^2 -1 *x0 *x3 *D3^2 +1 *
x0 *x1 *x3 *D3 +1 *x0^2 *x3 *D3 +1 *x3 *D3^2 -1 *x1 *x3 *
D3 -1 *x0 *x2 *D3 -1 *x0 *D3 *D4 +1 *x0^2 *x1 -1 *x3 *D3 \sqrt{}
 +1 *x2 *D3 +1 *D3 *D4 -1 *x0 *x1 ;
 L Figure 5.13
                              This is hyperglometric
                               differential operator -(*)
  21(色
  (1-\chi_0) \chi^3(1-\chi^3) \theta^3_5 + \{\chi^5 - (1+\chi^0+\chi^1)\chi^3\} \theta^3_5 - \chi^0\chi^1
```