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On the behavior of solutions of quasilinear heat conduction eqﬁationé _
~ Tapasui Kawanaco ()l & 4~ F) '

§0. Introduction
We shall consider the behavior of weak solutions of the following initial-boundary

value problem:
ug = Ap(u) in Q xRT

(D){ u(z,t)=0 on 00 xR
u(z,0) = up(z) in Q.

Here, ) CRY(N > 1) is a bouhded domain with smooth boundary 0f). We assume
throughout that
(0.1) ¢:R — R is a strictly increasing, continuous function with ¢(0) = 0.
Many authors have studied the problem (D) under the conditions: ¢'(0) = 0 and
¢'(r) > 0if r # 0 (i.e. (D) is degenerate only at u = 0). See Bertsch and Peletier [3]
and the references in [3]. We are interested in the case when (D) is nondegenerate,
with applications to the degenerate case. In this situation, (D) arises, for example,
in heat flow through solids and in diffusion of moleculars in mediums. There are not
many works for the nondegenerate case. Berryman and Holland [2] and Nagasawa. [9]
studied the large time behavior of classical solutions of equations related to (D) with
the dimension N = 1. The author [7][8] studied that of weak solutions of (D) (with
applications to the c‘legenera‘te case)“ And Alikakos and Rostamian [1] and Bertsch
and Peletier‘ [4] inverstigated in order to apply the degenerate case. |

In §1 we mention basic results about (D) including a definition of Weak solutions
of (D). In §2 we shall introduce some results in [7] and [8] for the nondegenerate case.

In §3 we shall give an up-to-date result for the nondegenerate case. In §4 we apply
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the results in §2 to the case when (D) is degenerate. (The results in §4 are parts of
Mandgl) |

Remark 0.1. We can obtain similar results for zero-Neumann boundary value
problem and for the following type of equation: u; = Ezj'\szl Ei—i(a"j(x, u)%’]), which
we omit in this article for want of space. See [8] for the details.

Remark 0.2.  For want of space, We shall assume in proofs of all results the ad-
ditional conditions: ¢(r) € C*°(R) and uy € C5°(Q?), which make the solution u(z, 1)
smooth. To prove the results for general weak solutions u(z,t), we need arguments

on smoothing technique. For the details, see [5] , [7] and [8].

Notation. |
1. ||-|lp denotes the norm of LP(Q).
2. (-, -)2 denotes the inner product in L?(f2).
3. We denote by {},}%2, (0 < A} < A3 < ---) all eigenvalues of —A with Dirichlet “
condition and by {e,(f)},' the normal orthogonal basis of the eigenspace corresponding
to A,. If the eigenspace corresponding to ), is one-dimensional, we simply denote by

e, the normal orthogonal base of it. And we choose e; such that e; > 0.

81. _Preliminary

We shail briefly describe a definition of weak solution by nonlinear semigroup
theory. We define operator A : L}(Q) — L1() by

Au=—-A¢(u) for wue D(A)
with D(A) = {u € LY(Q); $(u) € W (), Ad(u) € L1(R)}. The operator A4 is m-
accretive in LI(Q) under the condition (0.1). Therefore A generates the contraction
semigroup S A(t). Hence we can define a unique weak solution of (D) by Sa(t)up for
any ugp € D(A) = LI(Q). For the details, see [5] and [1]. |
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We shall mention basic known properties of weak solutions of (D). (For the proof,

see [1] and [5] for example.)

Proposition 1.1. We assume’tha,tvgb satisfies (0.1). If u(z,t) is the weak solution
‘of (D), then the following hold: ‘
(1) (The maximum principle) For any uy € LP(Q) with p € [1, 0], u(t) € LP(Q) for
t >0, and ||u(t)|, is non—inéreasing'. o ‘

(2) (The order-preserving property) If ug,vy € L}(Q) and ug < vy, then S(t)ug <

S(t)vg a.e. in Q for any t € Rt. Here S(t)ug and S(t)vy denote respectively the -

solution corresponding to ug and vy.

§2. The nondegenerate case I

Theorem 2.1. We assume (0.1) and the following:
(21) ¢! :R — R is a uniformly Lipschitz continuous function with a Lipschitz
constant 1/ko (ko > 0).
Let u(z,t) be the weak solution of (D). Then for any ug € L*(R), u(t) € L=(Q) for

t>0 Witl_] the estimate:

C

(2:2) Ol S liuelle for t>0,

(23) l[u(t)lloo SC(N, ko,to)e™*[uglly  for ¢ > t,
- Cle)\lkoto

where C(N,ko,to) = W,
0

where ty > 0 is an arbitrary time, and C1 > 0 depends only on N.

3
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Proof of Theorem 2.1. With the aid of Stokes’ Theorem,

%/ lulPdz = p/]u]p_lsignu-utda:
- JQ

—~p(p=1) [ [ Vu - Vo(u)da
(2.4) <-plp - Do [ [up~?Tufds

(2.5) S—-Qko/ IV|ulP?|?dz for p € [2,00).

We can prove (2.2) with the aid of (2.5) and Sobolev’s inequality:

26)  If o < Cuwn” I/ for any S € H}(2).
(Here we set 2N/(N —1) = oo for N = 1.) Indeed when N = 1, we set p = 2 in (2.5)

(or (2.4)) and integrate in ¢ :

(27) (B — uollf < —2ko / Vu(s)|3ds

It follows from (2.6), (2.7) and (1) of‘ProI')»osition 1.1 that

(28) fuolf 2 2k [ (—é'?ﬁ—(j’—'ﬁ-)zds > Chot x _._.__”fltlmii‘lj

which implies (2.2). When N > 2, the proof is essentially the same, but we need
Moser’s iteration technique, which is used in §4 of Evans [6]. We omit the details
because the argument is the same as in [6].

Next we shall derive (2.3). Following Alikakos and Rostamian [1] (the proof of
Theorem 3.3), we shall get’ L*-decay estimate. By substituting p = 2 into (2.4) and

by the spectral resolution of ‘—A,

‘ %V / ulde < ~2koM; / u?dz.

4
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Therefore, we obtain that
(29) ut)ll2 < e ™M juglly for ¢>0.
Hence, with the aid of (2.2) and (2.9),

C1 _p(i—ts
[u(t)]loo < We ko A(t—t )”uO”2.

This implies (2.3). 1

We assume below in this section that _
(2.11) ¢:R — Ris a strictly increasing, C!-class function with ¢(0) = 0.
(2.12) There exists kg > 0 such that k(r) = ¢'(r) > ko for any r € R.
and assume for simplicity that | |
(2.13) k(0)=1.

We shall describe the main result in this section:

Theorem 2.2. We assume that ¢ satisfies (2.11), (2.12) and (2.13). Let u(z,t) be
the weak solution of (D) with ug € L®(Q)). We also assume that |
(2.14)  there exsist § > 0 and p >0 such that k(r) > 1 — 0/(~log [r|)}*? for any
r € (-1,1).

Then, the following estimate holds:
(2.15) lu(t)]loo < Ce Mt for vt >0
where 0 < C = C(N, Q, [uolloo, 6, p, ko ). |

Proof of Theor‘erm ‘2.2. By Theorem 2.1,4

(2.16) lu@®lloo < 01679 for ¢ >0,

(2.17) lu()lloo < O3fu(t —to)l2 for ¢ >t
| 5
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where ty > 0 is an arbitrary but fixed time, and 681, 02,603 > 0 are some constants. 6
depends only on N, Q,||uo|lec and kg, 62 only’ on N, Q and kg, and 63 only on N, ko

~and tp.
In view of (2.16), we may assume without loss of generality that ||uo]|co and 6; >’ 0

is sufficiently small. By (2.17), the proof is complete if we prove that
(2.18) u(t)llz < 4e™™* for t >0,

where 04 = 04(N,Q, ||wo|loo, 0, p, ko) > 0. With the aid of (2.14),

i/uzdac = —Q/k(u)IVude
dt Jo ,
6

2.1 < - —_ e 2
(2.19) < -9 /{1 e
Since (—logr)~(11#)(0 < r < 1) is an increasing function’, we obtain that

1 ' 1

(2:20) (Clogla) ™7 = (loglallo) ™"

It follows from (2.19), (2.20) and the spectral resolution that

d [, 6 )
— <._2 Vul“d
i e = o) 1+,,J/ vl
. = -2
(2 21) [1 ( logHuH )1+p ]Z;/\ u e] 2
]
2.22 : < =201 = 2da,
222) T ! (—lognunoo)w%“ *

’It follows from (2.22) that

@) Ol < fwleen{-ht+ [ mtirds)
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Hefe, we obtain from (2.16) thAat' |

(2.24) /tr L ds</t ds

' o (~logllu(s)lleo)'® " = Jo (—logby + f2s)!+e"
The right-hand side of (2.24) is less than some constant depending on 6; and 02
because we may assume that 6; € (0,1). Therefore (2.18) holds.

We shall concider under what condition the estimate (2.15) with < replaced by >

hold.

| Proposi_tion 2.1. Assume that ¢ satisfies (2.11), (2.12) and (2.13). We also as-
sume that |
(2.25) * there exsists k; > 0 such that k(r) < k; for any r € R,

(2.26) there exsist 0,p > 0 such that |k(r) —1| < 0/(=log |r |)!*? for any r €
(=1,1),

(2.27) up 20, ug(z) does not identically vanish in Q and ug € L*(Q2).

Let u(z,t) be the solution of (D). Then, the following estimate holds: .
(2.28) Cre™t < u(t) |joo< Coe™1t for ¢ >0,

- where Cy, C2 > 0 depend only on N, Q, ||uo|co, (40, €1)2, p, 0, ko and k.

Proof. We can obtain Proposition 2.1 from similar calculations as in the proof
of Theorem 2.2. We omit the: proof. For feaders who want to know it, ‘see.Theorem
2.4 aﬁd its proof in [8]. |

Remark 2.1.  The condition (2.26) is not technical. Indeed the left-hand side
of (2.28) does not always hold without the condition (2.26). Indeed if k(r) =1+
1/(—log|r|)? for some p € (0,1) and |lug|loo < 1, then the corresponding solution

u(z,t) satisfies the following estimate:

(2.29) ||u(t)||oo§ Cexp(—;\lt —(Mt)'7?) for t>0.
7
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To obtain (2.29), we have only to substitute & = Cexp{—XA1t — (A1¢)!~?} into (4.4) of

Proposition 4.1in 4. / |
Remark 2.2  The estimate (2.28) does not always hold without the condition:

up > 0 ((2.27)). We give a counterexample (Remark 2.3 in [8]). Assume that

¢ : R — R is a smooth odd function with ¢’ > 0. We assume that N =1, Q = (O,}r)

and ug(z) = sinma (m € N). Let u(z,t) be the solutién of (D). Then the fbllowing

estimate holds: A '

(2.30)  Crem™FO < |lu(t)]|oo < Coe™ kO for ¢ >0,

We shall derive (2.30). We define by v(z,t) the solution corresponding to ug(z) =

sin z. Then, we obtain that

(2.31) u(z,t) = (=1)v(m(z — jr/m),m?) . if z € [jr/m, (G + 1)7/m].

(1=0,1,2,---;m—1)
We immediately obtain (2.30) from (2.31) and Theorem 2.2.

§3. The nondegenerate case II .

We again consider the case when (D) are nondegenerate. We can not know fully
from known results how the solution with any initial data behave in large time. We
shall show that every solution of (D) behaves completely in the same way as the
solution of linear heat equation in large time. Throughout in this section we assume
the conditions (2.11), (2.12) and (2.13), and also a,ssumé that‘

(3.1) There exist . > 0 and o € (0, 00) such that |k(r) — 1] < n|r|* for any r € R.

Theorem 3.1.  We assume (2.11), (2.12), (2.13) and (3.1). Assume also that

ug € L?(Q) and that ug does not identically vanish in Q. Let wu(z,t) be the weak

solution of (D). Then there exist v € N and {c;}; CR [3°;(ci)? > 0] such that

‘ M) o S ed® i B
(3.2). e u(t) e Zc,e,, in Hy(Q).
1



" Remark 3.1. We can obtain (3.2) with the estimates: if A\, 1 # (a+1)},, then
(33) [l ‘u(t Zc, )u g2 < Cexp[—min{ad,, (Apy1 — A)}t] for ¢ >0,
if Ay41 = (a+1)A,, then

(3.4) lleMtu(t) — Zce‘:g) lm: < C(t +1)e M for ¢ >0,
t .

where 0 < C = C(N, |9, ||uo||2,7, o, Ko). When v = 1, such estimates like (3.3) were
already obtained in Kawanago [8] (Theorem 2.4 in [8]) and Nagasawa [9] (Theorem
2.5 in [9]). The derivation of (3.3) and (3.4) follows closely [9]. See the proof of
Theorem 3.1. |

Remark 3.2. The condition (3.1) seems to be a technical one. Taking Propo-
sition 2.1 into account, Theorem 3.1 is expected to be valid even if we assume the
condition (2.26) instead of (3.1)..

We need a lower estimate to prove Theorem 3.1.

Lemma 3.1. (A lower estinﬁate) We assume all conditions of Theorem 3.1. Then

there exist constants C, n > 0 such that
(3.5) ‘ lu(t)|]z > Ce™™ for t >0.

This lemma is one of the most difﬁcﬁlt pérts' t;) establish Theorem 3.1. A similar
lower estimate was obtained by Alikakos and Rostamian [1] (Theorem 4.1 in [1]) when
¢(r) = |r|™ 'r, m € (1, 00). But our proof isinuch different from that in [1] which
uses the monotonicity of an appropriate Liapunov functional. It seems unlikely to
prove Lemma 3.1 in a sixﬁilar way as in [1].

-9
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" Proof of Lemma 3.1 With the aid of Theorem 2.1, we can assumé,:without

generality, that |luo|jcc > 0 is sufficiently small. By Stokes’ theorem, we obtain that

u 2
(3.6) —%/ﬂuzdw = -2 [v&(u))l dz,
(3.7) | z?z /Q IVé(w)[Pde = —2 / k(u){A¢(u)}2dm.
We set
'/ | W, / [ g
(3.8) = [ // do.

It follows from (3.6) and (3.8) that-

(3.9) lu(®)[3 = fluo 3 exp(—2 /0 ¢(s)ds).

Therefore, the proof is complete if we can show that
(3.10) there exists a constant 7 > 0 such that ¢(t) < n for every ¢ > 0.

With the aid of Stokes’ theorem and Schwarz’s inequality, we obtain that

V6L, [ Av(ald
St = - / Ad(u)d

. uZ .
s ([ g ([ ke agwe

| »‘/IW(u)Izda’——/ o) Bl
(3.12) / (u){Ad(u)} dz) 1/2 /¢() dz)V/2.

10
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It follows from (3.11) and (3.12) that

(3.13) [ Hwiaswyde 2 r(t) [ 1Vw)Pas.

Here we set

u)|? u? u
(3.14) r(t) = lv&(u))’ da:/[(/ 7c—(—17)-dx)( q::(( )) dz )]1/2

We obtain from (3.7) and (3.13) that

(3.15) “Wé(u)llg < [IVé(uo)ll3 eXp(—QA r(s)ds).
By (3.9) and (3.15),

VeIl _ 1Vé(uollf
WO = ol

(3.16) xp[2 / {a(s) = r(t)}ds].

Hence, if we can prove that
(3.17) There exists a constant C' > 0 such that fot lg(s) —r(s)|ds < C for t >0,

then we obtain (3.10). Therefore, we shall prove (3.17) from now on.

\/‘\/' \/_\/_+\/_ f+f

(318)  lo(t)—r(t)] = q(t) |1 -

where we set a = [u?/k(u)dz, b = [$(u)?/k(u)dz and ¢ = [u?dz. It follows
from (3.1), (2. 12) and (3. 18) that

(3.19) 0 -l < cqn | 4u12+“dx/ .

We shall consider the following four cases: (a) N =1, (b) N =2, (c) N >3 and
24+ a <2N/(N -2),and (d) N >3 and 2+a > 2N/(N —2). But we shall describe
11
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the proof only for the cases (c) and (d). (The proof is similar in other cases.)

The case (c). By Sobolev’s inequality,

[ 1utede < Tl uf S e

(3.20) < C|IVg(u)ly */ ufly V2,

With the aid of (3.19) and (3.20),

(3.21) lg(t) = ()] < Cq(t) llw(u)n”"”n Iy Y e,
It follows from (3.8), (3.9), (3.14), (3.15), (3.21) and k(u) ~ 1 that

' " t
lq(t) —r ()] < Cq(t)(||Vé(uo)|13 / ||u0||év“1)"/2exp{—2n/0 q(s)ds}

oy [V (uo) I3

(3.22) = - 4
lluolly !

2 plexpi=2n [ o(s)ds} ],

where 7 is a positive constant such that njz' N - a/2 —(N —=1)-a/2 = a/2. Hence,

we obtain that

s) —r( C ]|V¢(“0)I|2 /2
/ a(5) = r(s)lds < 5 (H 2 b

Therefore, we have proved (3.17).

The case (d). Using the following inequality:
[ uPreds < Juof YD [upe-as,

the argument is similar to the case (c) 1
Proof of Theorem 3.1.  We use the spectral resolution of —A, calculaﬁdns

in [8] and [9], and iteration technique. For simplicity we assume throughout that the |

eigenspace corresponding to A; > 0 is one-dimensional for all ¢ € N. If u(z,t) satisfies

(3.23) lim sup e**!|[u(t)[|oo < o0 for some v €N,

t—o00

12



then
(3.24) A, = eM(u(t),e,) — N, /t°° M (d(u(s)) — u(s), e, )ds

is a constant not depending on t (Nagasawa [9]). (Ind“e‘ed we can easily verify this‘by

ﬁ% A, =0.) We claim that if we assume the condition (3.23), then

(3.25) A, = 0 = limsup e*+*||u(t)]joo < o0,
t—o0

(3.26) | A, #0 = (3.2), (3.3) and (3.4) hold.

In view of Theorem 2.2 and Lemma 3.1, the proof is complete if we prove (3.25)
and (3.26). First we consider the case when A, = 0. Since A; =0 (4 =1,2,---,v —1)

also holds, we obtain that for i =1,2,- - -, v,

(3.27) (u(t), &) = )\ge“’\“ / ” g*-‘s(qs(u) — u, &;)ds.

t
It follows from (3.23), (3.27) and (3.1) that for: = 1,2,-- -, v,

(3.28) [(u(t), &) < Ce~(FNt for ¢ >0.

With the aid of Theorem 2.1, we can assume without generality that ||ug|lec > 0 is

sufficiently small. By (3.1) and the spectral resolution of —A,

% Qu(t)zdxyz 9 / k()| VaPd
< =21 = njul) [ [Vuds
= =21 —nllufls) Y Ni(u, €)?
i=1
(3.29) , < =2), wldz + Cul||%, | uldz +C ; (u, €;)?.
o R Y FEEY

13



With the aid of Theorem 2.1, (3.23), (3.28) and (3.29), we can easily verify that
/

(3.30) (@)oo < C expl—min{Ass1, (1 + /2 Jt] for ¢ 0. |

Speaking precisely, (3.30) holds when A, # (1 + @/2)A,. ’Below, we shall describe
the outline of the proof in the case when

(3.31) there exists n € N such that A1 > (1+a/2)" 1A, and Apps < (1+a/2)"A,.
(If otherwise, i.e. there exists n € N such that A,41 = (1 + a/2)"),, then we need
slightly modify the argument, but it is easy.) When n = 1, the claim (3.25) holds
in view of (3.30). When n > 2, we shal’x iterate the argument above. It follows

from (3.30), (3.27) and (3.1) that for i = 1,2, - - -, »,
(3.32) | (u(t),e)| < Ce~(Ha)I+a/DAt g ¢ > g,

The estimate (3.30) is a sharp version of (3.23), and (3.32) is of (3.28). Using these

estimates and (3.29), we can easily verify that

u(t)lloo < C exp[—min{Ay41, (1 + @/2)*A,}t] for ¢ >0.
Iterating the argument above, we obtain that for any n € N,
(3.33) lu(t)|loo < C exp[ —min{Ap41, (1 + /2)" A, }] for ¢ > 0.1

The claim (3.25) follows (3.31) and (3.33). Next we concider the case: A, # 0.
We shall evaluate [|etu(t) — Ayey ||z to obtain (3.2) with (3.3) and (3.4). The
calculations below is essentially the same as in Nagasawa [9] (The proof of Theorem
2.5 in [9]). With the aid of (3.24),
(3.34) |

le™*u(t) ~ Aves ||y < *ut) — (v, ev)ew |y

Y ;/ 9 (3(u(s)) — uls), €, )ds| e -
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With the aid of (3.34), (3.23) and.(3.1), we can verify that for ¢ > 0,
(3.35) V “e'\utu(t) - Ayey“Hé < e/\ut”qs(u) _v(q&(u)’ eu)eV“Hg + Ce~Mt,

We set v = ¢(u) — (¢(u),e,)e, and we shall obtain a gradient estimate of v. With

the aid of Stokes’ theorem, the condition (3.1) and
(3.36) / (Av, ev) = —Au(v,6) =0,

‘we obtain that

d 2
% | 1voto)ds

—_9 / B(w)(Av)2dz — Ay ($(u), &) / ((w) ~1)Av - e, do
< =201 = glul|Z) A3 + Cem M| Ap]l,

(B30 S(-2+ 20l + D)o} + FeHer

for any § > 0 and t > 0. We shall concider three cases: (a) (a + 1)A, > Ay,
(b) (@ + DAy < g1 and (¢) (a+ 1Ay = Apir.
The case (a). We fix e > 0 sufﬁciéntly small such that

(3.38) (a+ 1), > Ayg1 +€/2.

‘Substituting 6§ = e~ into (3.37) and using (3.28) and the spectral resolution of —A,

we obtain that

(3.39)

%/ !V’Ulzdz < "‘2/\y+1 ”vv”% + C(e"'a’\ut + e—*et)e—2(a+1)Avt
Q . L

+ Cexp[{=2(a+ 1)\, +€}t].
15
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It follows from (3.38) and (3.39) that

(3.40) [Vv]l2 < Ce M+t for 1> 0.
We obtain (3.3) from (3.35) and (340) |
The case (b). The argument is similar to that in the case'-(a). '

The case (c). We obtain (3.4) by substituting § = 1/(¢t + 1) into (3.37) and by a

similar argument as in the case (a).

§4. Applications to the degenerate case
Throughout this secﬁion’, we assume that
(4.1) ¢:R — Ris a strictly increasing C'-class function with ¢(0) = 0,
(4.2) There exists a strictly increasing function K : [0, 00) — R with K(0) > 0 such
that k(r) = ¢'(r) > K(|r|) for any r € R. |

We begin with a result about the smoothing effect:

Proposition 4.1. Assume that ¢ satisfies (4.1) and (4.2) and that u € L4(9).
Let u(z,t) be the solution of (D). Then u(t) € L*(f2) for t > 0 and u(t) — 0 in

t—00

L*>®(Q) with the estimates:

(4.3)

lu(t)]loo <€+ forany € >0 and t>0.

Cy
Ko7 ol
(4.4) | |
Cpe~ME(E)(t-to)

(K (¢)to)NV/4

lu(t)]|oo < €+ lluollz forany e>0 and t>tp.

Here, tg > 0 is an arbitrary time, and Cy, C3 > 0 are some constants dependent only
on N.
16



Proof.  Following Bertsch and Peletier [4], we compare u(z,t) with the

solution v(z,t) of the following (I;):

vy =Ad(v) in N xRT
(Ie) v(z,t)=e>0 on 00O xR

v(w,0)=sui)(u0(x),s) in Q.

With the aid of the comparison principle,
(4.5) u(z,t) <wv(z,t) in QxR
On the other hand, by (2.2) of Theorem 2.1,

N/4!|’ll,0|lg for ¢>0.

C C
(46)  o(®) = <lloo < v —elle < s

It follows from (4.5) and (4.6) that

C .
W”%Hz in QxR

(4.7) u(z,t) <e+
Replacing in (1) € by —¢ and ‘sup’ by ‘inf’ respectively and from the same argument
as above, we obtain that

u(z,t) > — — || ||2 | in QxR

¢ -
(K (e)t)M/*
Hence we obtain (4.3). We similarly obtain (4.4) from (2.3) of Theorem 2.1. §

If (D) is degenerate at u = 0, then, as is expected, the solution u(z,t) never satisfy
 the estimate (2.15). |
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Corollary 4.1. Assume that ¢ satisfies (4.1) and (4.2) with k(0) = ¢'(0) = 0. We
also assume that ug € L2(R), ug > 0 and ug(z) does not identically vanish in Q. Let

u(z,t) be the solution of (D). Then, for all 7 > 0 there exsists a time T > 0 such

that
(4.8) lut)||oo > ™™ for t>T.
Proof. It follows from Proposition 4.1 that there exsists a:time T' > 0 such
that
(4.9) lu(t)|oo < R for t‘ >T,

where R > 0 is a constant such that Ogﬁ)é}zk(r) < n/M. On the other haﬁd, by
— r —

Stokes’ Theorem,

2 (ult),ex)s = ($(u), Ber) 2 =0/ M1 Ml ex) = ~n(u,en),

which implies (4.8).

However, the solutions of some of degenerate equations decay fairly fast.

Corollary 4.2. Assume that ¢ satisfies (4.1) and that there exist ro € (0,1) and

n, kO; 9 > 0 such that

(4.10) k(r) > for r € [~ro,m0],

= (Hoglr])?
(4.11) k(r) > ko for r€R\[—rg,ro).

Let u(z,t) be the solution of (D) with ug € L*(Y). Then the following estimate holds:

(4.12) () loo < C(t + 1) T exp{—(6A1t)7T} for t >0,
18



where C > 0 depends only on Huo‘"z, rg, ko,\ n,8, N and Q.

_ Proof. We assume, by Proposition 4.1, without loss of generality that
up € L®(N) and |juplleo < ro. Substituting € = Cexp{—(8At)1/ (1D} to (4.4), we
immediately obtain (4.12). § o

Remark 4.1.  The estimate (4.12) is fairly sharp. Assume that there exist o €

(0,1) and n, 8 > 0 such that ¢(r) = 0r/(—log|r|)" for r € [—rg,r]. We assume for

simplicity that ug € L*(2) with [Jug|le < 7o and znelsfzuo(m) > 6 for some § € (0,1).

Then the following lower estimate holds:
lu(®)|l; > Cexp{—(n +1)(@At)7T} for ¢ > 0.

Here C' > 0 depends only on rg, 7, 8, §, 2 and N. We omit the proof. For the details,

see Remark 4.1 and its proof in [8].
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