gooooooogn

0 7300 1990]R218k-137

On the existence of viscosity solutions to nonlinear problems

involving an integro-differential operator

WMEK-® (LHEEZ (Naoki Yamada)

1. Introduction

This is a part of the joint work [11] with Suzanne M. Lenhart at University of
Tennessee, Knoxville.

In this note we consider the existence of viscosity solutions for an obstacle prob-
lem involving an integro-differential operator associated with piecewisedeterministic
processes. |

Let
Lua) = ~4(2) - Vu(e) +ale)ule) = M) | (u(s) - u(x) @y, )

where - is the inner product in R®, Vu is the gradient vector of » and Q(,z) is a
probability measure.

We consider the following obstacle problem:
11y min{lu—f,u—9} =0 inQ,
with the boundary condition
(1.2) u(z) = /Qu(z)Q(dz, z) on 0.

The operator L arises as a generalized infinitesimal generator of a plecewise-determinis-

tic (PD in short) process. These PD processes have deterministic dynamics g between
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random jumps. The jump distribution is represented by transition probability measure
Q(-, z). See Davis [4] for the detail of PD processes.

In the case that L is an infinitesimal generator of a diffusion process, it is well
known that the unilateral obstacle problem (1.1) with the Dirichlet boundary condition
arises as a dynamic programming equation associated with an appropriate optimal
control problem (see Bensoussan and Lions [1]).

The equation (1.1) is also the dynamic programming equation associated with an
optimal control problem in which the underlying process is a PD process.

In the case that the domain € is a bounded domain in R™, the PD process jumps
back into the interior upon hitting the boundary which leads to the boundary condition
(1.2) (see Davis [4]).

The obstacle problem (1.1), (1.2) is first treated by Lenhart and Liao [9], [10]
by using singular perturbation method. After introduction of the notion of viscosity
solution by Crandall and Lions [2], Lenhart [8] has proved the existence and uniqueness
of viscosity solution for a system of obstacle problems.

In these articles, it is commonly assumed that
az) > ap >0 for sufficiently large ag.

The perpose of this note is to eliminate the condition of largeness for the zero-th
order term by using Perron’s method which is introduced by Ishii [6].

In section 2, we state the notion of viscosity solutions and assumptions. We also
give a brief review of Perron’s method. In section 3, we shall explain how to apply the
Perron’s method to get a viscosity solution of (1.1) satisfying the boundary condition
(1.2). To show the existence of super- and subsolution, which are needed to apply
Perron’s method, we consider also a linear first order PDE with the boundary condition

(1.2). Our main result is Theorem 3.3.
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2. Assumptions and Perron’s method

Let

(21) Lu@)=—wuo-Vuu)+auOMxy—Am>Aguw>—uw»Quwﬂa

where - is the usual inner product in R™, Vu is the gradient vector of u and Q(-,z) is
a probability measure.

We consider the following obstacle problem.

(2.2) min{Lu — f, u— 9} =0 in €,

(2.3) | u(z) = /ﬂu(y)Q(dy,m) on 09

We assume the following conditions.

(H.1) Q is a bounded domain in R™ with smooth boundary 0%2.

(H.‘2) g(z) : @ — R™ is Lipschitz continuous, (), A(2) : @ — R are continuous.
(H.3) There exists ag > 0 such that a(z) > ag for z € Q.

(H.4) A(z) > 0 for z € Q.

(H.5) Q(:, z) satisfies:

(i) Q(-, z) is a probability measure on 2 for = € 2 such that

'/ﬂ v(y)Q(dy, z)| < Clvl|L1 () for all v E Ll(Q)

(i1) The function

2= [ vw)Qldy,)

is continuous with respect to ¢ € Q, uniformly on v € L®(Q).
(H.6) g(z)-n(z) > 0 for z € 99, where n(z) is the outward unit normal at z € 9.

(H.7) f,% are continuous on .
We denote that

F(z,u,p,r) = min{—g(z) - p + (a(z) + Ma))u — A(z)r - f(2), u — P(2)}.
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forz € Q,u e R,p € R*,r € R. Notice that if we fix v € L*™(Q2), then the equation

F (m,u(m);Vu(m), /Q o(y)Q(dy, w)) 0 w9

is an obstacle problem with a first order Hamiltonian.
We give some notation necessary to state the definition of viscosity solution. For

bounded functions, we set
u*(z) = rh_r% sup{u(y)| |z — y| < r} upper semi-continuous envelope of u
and
u.(z) = }1—{}}) inf{u(y)||z —y| < r} lower semi-continuous envelope of u.
Now we state the definition of viscosity solutions.

Definition. Let u be a bounded measurable function.

(i) u is a viscosity subsolution of (2.2) if |

P (2,00, V4, [ 0 ) < .

wherever u* — ¢ attains its maximum for ¢ € C*(Q).

(i1) u is a viscosity supersolution of (2.2) if

F (o,0.(0), V(a), [ u*(y)Q(dy,{c)) >0

wherever u, — ¢ attains its minimum for ¢ € C1(Q).

(iii) wu is a viscosity solution if u is a viscosity sub- and supersolution.

In the following, “(sub/super) solution” means “viscosity (sub/super) solution”.

Assume that there exists a supersolution W of (2.2) such that

(2.4) W(z) > LW(y)Q(dy,:c) on 9.
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Define
S = {v| v is a subsolution of (2.2) such that
v < W‘ in 2 and
() < [ v)Qdy, ) on 52},
’ Q
We put

uo(z) = sup{v(z)| v € S}.

Perron’s method consists of the following two propositions:
Proposition 2.1. Assume that S is not empty, then ug € S.

Proposition 2.2. Assume S £ 0. Ifv € S is not a supersolution, then there

exists w € § such that v(y) < w(y) at some y € Q.

These two Propositions can be proved by the same idea of Ishii [6]. So we omit
the proofs. See [11] for the detail.

Note that ug is a viscosity solution of (2.2).

3. Main existence result

First we assume that there exists a supersolution W of (2.2) satisfying (2.4).
By Perron’s method, there exists a solution ug. Note that up satisfies the boundary
inequality

uo(z) < /Q uo(y)Q(dy,z)  on 09,

Theorem 3.1. Assume (H.1)~(H.7). Suppose that there exisls a supersolution W
of (2.2) satisfying (2.4), and a solution u; of

(3.1) F (m,ul,vul,Luo(y‘)Q(dy,m)> =0 inQ
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satisfying the Dirichlet boundary condition

(3.2) uy(z) = / uo(y)Q(dy, z) on 9N.
Q
If uy < W, then ug is a solution of (2.2) satisfying the boundary condition (2.3).

Proof. We calim u; € 8. Let ¢ € C! such that u} — ¢ attains its maximum at yo,

then

(v, 00), V6(a0), [ w0()Q(d, o)) < 0.

Note that the comparison prihciple for two viscosity solutions holds for the equa-
tion of a first order Hamiltonian F(z, u, Vu, up). Since ug is also a subsolution of (3.1),
we have ug < u; in . Using ug < u; and the monotonicity of F' with respect to the

argument u, we have

F (s 41000), V(o). |  (1)Qd, ) <0

Also we have

ur(z) = /Q w(@)Qy,2) < [ w)Qdyz)  on g

o .
Hence, we have the claim. By the definition of uy and ug < u;, we have ug = u; in Q.

This completes the proof.

To assure the assumptions of Theorem 3.1, we consider the equation

Lu(z) = f(=) i

u(z) = /Qu(y)Q(dy, z) on Jf2.

Theorem 3.2. Assume (H.1)-(H.7). Then there ezists a unique solution of the

equation (3.3) satisfying the boundary condition (3.4).
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Proof. First we note that

w(z) = —”—f—”—o'i is a subsolution,
Qg
and
_ WMl :
W(z) = is a supersolution.

g
of (3.3) satisfying (3.4).
Applying Perron’s method, we have that there exists a solution ug of (3.3) satis-

fying the boundary inequality

uo(z) < /Q wo(y)Q@(dy,z)  on 0.

Next we consider the equation
(3.5) g Vg + (@ + Ay — /\/ wo®)Qdy,e) = f  inQ
Q

with the Dirichlet boundary condition

| (3.6) ul(a:)-——/ﬂuo(y)Q(dy,w) on 9.

The comparison principle for this equation is well known [2,3]. By (H.6) and the
method of [12], we can prove the existence of sub- and supersolutions. Then there
exists a continuous solution u; of the equation (3.5) with (3.6). We can apply the same
argument in the proof of Theorem 3.1 to yield that vy = ug. The uniqueness follows

from Lenhart [8]. The proof is complete.
Now we can prove the main result.

Theorem 3.3. Assume (H.1)-(H.T7). Then there ezists a unique solution of the

obstacle problem (2.2) satisfying the boundary condition (2.3).

Proof. 1t is sufficient to check the-hypothesis of Theorem 3.1. To do so, we consider
the obstacle problem (3.1) with (3.2).
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Using the boundary inequality of ug and ug > ¥ in 2, the compatibility condition

b(z) < /ﬂ uo()Q(dy,z)  on 90

1s satisfied.

First assume

(3.7) h(z) = / uo(4)Q(dy, z) € CH(2) N C(@)
Q o
and
(33) he) = [ w0(n)Qds,z) > ¥(@)  on 00
In this case, problem (3.1) with‘ (3.2) is equivalent to
(3.9) - min{—g-Vur +(a+A)wi — f, vy =9} =0 in Q'
(3.10) wi(z) =0 on 00

where f, 1 satisfy the same properties as f, in (3.1) and ¢ < 0 on 0Q. We show the
existence of a solution to (3.9) with (3.10) by Perron’s method. Indeed, the solution
of the linear equation
—g-Vw+(a+Nw=f inQ,
| w=0 on 092

is a subsolution of (3.9) with (3.10).

To construct a supersolution, we follow a barrier construction argument from
Oleinik and Radkevic [12] as in Ishii and Koike [7]. Since 3 < 0 on OS2, there exists
a local barrier, ¥, in C(QNV,) NCHQNV,) where z € 99, V, is a sufficiently small
neighborhood of z satisfying

bo()=0, $.20 on @AV,
¥: 2 [[flleo/a0 on QN OV,
—g-V¢z+(a+)\)¢z-2f in QNV,, and
Y, >v% mANV,.
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Define - , ; S
C((maxda(e), max{lfllo/eo, ¥l in RNV,
e {max{nfnoo/ao, (! otherwise,
and |

¥(2) = inf{9.(z)| = € 00}

Then g@ is a supersolution. This implies that there exists a continuous solution of (3.1)
with (3.2).

For general continuous boundary va,lue.h, which is not necessarily satisfy (3.7)
and (3.8), we choose an approximating sequence {h,} such that hy ‘€ C(2) N CHQ),
hn, > 1 on O and h,, — h uniformly in . Let u, be a solution of (3.1) with (3.2)

associated with boundary value h,,. By standard comparison argument, we have
SUP [tin (2) — 4 (2)] < SUP Jon (2) — B ()]
o a0

Hence {u,} converges to some u € C(Q2) and by stability of viscosity solutions, we have
that u is a solution of (3.1) with (3.2).

By the comparison result for obstacle problems, wev have u; < W. Hence by
Theorem 3.1, ug satisfies the boundary condition (3.2).

Since the uniqueness follows from the argument in Lenhart [10], the proof is com-

pleted.
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