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An algorithm of constructing the integral of a module
— an infinite dimensional analog of Grébner basis
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Abstract.
Let K be a field of cha.racterlstlc zero. The Weyl algebra

I{(xlr'";xnaalv' "’3n)

is denoted by A,. We have :
» '—1) 1= j’

[1';73]—-"17; axt:{ . .
X ) ) 0’,7'75]’

in the Weyl algebra. Let ¥ be a left ideal of A,. We put M = A, /%. M is aleft A, module The purpose
of this paper is an explicit construction of the left A,_; module:

/Mcfxn =M, M

by introducing an analog of Grdbner basis of a submodule of a kind of infinite dimensional free module. We
call M /8, M the integral of the module M. The non-commutativity of A, prevents us from' using the usual
Buchberger algorithm to construct M/8, M. (If A, is commutative, then M/, M ~ A, [(8y,%). There is
no problem.) We must consider a sum of left and right ideal of A,. We overcome this difficulty by using an
infinite dimensional analog of Grdbner basis.

The algorithm of constructing the integral of a module is not only important to mathematicians, but also
has many impacts on the classical fields of computer algebra. It plays central roles in mathematical formula
verification [Zeil], [Tak2], computation of a definite integral [AZ], [Tak2] and an asymptotic expansion of
a definite integral with respect to parameters. However, a complete algorithm of obtaining M /8, M had
not been known. We give a complete algorithm in tlus paper. The algorithm is an answer to the research
problem of the paper [AZ].

" We refer to [Buchi], [Buch2], [MM] FSK] for the Grébuer baSlS of a polynormal ideal and free module,
to [Gal], [Cas], [Takl], [Nou] , [UT] for the Grdbner basis of the ideal of Weyl algebra, to [Ber], [Bjo] for
holonomic system and Weyl algebra. We remark that [Berg] also considered mﬁmte set of reduction systems.

Submitted to ISSAC’90.
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§1. A simple example "
We explain an idea by using a simple example. .

ExaMPLE 1.1 We compute a differential operator that annihilates the function:

I(l‘) = / . f((L', t)dt, : f(a," t) : e—xtz. -
We have 41 f = £3f = 0 where
=8, +1%, ly =0, + 2zt

We put 22 = ¢ and 23 = z. Let 2 be the left ideal of A, genera.ted by £; and £5. The Grobner basis of &
by the lexicographic order t = 8; > z > 9, is .

G = {£* 4 8,,2at + 8,,18, — 230,,0,” + 4270, + 2z} .

The Hilbert function of A3/ is k? + 3k + 1. We put R = C{z, 8,,0;) and define a map

m~1

¥ C{t,2,8,,0:) 3 Yt fr ¥ (fo, -+, fm-1) € R™

R k=0
where f; € R. We have

W(G) = {(82,0,1,0,---), (84, 2,0, - -), (=285, 8y, 0, - - -, (8, + 42?9, + 22,0,---)}

(1.1) P(tG) :{(0, 8:,0,1,0,--),(0,08;,22,0,---),-- -}

PEm26) = ((0,-+,0,02,0,1), -},

and we use

(1.2) . £(841,0,-+), (1,84, 0,++-),(0, 2,84, 0, ), (0, +,m — 1,8,)} .

(1.2) is obtained from
Btk = t* 0, + Ktk 1.

R™ has a left R module structure defined in the beginning of the section two.
Let M;, be aleft R submodule of R™ generated by (1.1) and (1.2). We remark that

P Mp) C 0,42 + U |
We apply the algorithm of Grébner basis of submodule ([MM], [FSK]) to M,,. Then we obtain, for example,
sp ((1,04,0,---),(—22085,8,,0,---)) = (1 + 220,,0,---), -~ etc.\
The above equation ié equivalent to
Byt — (10, — 220,) = 1 + 228,, 041 € B, A, 18, — 228, € .

Therefore we have

By(tf) — (18, — 29,)f = By(tf) = (1 + 208, ).
We conclude that ‘

Lo <]

(1+2a:8$)1(x)::/ B,(tf)dt=0 (z>0).

—0o0
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§2. Grobuner basis for submodule of Ry :l_i)m R™
Let us consider the general sit‘ua.tion. We put
R= I((.’E], Tty xn—l,.ala Tty 3n) = An—l{an]
We define a left R module structure to B™ in the following way. For

R™ > f=(f(0),---, f(m=1)), a € Ay_y,

we put
(2.1) af= (a,f(O),~--,a,f(m—1))
and for a = J,, ‘
(2.2) af = (@f(0) + £(1), -+, af (k) + (k + Df(k +1),---,af (m — 1)).
The Weyl algebra A, has a left R module structure in the standard way. The map

m—1

p:R™" > fr— Zxﬁf(k)EAn
k=0

is homomorphism of left R module.

We can define the notions of addmissible order, reducible, S-polynomial( sp ) and Grdbner basis of
the ring R in a similar way to the case of the polynomial ring. Let us explain some of them to avoid
misunderstandings. We define an order <; between monomials of R by

a1 dn-1 91 Bn 7 Tn-1 b1 Sn
(2.3) Ty, L0 O v, 1O - 0y

—
(ala"'fan—laﬁh"'vﬁn) ~2 (71;"'77n—1’61,"'76n)
where < is the total degree order in Nz"~!. We use the order in the sequel. Let 7 and s be elements of R.
We put
head(r) = head term of r by the order (2.3) = cz*8?, ce K

and head(s) = dz78%, d € K. We define

lem(e,7) = (max{e1, 11}, -, max{en-1,7-1}),

lem(B, 6) = (max{f1, 61}, -, max{Bn, 6, })-
Iff lem(or, ) = o and lem(B, 8) = B, 7 is reducible by s. Put ¢ = lem(a,v) and 5 = lem(y, §). We define

sp(r, 8) = T Lo 3:175—73’7‘55.

Let 7 be reducible by s and ¢ = sp(r, s), then the situation is denoted by “r — ¢ by s”. Let —* be a transitive
closure of —. A finite subset G of R is called Gribner basis of an ideal 2 if Vry,r; € G,sp(ri,7;) —* 0by G
and A = RG. It is well known that every left ideal of R has a Grobner basis [Gal], [Cas], [Takl], [Nou],
[UT]. .

Consider R™. [MM] and [FSK] extended the notion of Grobner basis to free modules. We can apply
their extension to R™. Let us review their extension (See [Tak1] for proofs in the case of a free module over
a non-commutative ring). We define

topIndex( f} =k, feR™,
iff f())=0(k <i<m—1)and f(k) # 0. Let f and g be elements of R™.

3
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DEFINITION 2.1 fis reducible by 7iff &k = topIndex(f-.) = topIndex(F) and f(k) is reducible by g(k) in R.

DerINITION 2.2
G5 0, if topIndex(f) # topIndex(7)
Sp\J/,9) = -
af —cog, k= topIndex(f*) = topIndex(g),

where sp(f(k),g(k)) = c1 f(k) — cag(k).
DEFINITION 2.3

topIndex(f) > topIndex(q)

(24) frie or (topIndex(f*) = topIﬁdex(g’) =k and f(k) »1 g(k))

We use the order (2.4) of R™ in the sequel. We remark that other order in R™ can be used in our
theory. The use of good orders leads us to a fast termination of Buchberger algorithm.
We put :

g = {‘Ejl:"',g'p}

DerFINITION 2.4 If there exists an element g; of G such that f_’is reducible by g;, then we write thé situation
as follows. ‘ '

f*——»ﬁbyg

where A = sp(f, di)

We remark £ < f-’. Let —* be transitive closure of —. Suppose f —>* h. We remark that 5 is not
uniquely determined by f. It depends on the sequence of reductions.

DerFINITION 2.5 § is a Grobner basis-of a'left R submodule M of R™ iff
(1) V4,4, sp(§i,g;) —* 0 by G.
(2) G generates M over R.

Any left submodule M of R™ has a Grébner basis ([MM], [FSK], [Takl]).
€; denotes 1-th unit vector, l.e.,

60 : (1,0,"',0), é“1 = (071’01"'a0)""
J: can be decomposed into a sum of (monomial of R) x (unit vector) which is written as

' g’,~=Zcfé'kj, ‘¢! is a monomial of R.
J

G is a reduced Grobner basis of M iff G is a Grobner basis of M,
Vi,j dé, —*cdéa; by 6\ {7}

and the head coefficients of g; is 1.
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We define these notions on o
R, =limR™ ~ K|z,] ®« R.

Any element f-. of Ry can be written as

F=0),£(1),-+), Fki>k > f(é) =0 and f(k) ’¢ 0.

The number k is denoted by topIndex(f*). Therefore we can consider f-‘ as the element of R™, m > k. We
define the notions of reducibility, s-polynomial and order < identifying the element f of R, with the element

(F(0),--+, f(m — 1)) of R™, (m > k).
Put .
g:{§1a§27"'}1 g‘:eRoo
We do not assume that G is finite set. Put
G(k) = {7 € G|topIndex(§) < k}.

AssuMPTION 2.1
Vk, #6(k) < +o0.

We consider the existence of a Grobner basis under Assumption 2.1 in the sequal.
DEFINITION 2.6
f— h by G <> 3i,3m,§: € G, topIndex(g;) < m,topIndex(f) < m and f —> & by 7 in R™.
f—) h is called reduction of f.

ProposITION 2.1  For any element f* € Roo, any sequence of reduction of f" by G terminates in finite
steps.

Proof. Put m = topIndex(f-'). Note that any sequence of reduction of f_* uses the elements of G(m).
Since G(m) is the finite set, the sequence terminates in finite steps. g

It follows from Proposition 2.1 that we can take a transitive closure of — in finite steps. The transitive
closure is denoted by —*.

DEFINITION 2.7 @G is a Grobner basis of a left R submodule M of Roo iff
(1) Viaj: SP(@,EJ) —*0 by g' o
(2) G generates M over R, i.e., Vf € M,3I C N,3a; € R such that #I < co and

f=Y ad

s€1

(3) (local finiteness)
Vm, #G(m) < +oo.

PROPOSITION 2.2 If G is a Grobner basis of an R submodule M C Roo, then
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Proof. We have sp(g;,g;) —* 0by G. Since topIndex(sp(g,,g,)) m, we have sp(di,d;) —~*
0 by G(m). &

THEOREM 2.1 ~ Let M be a left R submodule of Ry and G be a Grobner basis bf M. If f € M, then
f—*0bygG.

" Proof. Since G is _aset of generators of M, there exist an index set I and elements a; € R, i €I such
that #F < +o00 and f 2 ier @ifi- Put m = max;er{topIndex(g;)}. We can consider f as an element of

R™. Tt {ollows from Proposition 2.2 that G(m) is a Grobner basis of RG(m) in R™. Since fe Rg(m) we
have f —s* 0 by G(m) for any sequence of reduction. g

Let Hy, m =0,1,2,--- be subsets of R, that satisfy the conditions:

< CHm CHny1 &+

(2.5) -
#Hpm < 400, Vf € Hp, topIndex(fj < m.

Suppose that M, is the left R submodule generated by Uizo Hyn. We have
= |J RMp =lim RH,y.
=0 )

THEOREM 2.2  Let G,, be the reduced Gribner basis of RH,, 1n R™.

goozugm

m=0

is @ Grobner basis of Mo

Proof. We prove the local finiteness condition: #G.(m) < +o0o. We remark that Go(m) # Gm in
general. Put

Gr(m) = {f € Ge|topIndex(f) < m}.

Gi(m) is a Grdbner basis of RGg(m) in R™. Since --- C RGi(m) C RGr41(m) C --- in R™, there exists ko
such that Vk > ko, RGx(m) = RGi,(m). G} is the reduced Grébner basis, then we have Vk > ko, Gx(m) =
Gro(m). Hence #G,(m) < +oo.

Other conditions are easily verified. g

COROLLARY 2.1  For any m, we can obtain Goo(m) in finite steps.

ALGORITHM 2.1
INPUT: H,, : generators of a submodule that satisfy the condition (2.5).
OUTPUT:G,, : m-th approximation of Grobner basis G, of the submodule M,

(1) G := the reduced Grobner basis of RH,, in R™.
REMARK 2.1 If m is large number in Algorithm 2.1, then it follows from Corollary 2.1 that we have

Om(k) = Goo (k) for small number k& where Go, is a Grdbner basis of M. However, we do not have an
algorithm of deciding G (k) = Goo (k) or not.
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§3. Computation of the integral of A, module

Let & be a left ideal of A, and M be A4, /%. We have
M8, M ~ A, [(0,An + A) as A,_; module.

The set 8, 4, + A, % = 8, A, + % is not left A, module. Let us note that R is a subalgebra which is
commutative to d,. Therefore 8, A, + A has a left R module structure. We will show that 5, 4, + % is the
left R submodule of Ry, prove the existence of a Grébner basis (with the local finiteness property) of the
module and present a construction algorithm of the basis. '

Let

(3.1) G={g1,9p}

be generators of the left ideal % of A,. gr can be written as

Sk
g =Y cigr, o €ER
j=0

We put
"l’(anl{i) = (0,---,0,k,3n,0,-~-,0) € R™,

and ' ‘
1/J(x;;gk) = (0) ')01gk07gk1”" 7gk3g,0) v 70) € R™.
Let H,, C.R™ be

(3.2) ( L] {«»(anx:)}) U (U —U— {w(w;gk)}) :
. . N k=0 k=1 1=0

We have -+« C Hpp € Hipgr € -+ and #Hp < +00. My = U:___O RH,, is the left R submodule of R.
It follows from Theorem 2.2 that M., has a Grébner basis G,,. We can compute approximations of G, by
Algorithm 2.1.

THEOREM 3.1.
Ry [Moo = Ap [(0nAp + A) = /de.n

as left A,_1 module.

Proof. We define a map:

8: Roo 3 f=(£(0), (1), -+, f(m),0,---) >
FO) + zaf(1) + -+ + (2a)™F(m) € 4y

where m = topIndex( f)
We prove if f € Mo, then 0(]’3 € On Ay + . Since f*e Mo, there exists aj, b; € R such that

f= 2 ai(0ual) + Y bsilaiian,)
J J
where 37 is a finite sum. Then we have
0(f-‘) = Zajaua:f,f + Z bjxfjgkj
J J

- Z 6,;(0,1-9:5‘3) + Z(sz;’ )9k, € 0 An + A.
J i

.%
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Therefore we can define a map: R
6: Roo [ Moo — Ap[(0nAn + ),

by 4([]) = 18(H)- )

It is easily verified that # is A4, _; homomorphism and surjective.

We will show that § is injective. We assume that O(f_') =0,h+g €8, A, + %, h € A,,9 € A. hcan be
written as b = 3, hizk, h; € R. Then we have 0,h = 3 hi(8nzk). g can be written as g = ) Ckgk- Ck
‘has an expression of the form ¢; = Ej by;jxl, br; € R. Then we have g = Ek,j bzl gx. Since 6 is injective,

then we have
Zhup(a o)+ > bed(hae) € Moo

k.3

Therefore § is injective. 1

CoROLLARY 3.1 If M is holonomic, then there exists a number m such that
R™[RG . (m) ~ /den
as Ap_1 module where Goo is a Grobner basis of Mo, = |J RHypm of (3.2).

Proof. M is holonomic, then Ry, [Mq, is finitely generated. Let ﬁl, cee, 7{1, be generators. Assume
Ri,i=1,---,p are irreducible by Mq,. Put m = max!_, {topIndex(h;)}. Let us consider a map p:

p: R™JRGu(m) —> Reo /Mo,

where G is a Grobner basis of My,. If an element fof R™ is irreducible by Goo(m), then fis irreducible
by Geo. Therefore the map p is injective. Since hq,---, hp are generators, then the map p is surjective. g

The lexico-total degree order is ;
(3.3) : {2n} > {21, Tn1,01,++, Oa }
and the lexicographic order is
(3.4) ' B > Op > Ty = - O

We will show an application of our theory to the zero recognition problem [Zeil] [Tak2] and the study
of definite integral with parameters [AZ] [Tak2]. Algorithm 3.1 can be used in Algorlthm 1.2 of [Tak?2] and
is “correct ” algorithm in the sense of [Tak2].

ALGoriTHM 3.1 (Computation of differential equations for a definite integral with parameters)
INPUT: G = {gx}, generators (3.1) of a left ideal ¥ of A,. We assume that M = A, /¥ is holonomic.
OUTPUT: G(0), a Grobner basis in R such that R/RG(0) is holonomic A,_; module, i.e. , G(0) is a very
large system of differential equations such that G(0) C 8,4, + A.
(1) G :=-a Grdbner basis of G in A, by the lexicographic order (3.4) or the lexico-total degree order(3.3).
(2) m := max{sg +1}; G:= &
(3) repeat
(4) Hm :=(3.2);
(5) G := G U { reduced Grdbner basis of RH,, in R™ by the order (2.4) };
m:=m+1; ‘
(7) until ( R/RG(0) is holonomic)

For the computation of the Grébner basis of the step (1), it is fast to call Algorithm 4.3 of [Tak2] and
construct a Grobner basis from the output of Algonthm 4.3 by pure Buchberger algorithm by the order (3.4)
or (3.3).
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THEOREM 3.2  Algorithm 3.1 stops.

Proof. Tt follows from Corollary 2.1 that we can obtain G (0) by finite iterations where G, is a Grobner
basis of Mo,. Since R/RGoo(0) is Ap—1 submodule of R/ Mo = [ Mdz,, then R/ng(O) is holonomic
Ap-1 module ]

THEOREM 3.3  Assume a function f of 1,---,%s ts rapidly decreasing wzth respect to T,. Let A be an
tdeal of A, such that %f =0. If A, /¥ s holonomzc, then the sntegral '

e

is annthilated by differential operators G(0) where U s the input of Algorithm 3.1 and Q(O) is the output.
R/RG(0) is holonomic An 1 module.

ExaMPLE 3.1 This is continuation of Exa.mple L1 We consxder in R”‘, m = 3. Put

h =(6:,0,1
! ( ) hs = (8,0,0)
h2 = (61, 2(1;', 0)
hs = (=220, 8, 0) he = (1,8:,0)
3 = X0z, 04, h7=(0,2,8t)

: h4 = (270, 0; 0)

where po = 02 + 2z + 4228,. We set H3 = {hi|t = 1,---7}. We compute Gribner basis of RH3. We have,
for example, :

Sp(hl, h7) = 6th1 —_ h7 = (3,, 2, 3;33)‘— (8t, 2, 0) — 0 by h5.
We have the reduced Grdbner basis: v
{hlv (01 21'7 0)7 (1 + 2.’):'33, 0; 0); h51 hS}r

Therefore we have

R¥|RH3 ~ A1 [(1 + 228,) + tA; /(z) L
as A; module. The output of Algorithm 3.1 is {1 + 228, } which is a differential equation for I(z).

§4. A fast algorithm of obtaining differential operators for a definite integral -

We must compute a Grobner basis with lexicographic order or lexico total degree order in step (1) of
Algorithm 3.1 and we must use the lexicographic order (2.4) in R™, but the orders spend much time and
very large memory. We will state an efficient algorithm. Put »

R=K(z1, " Zn-1){01," -+, 0a}.

The theory of the first part of the section two is valid in this case. Let us define the notions of reducibility,
s-polynomial etc. to avoid misunderstandings. We define a left R module structure to R™ in the following
way. For f € R™ and a € K(z1,--+,2a-1)(01,--,0n-1), we define af: the right hand side of (2.1) and
for @ = 8., af = the right hand side of (2.2). A monomial of R can be written as c8%, c € K(z1,+*,Zn-1)-
Monomials of R are ordered as

8% <3 8 <= o < 3 by the total degree order in INg .
Let 7 and s be elements of R. We put’
head(r) = head term of r by the above order <3= ™

9



and head(s) = d9# where ¢,d € K(z1,+++,Tp—1). 7 is reducible by s iff lem(a, 8) = a. Put { = lem(a, )
and assume ¢ = ¢y /e, d = dy/da, ci,d; € K[z1,--+,Zp-1]. We define

did cods
sp(r,s) = .i_elc_%aﬁ—ar - 31—61—2-35"’33

where e = ged(didaca, cicads). Let 7 be reducible by s and ¢t = sp(r,s). The situation is denoted by
“r — t by s”.
Consider R™. Let c,d € K(z1,+++,%n—1). We define
\ k+lo| >£+|0]
(4.1) 8% > d8PE < ork+|a|=L+|Bland k> ¢
ork+|a]=£+]|8] and k= £ and 8* >3 8°.

Let f* and § be elements of R™. We put
head(f) = head term of f by the above order (4.1) = cd%&

and head(§) = d9P&,. In the above situation, we put topIndex(f) = k and lpp(f.') = 8*. We define
reducibility, s-polynomial, reduction and Grobner basis by using Definition 2.1, 2.2, 2.4 and 2.5. There
exists a Grobner basis for any submodule of R™.

We state our improvement of Algorithm 3.1. The improved algorithm is based on solving systems of
linear equations ( see [Buch2] method 6.11) and is a modification of Algorithm 4.3 of [Tak2]. We refer to
[Tak?] for the notations k(I) and eg. It is not proved that Algorithm 4.1 stops. Therefore if Algorithm 4.1
fails, we must call Algorithm 3.1 that always stops. :

ArcoriTeM 4.1 (Finding differential equations for an integral of a module)
INPUT: A left ideal % of A, such that A, /2 is holonomic.
"OUTPUT: G, generators of a zero dimensional ideal of K(z1,-+, Zn—-1){01, -+, 0n—1) such that

GConhn+ %
(1) G={g1,--,9p} := a Grdbner basis of ¥ constructed in the ring
I{(wly Tty xn—l)(zna 31, ity an)

by the total degree order in the varibles z,,81,---,0,.
(2) m := maxg{degree of g with respect to z,} + 1

(3) Do ‘

(4) Hp = (3.2) :

(5) := reduced Gribner basis of RH,, by the order (4.1)

(6) fork:=1ton—1do

Q) \ dp := # ({Ng ' \UfEg,toplndeX(f4)=k,1PP(f‘)=3°(a +N 1))

(3) endfor

)  di=yild

(10) if d < 0o then

(11) Select a monoideal I € IN2~! such that k(1) < d

(12) Q: =Ny~ '\I »

(13) for all v € G(I) do

(14) ‘ Reduce 8%, k € Q U {7} by the Gribner basis ¢ and obtain a similar equation of
(4.4) of [Tak2] and solve it.

(15) if d, = 0 then goto (11)

(16) else obtain eguy}€o of (4.5) or (4.6) of [Tak2]

17) endfor

(18) endif

(19). m:=m+1

(20) while (d = o0)
(21) G:={equinlr € G(1)}

10
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Appendix: An implementation

(March 2, 1990 )

The algorithms of the paper “An algorithm of constructing the integral of a mod-
ule” is implemented by the language C. The implementation is the first software of the
NMA (ma)thematical libraries for C, C++ or other object oriented languages. The NMA
project aims at a compiler oriented computer algebra system that has high performance
(NMA’s not MAthematica or REDUCE).

The program “lexgrob” computes the Grobner basis of an input by the lexico-total
degree order (3.3). The program “modulegrob -rank m” computes the Grobner basis in
R™ by the order (2.4). From an input, “modulegrob” obtains generators H,, of (3.2) and
computes the Grobner basis of H,,.

The data structure of a polynomial that is used in the programs is described by the
figure 5.1. ' ' ‘

We show examples of computations.

ExampLE 5.1  Put
(5.2) ' £ =0, +1t% and £y = 8, + 2t=.

We have £, f = £, f = 0 where

f= et
Let the input of “lexgrob” be (5.2). The figure 5.5 is a program readable form of (5.2)
where 24 =t,04 = 0;, 23 = = and 03 = 0,. The order is

{24} >~ {64: T3, 631 22) 62) I, 617 Zo, 60}

The output of “lexgrob” is the figure 5.6. Let the input of “modulegrob -rank 3”4 1s the
figure 5.6. The output is the figure 5.7.

ExamrLE 5.2 Put
(5.3) 6 =(1+zt+17)8; — At and £y = (1 + at +t7)0; — A(z + ptP~1).

We have ¢, f = £,f = 0 where
f=(1+azt+t7).

Put p = 3. Let the input of “lexgrob” be (5.3). The figure 5.8 is a program readable form
of (5.3) where z4 =¢,0;, = 0;, 23 = 2,03 = 0; and £, = A\. We cannot obtain an output by
four minutes. However, we can obtain an annihilator of the integral of f by “modulegrob
-rank 7” without preprocessing the input (5.3) by “lexgrob”. The output of “modulegrob
-rank 7” is the figure 5.9. It is remarkable that “modulegrob” runs faster than “lexgrob
| modulegrob” where | denotes a pipe. We remark that the output of “modulegrob -rank
5” does not contains an annihilator of the integral of f. There exists the variable z4 in all
expressions of the output.

12
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ExaMpPLE 5.3 (Gauss hypergeometric differential equation) Put

(5.4)
6 =(1-2y)y(1-y)0, —ozy(l-y) = (B-D{A -2zy)(1 - ) + (v - B - (1 - 2y)y
£y =(1—-z2y)0; —ay

We have {1 f = £5f = 0 where
f=1—ay) (1 —y) P

Let the input of “lexgrob” be (5.4). The figure 5.10 is a program readable form of (5.4)
where z4 = y,04 = 0,,23 = 2,03 = 05,272 = 7,21 = 8 and z¢ = . The output is the
figure 5.11. We can obtain Gauss hypergeometric equation using “modulegrob -rank 5”
where the input is the figure 5.11. The output of “modulegrob” is the figure 5.12.

We can also obtain an annihilator of the integral of f that is hypergeometric operator
by “modulegrob -rank 5” without preprocessing the input (5.4) by “lexgrob”. The output
of “modulegrob -rank 5” is the figure 5.13. It is remarkable that “modulegrob” runs faster
than “lexgrob | modulegrob”.

- Timing data ~
Problem and algorithm Input |Output [Time on SUN3 260C

Example 5.1, lexgrob|modulegrob -rank 3 |Fig 5.5 |Fig 5.7 0.7s

Example 5.2, lexgrob|modulegrob -rank 5 |Fig 5.8 more than 210s

Example 5.3, lexgrob|modulegrob -rank 5 [Fig 5.10 [Fig 5.12 182.4s
Example 5.2, modulegrob -rank 5 Fig 5.8 ' 0.8s
Example 5.2, modulegrob -rank 7 Fig 5.8 {Fig 5.9 - 4.9s
Example 5.3, modulegrob -rank 5 Fig 5.10 [Fig 5.13 11.4s

FT%U&, 5.1 A

"\
’/ .
Var\aﬂc 3 monowdal s
Stze =~ )
| (fh(eo( Size)
! Mov\ov'»\}o&s are
- : Sorted 2,3 the fexico-
- ' . - totd dea.msz, order (3.3).

Po{yhoh}& »
13



28

dit2xx3*xq ;U AU,
d3+x4+2;
0; SOt
/t‘FT%,\\Y‘Q, 5:5
+2 *x3 *X4 +1 *D4 ;

+1

+1

+4
0:

*x422 +1 *D3 ;

*x4 *D4 -2 *x3 *p3 ;
*x372 *D3  +1 *D4"2 +2 *x3

tinguna516,

+2
+1
-2
+1
+1
0;

*x3 *x4 +1 *D4 .
*x472 +1 *pD3
*x3 *D3 -1
*D4  ;

*x4 *D4  +1

.
’

-
r

T;F:h%qu.gz?.

.
’

«—cf

(1+x3*x4+x4~3) *d3-x2*%x4;

0;

t‘Fh%qu.SZS

+1
-3
+1
+1
+1

+1
+3

+3
-1
+3
-1
+1

+1

-
’

*X4A3 *D3  +1 *x3

*x2 *x472 -3 *x472

*D4
*x472 *D4 +2 *x4

J— c]’j EXahple l. I s 6

EX&M?\Q. 3-\ .

(1+x3*x4+x4*3)*d4-x2*(x3+3*x4“2);

*x4 *D3 -1 *x2 *x4 +1

.
4

*x473 *D4  +3 *x4*2

*x2 *x473 +4 *x47~3 -1 *x3
-1 *x4 *D4 ;
1 *x2 *x474 +5 *x474 -1 *x3

*x4/72 *D4

*x2 *x4A5 .;.6 *x4 5 -1 *x3

*x4/~3 *D4 ;
*x474 *D3  +1 *x3

*x4~5 *D3 +1 *x3

tobe Conﬁhuce( .

*x4/22 *D3

*x4"3 *D3

~ 4~

+1 *x3.

*D3

-
7

*x4 *D4 -1 *x2 *x3 +1 *D4

*x472 *D4 +1
*x4/~3 *D4 V+1
*x4~4 *D4 +1

-1 *x2 *x4°2

-1 *x2 *x4”°3

*x2

*x2
+1

+1

*x3 *x4
*x3 *x472
*x3 *x4°3
*x4 *D3

*x4A2 *D3



x4
x4°2
x4°3

*x373
6 *x2

x3

+1 *x4"6

+1 *x4°4

+1 *x4
+1 *x4”"5
+1 *
+1 *x4°6
+1 *
*x2N
*D3
*x3

=27

+9 *x2 *x4 *D3
-1 *x3 *D3 *D4

-3 *D4

+4 *x2 *x3°3 *D372
2 *x272 *x372 *D3

*x273 *x3
x2 *D3”2
2 *x3 ;
0;

—9 *x2A2 *D4

*x3 *x4"4

*D3  +1 *D3 -1
*D4 -3 *x2 *x4+3 +1 *x3
*D4

*D4 -3 *x2 *x474 +1 *x3
x472 *D4 H

*D4 -3 *x2 *x4”~5 +1 *x3
x473 *D4 ' ;
2 *x4 -45 *x2 *x4 -18 *x4
+2 *x372 *D3 *D4 -6 *x2°2
*D4 -2 *x3A2 +6 *x3 *D4
+9 *x4 *D3 =2 *x2

+3 *x272 *x3
+4 *x373 *D3*2
—6 *Xz *X3A2 *D3

+6 *x372 *D3
=5 *x2 *x3

Q;F%wekq.

+4 *x2 *x3

+8 *x3 *D3 *D4

*x2 *x4°4 fl *X4A3 *D3
*xd "2 *D4 =1 *x2 *x3 *
*x47~3 *D4 -1 *le*X3 *
*x4A4 *D4 -1 *x2 *X3 %
+4 *x2 *x3~3 *D3  +4
*x3%2 -8 *x2 *x3%2 +
+27 *x2 *D3 +27 *D3 ;
*x372 *D3 -2 *x372 *D3
-3 *x2 *D4 41 *
+2 *x372 *D3+2 *D4 -1
+3 *x2 *x3 *D3 *D4  +9
+6 *x272 *x3 - +27 *
+27 *D3”2 -G *x2 *D4 -~

T[‘\}S s an an\nﬂ\? Lot u‘(.

[££3

—(1-x3*x4) *x4* (1-x4) *d4+x0*x3*x4* (1-x4)+ (x1-1)* (1-x3*x4) * (1~
x4)~(x2-x1-1)* (1-x3*x4)*x4 ;
- (1-x3*x4)*d3+x0*x4 ;

0

’

e Figure 5710 |

-1 *x3
x3 *x4"2
*x0 *x3
*x]l -1
+1 *x3
-1 *x0
x0 *x3°2

*x(0”2 *x3 *x4
-1 *x2 *x4
+1 *x3 *D3

D4
D3
-1 *x0
*x4 -1

-1 *x0 *x1 *x3 *D3

x3 *D3

*D3 -1

*x4~3 *D4 +1 *x2 *x3 *x4°2
*D4 -2 *x3 *x472 +1 *x4"2
*x4 +1 *x3 *x4 -1 *x2 *x4

*;4 *#D3 +1 *x0 *x4 -1 *D3
xx472 *D4 +1 *x47~2 *D4 +1
*x4 *D3 +1 *x0 *x3 *x4 *D3
-1 *x3 *x4 *D3
-2 *xo *x4
-1 *x0 *x1 +1 *x1
*x4 *D3 *D4
*x(Q *x372 *D3"2

*x2 *D3 -1 *x0 *D3

Tnke umﬂmmi‘

-1 *x4 *D4

+1 *x3 *x4 *D3 +
+1 *x372 *D3”2
-1 *x3 *D3"2
-1 *x072 *x1
+1 *x0 *x1

-1 *x072 *x3 *D3
+1 *x0 *x2 *D3 +1 *x0 *D3 *D4
-1 *D3 *D4

-1 *x0Q *x3 *x4"2
-1 *x1 *x3 *x4

*D4

-1 *x4 *D4

+2 *x4

+1 *
+1
+1

29

*;l *x372 *x4 *D3 -1 *

S 41 *x0 *x1 *x3 *x4
+1 *x0 *x2 *x4
+2 *x4
I

+1 *x4 *D3 *D4
+1 *x0 *x3 *D3"2
+1,*X1 *
+1 *x3

+1 *x0

-1

+1 *x0 *x4 *
-1 *x1 *x3 *

.
r

+1 *x0
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-1 *x0°2 *x4 *D4
X373 *D372
A2 *x342 *D3 41 *x3
X3 *D3 -1 *x0Q *x3 *
+1 *x2 *x3 *D3 +1 *
D4 -1 *D3 *D4 -1 *

+1 *x0 *x343 *D3~3

*3(0 *3e] *x3A2 *D3A2
-1 *x1 *x3A2 *D3A2
-1 *x0"2 *x3 *D342

-+l *x0 *x4 *D4
-1 *x0 *x3+2 *Dp3+2

2 *D372 . =1 *x1 *x342
D3 *D4 +1 *x(0"2 *xl1 *
®3 *D3 *D4 -1 *x0 *x1
x0~2 +1 *xQ :
-1 *x3~3 *pD3~3 - -1 *
+2 *x0%2 *x372 *D3~2
+2 *x0 *x372 *D3~2 -1
-1 *x0 *x3 *D372 *D4

+1 *x0 *x373 *D342
+1 *x0 *x1 *x342 *D3

...1*
+1 *x0

-1 *x0 *x2 *
-1 *x372 *D3

+1 *x0 *pD3 *

*D3
x3
*x3

x0 *x372 *D3~3
+1 *x372 *D3~3
*x0 *x2 *x3 *D3~2
+2 *x072 *x1 *x3

+1

*D3  +1 *x073 *x3 *D3 -4 *x342 *D372 +1 *x2 * *D3~ -
*x0 *x3 *D342 41 *x3 *D3A2 *D4 42 *x(Q~2 *x§ *gg Ei 5xO i
D3“2 *D4 -1 *x072 *x2 *D3 -1 *x(QA~2 *D3 *D4  +1 *x0~3 *x1
+2 *x3 *D372 -2 *x] *x3 *D3 =1 *x0 *x3 *D3 -1 *D342 *D4
-2 *x3 *D3 +1 *x2 *D3 +1 *D3 * )
D4 -1 *x0 *x1 ; :
0;

-~

'S TS am athLT_QA'('(L °:j£ f&dg,

T’,"F?%LWQ, 5{\ ‘ bt M6 oo e
¢S QA Thind g
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+1 *x2 *x3 *x472 -1 *x0 *x3 *x4”2 +1 *x3 *x472 *D4 +1 *
x3 *x472 +1 *x4~2 *D4 -1 *x1 *x3 *x4 +1 *x0 *x3 *x4 +1 *
x3 *x4 -1 *x2 *x4 -1 *x4 *D4 +2 *x4 +1 *x1 -1 ;

+1 *x3 *x4 *D3 +1 *x0 *x4 -1 *D3 ;

+1 *x0 *x2 *x4 -1 *x072 *x4 +1 *x0 *x4 *D4 -1 *x2 *x4
+1 *x0 *x4 -1 *x4 *D4 -1 *x( *x3 *D3 +1 *x3 *D3 +1 *x0 *
D3 -1 *x0 *x1 -1 *D3 +1 *x1 +1 *x0 -1 ;

-1 *x0 *x372 *D372 +1 *x372 *D3~2 +1 *x0 *x3 *D372 -1 *
x0 *x1 *x3 *D3 -1 *x072 *x3 *D3 -1 *x3 *D372 +1 *x1 *x3 *
D3 +1 *x0 *x2 *D3 +1 *x0 *D3 *D4 -1 *x072 *x1 +1 *x3 *D3

-1 *x2 *D3 -1 *D3 *D4 +1 *x0 *x1 :

+1 *D4 ; « .

+1 *x4 *D4 +1 This 1s L\ype/\?eq-mefﬁc

+1 *x472 *D4 +2 *x4 ; Aﬂf "

+1 *x473 *D4  +3 *x4~2 ertvtlall spermta (i)

+1 *x474 *D4 +4 *x4~3 ; by D& 0. '

+1 *x2 *x3 *x4~3 -1 *x0 *x3 *x4~3 +1 *x3 *x4~3 *D4 +2 *
x3 *x4~3 +1 *x4/~3 *D4 -1 *x1 *x3 *x4*2 +1 *x0 *x3 *x4"2
+1 *x3 *x472 -1 *x2 *x4"°2 -1 *x4"2 *D4 +2 *x4f2 +1 *x1 *
x4 -1 *x4 ;

+1 *x3 *x472 *D3 +1 *x0 *x472 -1 *x4 *D3 ;

+1 *x3 *x4~3 *D3 +1 *x0 *x4~3 -1 *x4~2 *D3

+1 *x3 *x4~4 *D3 +1 *x0 *x474 ~1 *x4~3 *D3

+1 *x0 *x2 *x472 -1 *x072 *x4+2 +1 *x0 *x472 *D4 ~1 *x2

*x412 42 *x( *x472 -1 *x472 *D4 -1 *x472 -1 *x0 *x3 *x4

*D3 +1 *x3 *x4 *D3 +1 *x0 *x4 *D3 -1 *x0 *x1 *x4 -1 *x4

*D3  +1 *x1 *x4 +1 *x0 *x4 -1 *x4 ;

+1 *x0 *x2 *x473 -1 *x072 *x4~3 +1 *x0 *x473 *D4 -1 *x2

*x4~3  +3 *x0 *x443 -1 *x473 *D4 -2 *x4~3 -1 *x(Q *x3 *x4
A2 *D3  +1 *x3 *x472 *D3  +1 *x0 *x47~2 *D3 -1 *x0Q *x1 *x4°2

-1 *x4”2 *D3 +1 *x1 *x472 +1 *x0 *x4~2 -1 *x4~2 ;
0; ' :
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+1 *x2 *x3 *x472 -1 *x0 *x3 *x472 +1 *x3 *x4~2 *D4 +1 *
x3 *x472 +1 *x47~2 *D4 -1 *x1 *x3 *x4 +1 *x0 *x3 *x4 +1 *
X3 *x4 -1 *x2 *x4 -1 *x4 *D4 +2 *x4 +1 *x1 -1 ;

+1 *x3 *x4 *D3 +1 *x0 *x4 -1 *D3 ; ‘

+1 *D4 ;

+1 *x4 *D4 +1 ;

+1 *x472 *D4 +2 *x4 ;

+1 *x473 *D4 +3 *x4+2

+1 *x474 *D4 +4 *x4°3

+1 *x2 *x3 *x4~3 -1 *x0 *x3 *x473 +1 *x3 *x4~3 *D4 +2 *
x3 *x4~3 +1 *x4+3 *D4 -1 *x1 *x3 *x472 +1 *x(Q *x3 *x472
+1 *x3 *x472 -1 *x2 *x4"~2 -1 *x472.-*D4 +2 *x4~2 +1 *x1 *
x4 -1 *x4 ; ' ’

+1 *x3 *x472 *D3 +1 *x0 *x4~2 -1 *x4 *D3 ;

+1 *x3 *x4~3 *D3 +1 *x0 *x4~3 -1 *x4”~2 *D3 ;

+1 *x3 *x4~4 *D3 +1 *x0 *x4°~4 -1 *x4~3 *D3 ;

-1 *x0 *x2 *x472 +1 *x072 *x47~2 -1 *x0 *x4~2 *D4 +1 *x2
*x472 -2 *x0Q *x472 +1 *x472 *D4 +1 *x472 -1 *x1 *x3 *x4
*D3 +1 *x0 *x3 *x4 *D3 -1 *x3 *x4 *D3 -1 *x0 *x4 *D3 +1
*x4 *D3 -1 *x1 *x4 -1 *x0 *x4 +1 *x4 +1 *x1 *D3 ;

-1 *x0 *x2 *x4~3 +1 *x072 *x4~3 -1 *xQ *x4~3 *D4 +1 *x2
*x4~3 -3 *x(Q *x4”3 +1 *x4~3 *D4 +2 *x4~3 -1 *x1 *x3 *x4

A2 *D3  +1 *x(Q *x3 *x472 *D3 -2 *x3 *x4~2 *D3 -1 *x0 *x4~2
*D3 41 *x472 *D3 -1 *xl1 *x472 -2 *x(Q *x472 +1 *x4"2 +1
- *x1 *x4 *D3 - +1 *x4 *D3 ;

+1 *xQ *x2 *x4 -1 *x07%2 *x4 +1 *x(0 *x4 *D4 -1 *x2 *x4
+1 *x0 *x4 -1 *x4 *D4 -1 *x0 *x3 *D3 +1 *x3 *D3 +1 *x0 *
D3 -1 *x0 *x1 -1 *D3 +1 *x1 +1 *x0 -1 ; '

+1 *x0 *x372 *p3+2 -1 *x372 *D342 -1 *x0 *x3 *D3"2 +1 *
x0 *x1 *x3 *D3 +1 *x072 *x3 *D3 +1 *x3 *D372 -1 *x1 *x3 *
D3 -1 *x0 *x2 *D3 -1 *x0 *D3 *D4 +1 *x072 *x1 -1 *x3 *D3

+1 *x2 *D3 +1 *D3 *D4 -1 *x0 *x1 ; :
0;
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