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On the Nonlinear Mean Ergodic Theorems for Asymptotically

Nonexpansive Mappings in Banach Spaces

Hirok??u’Oka
Department of MaEgLﬁZtlcs, Waseda University
1. Introduction. |
Throughout this note X denotes a uniformly convex real Banach
space and C is a closed convex subset of X. The valué of x*e X* at
x € X will be denoted by (x,x*).
The duality mapping J (multi-valued) from X into X* will be defined
by JGo = (x*e X*: o, x™ = uxi®= ux™1%) for x e x.
We say that X is (F) if the norm of X is Fréchet differentiable,

i.e., for each x € X with x » 0, lim t—l(Hx+tyH—HxM) exists
t-0

uniformly in y e Bl’ whefe Br= {z € X :llzh £ r} for r > 0. It is

easily seen that X js (F) if and only if for any bounded set B ¢ X

and any x e X, lim(2t)_l(nx+tyH2—HxH2) = (y,J{&x>) uniformly in
t»0
y € B. We say that X satisfies’Opial’s condition if w—lim x = x

n-=>0e

implies that lim sup llx_ — xIl < lim sup lx_— yH for all y € X with y » x.
n-oo n n-2o n

A mapping T : C » C is said to be asymptotically nonexpansive if

for each n = 1, 2,
1. » NT"x - TnyH s (1+an)Hx—yH for any x,y € C,

where lim a = 0. In particular, if o = 0 for n 2 1, T is said to be
n-o>w

nonexpansive. The set of fixed points of T will be denoted by F(T).
Throughout the rest of this note let T : C » C be an

asymptotically nonexpansive mapping satisfying (1. 1).



A sequence {xn}nZOvin C is called an almost—orbit of T if

1.2 lim [ sup Hx , — T 10 ] = o.
n2o m20 ntm n

A sequence {zn} in X is said to be strongly ( or weakly ) almost

e 1M0 '
convergent to z € X if = §} Zi4k converges strongly ( or weakly ) as

=0

n » o to z uniformly in k 2 0. The convex hull of a set E ( ¢ X )
is denoted by co E, the closed convex hull by clco E, and ww({xn})
denotes the set of weak subsequential limits of {xn} as n 2 o,

We get the following (nonlinear) mean ergodic theorems.

Theorem 1. Suppose that'{xn}nzo is an almost—orbit of T and C
is bounded. If X satisfies Opial’s condition or if X is (F)>, then

{xn} is weakly almost convergent to an element of F(T).

Theorem 2. Suppose that {xn}nZO is an almost—orbit of T and C
is bounded. If lim lix — X+, exists uniformly in i 2 0, then {xn}
n-o !

is strongly almost convergent to an element of F({ID,

Theorem 1 is an extension of [5, Theorem 1.], [1, Corollary 2.11,

[4, Theorem 2.1] and Theorem 2 is an extension of [6, Theorem 1].

2. Lemmas.
Throughout this section, we assume that C is bounded. By Bruck’s
inequality [2, Theorem 2.1], we get

Lemma 1. There exists a strictly increasing, continuous,

convex function v : [0, » [0,®) with v(0)=0 such that
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-1 : _ ' _
s (1+ak)Y ¢ max [ lx, xjH

121, jsn

k

_ =k
1+“k”T X T xjH D)

n
for any k, n 2 1, any A1,~-',An 2 0 with Z'Ai = 1, and any"
- i=1

xl,'“,xn e C.

Hereafter, let v be as in Lemma 1.

Lemma 2. Suppose that {xn}nZO and {yn}nZO are almost—orbits

of T. Then {Hxn— ynH} converges as n 2 o,

Proof. Put an= sup "xn+m— men” and bn= sup ”yn+m— Tmynu for
ma0 | . - ma20

n 2 0. Then an » 0 and bn - 0 as n » ®,

Since
m m m m
"xn+m yn+mu s ”xn+m T an nT X T ynH HT Yh yn+m"

Sa +b + (Q+aDllx — y I, we have
n n m n n

lim sup Hx - ] a + b + Ux - 0.
o P IIx = v s n n n ynH‘fpr every n &

Taking the lim inf as n » «,

we obtain lim sup me— ymH s lim inf Hxn— ynn and so the conclusion
m-ow . n-=w :

holds. ‘ Q. E.D.

We now put D = diameter C and' M = sup (1+an),
na1



(p>
| J :
of T. Then for any € > 0 and n 2 1 there exist N8 2 1 and in(S) = lf

Lemma 3. Suppose that {x }j21(p = 1,2,+++) are almost—orbits

where Ns is independent of n, such that

n
HTk( LoAax
p=1 °

n
@ - i

A TP <& for any k 2 N_, any i 2 i_(e),
P P 1 £ n

1

n
pettaA 2 0 with £ = 1.
p=1 *

and any Al

Proof. For any € > 0 choose 6 > 0 so that Y-I(é) < /M. Then

there exists N_ 2 1 such that « < 6/4D for k 2 N_.

k

( .
) _ qu)ﬂ} converges as j 2 ® by Lemma 2,

Since {ij 21

for each p,gq 2 1 there exists io(s,p,q) 2 1 such that

P _ (@, _ P _ W@
lei xi I x, xi+k

i+k
Moreover, there is il(s,p) 2 1 such that a
(pd_

(g,p), where a,” "= sup IlIx
j=20
Put in(s) = max {iO(S,p,q), il(E,p): 1 £ p,qg £n} for nz 1.

< é6/4 if 1 2 iO(S,p,q) and k 2 O,

§p> < 6/4
@ _ 13, @

for all i 2 i+ i

|

If i 2 i_() and k 2 N_, then
n £

nx P2 (0 - Lk, @Y gk, (@
i i 1+ i
‘ k
®_ (@, _ ®)_ (@ (p) (@) p)_ (@
s Hxi xi I llxi+k xi+kn + ai + ai + akai xi H <6
for 1 2 p,q Sn and by Lemma 1,
n n '
NTE ¢ T A xgp)) = T TEx®y < e
p=1 P p=1 P !
n
for any Al,--',An 2 0 with E Ap= 1. ‘ Q. E.D.

p=1



For any € > 0 and k 2 1, we put Fs(Tk) = {x e C : HTkx‘— x|l S £},

Since C is bounded, F(T) = ¢. (For example, see [3, Theorem 1].)

Lemma 4. Suppose that {xi}izo is an almost—orbit of T. Then
forrany € > 0 there exists Ns 2 1 such that for each k 2 Ns,ﬁthere

is Nk(=Nk(E)) 2 1 satisfying

L ox, € Fs(Tk) for all n 2 N and all & 2 O,

Proof. Let18‘> 0 be arbitrarily given and o be the inverse’
function of t » MY_I(St) + t. Put 6 = min { 0(%),—%5 } and M = M+1.
. o ‘ )
. -g-ﬁ' and o« < 05 /D

Furthermore, by Lemma 3, there exists N EZ 1 such

1

Choose n > 0 and N 82 1 so that v ~(n) <

for k 2 Nl,s

that for any p 2 1 there is ip(S) 2 1 satisfying

2,

1
T
0

k ’ 2

p—1 P
kd - % xi+j+gn < &67/8

2. A X,y eganl
+i+
pj 0 i+j+Q j

It 1

for any k 2 N2 s+ any i 2 ip(s), and any 2 2 O.

’S,Né;s) and let k 2 NS be fixed. By Lemma 1 and

the choice of 6, we get

Put N8 = max (N1

k k
(2. 2 clco FG(T) CF£/3(T J.

Dk _ &2 | '
Next, choose p 2 1 so that ;- s 5 and let p be fixed. Since

{xi} is an almost—orbit of T, there exists N'2 1 such that
. &2 : : Pl | o
sup me+ - qumH < — for m 2 N. Set W= = v xi+; for i 2 0.
q20 q Pj___.o J

If i 2 ip(E) + N, by (2. 1),

iz20

[0 o] [o}



k N
”wi+k+ﬁ T wi+g"
! | p—1 p-1 2
1 k 1Ptk k.1 5
s =¥ x.,. - Trx,,.. o0l + =% T'x,,.,.— T (= X.,, ..ol < =
+j+k+ +
pj=0 itjtk+Q i+j+Q pj=0 i+jt+e pj=0 i+jtQ 4
DCi (£)+N) 52
for all & 2 0. Choose NgCk) 2 i (s)+N+1 such that pn < I
for all n 2 Na(k). If n 2 Ny, then '
1n—l " 1n—l
2.3 E.E Hwi+gf T wi+gn s ;.E ”wi+g_ wi+k+gn
i=0 i=0
i +N-1 - n-—-1 (i +NOD 2
+ L Py 4 T Dlw, TR, n s By L8 o 42
n .o T v itk+9 i+Q P n ‘ 4
i=0 1—1P+N

4

iR%%lQ'< %ﬁffor ail n N4(k). Put Nk = max (NS(k),N4(k)) and

let n 2 Nk be fixed and’Q = 0.

for all Q@ 2 0, where ip= ip(8). Finally, choose N,(k) 2 1 so that

- . . _ ' -k
Set Ak,n,®) = {i e Z : 0sS isSn-1 and ”wi+Q T LI N 2 6} and

9
BCk,n,® = {0,1,---,n-1N\AC,n, 9. By (2.3, #A(k,n, 8 5 ns,

where # denotes cardinality. Let f € F(T). Then,

Pi=1

1n"l 1n—1 1 p—1 ,.
n Ll Xiag T L wiig Y op BT OG0 17 Kiigen-1?
i=0 i=0 , i=1
= [ % (BACk,n, Q) -f + % ¥ w.+gi] + [ % 'z (w.+g—lf)‘]
ieB(k,n, ieA (k,n, o)
y P71 , ,
o L T 01T Xivgen-1

The first term on the right side of the above equality is contained

. k . ;
in clco FG(T )fband‘the rest termlln B2£/3M‘;By7(2'2)’ we get\

1

" k :
= )L X. e F_(T™) for all 2 2 Q. o , . Q.E.D.
ni 0 it+tQ €

o~



Lemma 5. Let {xn} in C be such that w—1lim xn= X. Suppose that
n->o .

for any £ > 0 there exists Nd{) 2 1 such that for k 2 N(£) there is

N, 2 1 satisfying HTkxn— an < g for all n 2 N

Kk K Then x Q,F(T).

Proof. We shall show that lim HTkx -~ xll = 0. For any € > 0
koo
choose 6 > 0 so that 1—1(6) < %ﬁ and take NI(S) 2 1 such that
oy < %5 for all k 2 N, (). Put 6'= min ¢ §, .

By the assumption, there exists N(s) 2 1 such that
for each k 2 N(g) there is Nk = 1 satisfying HTkxn- x I < s

for all n 2 Nk'

Put Ny (=) = max (N, (£),N(£)) and let k 2 N,

fixed. Since x € clco {xn :n 2 Nk}, there exists a sequence

() be arbitrarily

n o o \
{.E An Xy (i)} c co {xn :n 2 Nk} such that lim ;E Ah Xy (= X
o i=1 n n2o ji=1 n
; Q
RNE)) s
Therefore there is NS(k) 2 1 such that Ul % An Xo (i) xll < Zﬁ'for
' ‘ i=1 n
, Qn
Ny k. _ .k (i s
all n 2 NS(k) and hence if n 2 N3(k), T x T (iEIAn an(i))n <

g

On the other hand, by Lemma 1 and the choice of & and k, we get

Q
k, <", D e ik s .
nT (‘g An Xy (i)) .g'An T Xy (i)n < 1 for all n 2 1.
i=1 on o =1 n .
gn
Consequently, HTkx - xll s HTkx - Tk( X A(l)x DR[|
.. n v (i)
i=1 n
Qn n:
k (i) (i) .k
+ T (‘E AU Xy () .E A\, 0T Xy M
i=1 n i=1 n



, Q , Q S
, n n
(i) .k _ (i) _
+ H’§ An (T XW %D xw (i))” + H.E An xw (i xll < g,
i=1 n n i=1 n
where n =2 NS(k)'
This shows that HTkx - xll < = for k 2 N2(£). » Q. E. D.
Lemma 6. Suppose that X is & and {xn} is an almost—orbit of

T. Then the following hold:
¢P) {(xn,J(f-g))} converges for every f,g e F(D).

(ii) F(D n clco ww({xn})‘is at most a singleton.

Proof. Let A € (0,1) and f,g € F(T). By Lemma 3, for ény € >0
there exisf N8 2 1 and 12(8) 2 1 such that if k 2 N8 and n 2 i2(8),
Ntk k

( Axn+(1—A)f > = AT X~ (1-xfh < =,

s m
+ - - - T
ance‘ HAXx ' (- f ghh 8 Allx ,' ’ x_ 1

+ 1T™¢ Ax +(1-Mf ) - Amen - -2 fu o+ (1+am)nxxn+<1—x)f‘— gll

Q
- + + - -
S sup lIx o3 I'x I € + (1+a ) HAX a-xf ght

for m 2 Ns and n 2 i,(), we have

2

lim sup lAx +(1=-A)f = gll § sup lx_, o= TQxﬁH o+ Idx FU-DE - gl

+
m® 920

for n 2 i2(£). Letting n » ® and then £ ¢ 0, we get

lim sup HAxm+(1—A)f - gl £ lim inf HAxn+(1—A)f - gl

m-® n-2o

and so HAxn+(1—A)f - gill converges as n - o,



The boundedness of {Hxn— f"}nZO and the Fréchet differentiability

of X imply that aG,n) = @0 Af - g + A~ D% - ut - @
converges to (xn- f,J(f-g)) as A 4 O uniformly in n & 0.

Hence liﬁ (x_ - f,J(f—g)) = lim a(l,n) exists. This proves (i).
noo A=20+, now . . '

It follows from (i) that (u-v,J{f-g)) = 0 for all u,v € ww({xn})
and hence for all u, v e clco w ({x }>. Therefore, F(T) n clco w, ({x b

is at most a singleton. ’ Q. E. D.

We set

1n—l o
s(n;m) = ;izoxi+m (n21;mz20)

for an almost—orbit {xn} of T.

Lemma 7. Let {xn} be an almost—orbit of T. Then tﬁere exists
a sequence {in} of nonnegative integers with in 2> ® as n’4 w
satisfying the following:
Let {kn} be a sequence of nonnegative integers with kﬁ 2 in
for all n. Then, we‘have the following:
(i Hs(n;kn) - fll is convergent as n » o for every f € F(I.

(i If X satisfies Opial’s condition or if X is (F), then there

exists an element f of F(T) such that w-lim s(n;kn) = f.
n->w

Moreover, F(T) n clco ww({xn})'='{f} in case X is M.

Proof. By Lemma 3, there exist divergent sequences {Nh} and

{in} of nonnegative integers such that if k 2 Nn and i .2 in



10

n—1
(% ¥ x
p=0

k 1

n—1
) - % ¥ Tkx +i“ <o
p=0 P

2.4) T i

Let f € F(T) and {kn} be a sequence of nonnegative integers with

k 2 i for all n. By (2.4),
n n

k_+N_ -1
n n

1 n+m-—1 1n—l
— X + ) Y=V x - £O0n
“+m p=0 p=k +N nq=0 p+q+kn+m
n n
(k +N DD n+m—1 n—1 p+k -k
s L g, -T My 0
p=k +N q=0 PTaTX +m LR
n n
ln_l-p+kn+m—kn p+kn+m—kn In_l
+( =5y T Xovk T (; X4k > D
q=0" v, q=0 1
ptk -k n-1
+ ¢T ntm “(% L x> = £
q=0 LR
(kn+Nn)D 1n—l. 9 1
S — + = ¢ sup lx - T7x N+ =+ listn;k > - fll
n+m =0 920 Q+qfkn .q+kn n n
1 n+m—1
+ = Y o« . D whenever n + m 2 k_+ N_+ 1.
n+m p=k_+N p+kn+m kn n n
n . n
Therefore,
s (ntm; k ) = fil
- n+m
1 kn'H;n_1 ‘n+g-1 ol
s — + (=Y x - £
+ +
e p=0 p=k +N_ ne=g Ptk 4
1 n-1
—— ¥ (n=-p)lIx - x ]
+ : - - +n+m-
n{n m)p=1 | p+kn+m 1 p+kn+m n+m-1
(kﬁ+Nn)D n—-1 q ' 1 ‘
S ——— + =¥ sup lx - T'x N+ =+ listn;k > - fH
+ +
e "q=0 220 2+q+kn d kn n n



1

g el | * (m=1>D L |
* T m _ L %4k . -k D+ 5y formn+tmz2k + N+ 1
p=k_+N n+tm n -
n n
Hence
lim sup ls(m;k ) — flil & lim inf ls(;k > — fll.
m->® m now n

This proves (i),

Now, lgt W be the set of weak subsequential limits of

{s(n;kn)} as n » o, Since X is reflexive and‘{s(n;kn)} is bounded,
W is nonempty. To prove (ii) it suffices torshow that )

W c F(ID) and W is a singleton. By Lemmas 4 and 5, W ¢ F(T) and so
{Hs(n;kn) = vil} converges as n » ® for every v é W by (i),

First, suppose that k sétisfies Opial's condition and let v, € W,

i =1,2 and v,= w=1lim s (n(i);k .v), where {n(id}, i =1,2, are
. X n (i)
n(i)-o

subsequences of {n}. Suppose vy ¥ Vo Then, by Opial’s condition,

lim Us(n;k ) - vlu = lim Is(1);k (1)) - vln
n-o n n (1) n
< lim s 1)k ) = vl
n (1) e n{l) 2
= lim Hs(n;k > — vgall.
n 2
n-oo
In the same wdy we have lim Hs(;k ) = voll < 1lim Hs(n;k D = v, 1.
n 2 n 1
n-o n-owo
This is a contradiction. Consequently, v, = Vo and W is a singleton.

Next, suppose that X is (F). We can easily see that

[+ 2]
Wcnececlco {x :nz2i} =clco w ({x .
i=0 n w n

Thus W c F(T) n clco ww({xn}) and hence W is a singleton by Lemma 6

(iid. : Q. E.D.

-11-
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Lemma 8. Let {xn} be an almost-orbit of T and {kn} a sequence
of nonnegati#e integefs.'If {stﬁ;kh+ﬁ)} converges weakly ( or
strongly > as n » ®, uniformly in 8 2 0, to an element y of X, then
{s(n;9)} converges weakly ( or strongly ) as n » », uniformly inb

Q2 0, to vy.

Proof. Suppose that lim s(n;kn+ﬂ) = y uniformly in 2 2 Q.
n-oao )

Then, for any € > 0 there is N 2 1 such that Hs(N;kN+Q) -yl < =

for all 2 2 0.

k,—1
1 N n-1 _
s(n;Q2) - yil 8 ;( Y + % DJlUs(N;i+®) - yl
v - i=0 i=k
N
~ N-1 ,
+ L Y (N-1DIix - X R
nNi=l Tite-1 i+ﬂ+n—1
kD _
s N4 e ¢ DD o 2k + 1 and 2 2 0.
n . 2n 5 N :

This shows that lim s(n;Q =y uniformly in 2 2 O.
n-o>ow

In a similar way we can prove the weak case. Q. E.D.

Throughout the rest of this section, we assume that {xn} is an

almost—orbit of T satisfying

2.5 lim HIx. - x +.H exists uniformly in i 2 O.
new n, nti v )

Lemma 9. The following holds:

Q.1 n-1 1 m—1 n—1 q 1 m—1 q
13 _— — C— (e + = -
lim nT (2H.E Xipnt 2m.§ xi+m) (2n.£ T x, 2m'£ T xi+m)u 0.
9" m, n2® i=0 i=0



[ —

13

q gn7t 1"l o
In particular, lim NT (; X xi+n) =y ET Xi4nll = 0.
92, now i=0 i=0 ,
Proof. By Lemma 1,
-1 m—1 n—1 m—1
9.1 " 1] s 9 1 9
2.6 T (2n.§ xi+n+ 2m.§ xi+m) (2n.§ T X:ent 3 ’§ T xi+m)”
i=0 i=0 , T i=0 i=0
-1 1 .9 Q. _ :
s My ~( max {”xi+n xj+n" 1+ag"T X +n T xj+n"’ “xi+n xp+mH
9 8 _ 1 2 .8
1+ag”T X 4n T xp+mn. pr+m xq+m” 1+aQ”T xp+m T xq+mH

0s i,j Ssn-1, 08 p,q s m—l})

for any n,m 2 1 and 2 2 0.

For any € > 0 choose 6 > 0 such that Y—l(é) < /M. By the assumption,
there exists N 2 1 such that sup | lIIlx - x ,. 0 - llx - x ..l | < 6/4,
, . n nti m m+i
iz0
sup Hx . — Tfx W < 674, and «. < 6/4D for every 2, m, n 2 N.
n+r n Q

r20

' _ _ 1 Q .8
I1f 9, m, n 2 N, ”xi+n ‘xj+mH 1+“Q”T Xi4n T xj+m"
s lx - X I - ilx - X o+ dix - Tgx ﬂ

i+n j+m i+Q+n j+e+m i+Q+n i+n

+ - + - < < _

”xj+ﬂ+m T xj+m” aﬂ“xi+n xj+mu 6 for every i, j & O
Combining this with (2.6),

-1 m—1 n—1 m—1
g1 " 1 1 Q 1 Q
— ¥ + = - (== + = 7 <
TG B Xjun® om L Xi4m) ~ G L Txjnt op L Toxgy Ol < =
i=0 i=0 i=0 i=0
for every %, m, n 2 N. Q,E.D.
Lemma 10. {s(;:nd} is strongly convergent as n » ® to an

element y of F(D.

-13-
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Proof. Take f € F(T) and set u, = s{n;n) — f for n 2 1.
Similarly as the proof of Lemma 7 (i), using Lemma 9, we can see

that Hunn = lIs(n;n) — fll converges as n =2 o, Put d = lim Hlu Il
n-=>o n
Then, we have

2. lim Hun+ u Il = 2d for every i 2 1

n-a>o n+i
because llu_ — u 1 » 0 as n =» =,
n n+l
Since
‘ +k—-1
) _an ) ; (n=1DD
s (n+k;n+k) = o jEO s (n;n+k+i) + v(n,k), lv(n,k)Il s CICETSL
1 n—1
where v(n,k) = H?;:iyiglcn_l)(xi+n+k—l_ X 49 (ntk) =12 °
it follows that
1 n+k-1
”un+k+ um+kH s ”HIE Ly ( sth;ntk+id) + sm;mtk+id> — 2f >l
m-n ntk—-1
+ "?E:ETTH:ET IEO C sCn;mtk+id = £ DO
) m+k—1 '
+ = ¥ (sCmymtk+id = £ Ol + liv(n, kXNl + v (m, k)l
mtk,
i=n+k
+k—-1
g " -1 ) . ) . o 2 (m-n) D
I e izo N2 "¢ sn;n+k+id + s(m,m+k+1) ) fil + =

(n—1)D + (m—1)D
2 (n+k> 2 (mtk)

for m 2 n 2 1 and k 2 O.
Moreover,

N271 ¢ s intk+id) + s (mmtkFd )~ £l
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1 n-1 - "Q « 1 m—1 ; 9
s =— ¥ sup .lIx, - T'x., I + =¥  sup lix, - Tox,,
2n 520 220 j+tn+Q g+n 2mj=0 920 +m+Q j+m
=1 o n—1 m—1
1 Mot ik itk i+k 1 Mo L
+ NGE— 8 T X, Z ) - T (=— % x. + = ¥ x., 0l
2n j=0 j+n =0 J+m 2n =0 +n 2m._0 j+m

£+ e N2 itim + 27 s mim - £

for m, n &2 1 and i, k 2 O.

By Lemma 9, for any £ > 0 there exists N 2 1 §uch that

1 m—1 n-—1 m—1 S
k. 1" 1 . 1 k k
nT ( Xi4n + EE.E xi+m) (2n.§ T xi+n” Z T x. {+m I < s,
,1_0 i=0 i=0 Mi=0
r : ‘ \
i;g ”xn+r— T xnn < =, and oy < £/D for every k, m, n 2 N.

Consequently, we obtain

: 2{m—nm)D :;, (n—1>D (m—1)D
s 6 +dlu +ull + = o toa+to T 2mio

+ u

”un+k m+k

for every m2 n 2 N and k 2 N. Letting k » ©, it follows. from (2.7

that 2d £ 6 + Hun + umH for every m, n 2 N, Hence

2d & lim inf lu + u S 1lim sup Hlu + u Il £ 2d
n m n m

‘n, m=w n, ma>o

and so lim Ilun + umH = 2d. By uniform convexity of X

n, m>o

and lim llu N =4d, lim lls(h;nd
n-w n ‘ m-®

= smmil = 1lim llu_ - umH = 0,
n, m->

Put y = lim'sfn;n)‘

whence {s(n;n)} converges strongly.
n->o

Then we have

Ny = T2yl s ly = sC;ndll + WsCnsn) — s (n;n+D
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n—1 n-1 n-1
1 . 1 8 _ 2.1 o
+ un_g Kypneg™ T X0 + "n.§~T X4 T (n‘g X i) M
i=0- . i=0 i=0

+ 1T sny - Ty

S M+ Dily = stzm il + 28 + %D for all n, & 2 N.

)

Hence 1lim HTgy - yll = 0 and so y € F(T). Q. E. D.

Q>

3. Proof of Theorems.
Proof of Theorem 1.  Let {xn} be an almost—orbit of T. First,
suppose that X is (F), By Lemma 7 (ii), there exist a'sequence {in}
of nonnegative integers and anvelement‘y of F(T) such that

{y} = F(D n clco ww({xn}) and w—1lim s(n;kn) = y for any sequence
n-=>w

{k_} with k. 2 i_ for all n. This implies that
n “n n

w—lim s(n;in+ﬁ) = y uniformly in 2 2 0. Hence {xn} is weakly almost
n-o

convergent to y by Lemma 8.

Next, suppose that X satisfies Opial’s condition. We‘denote by A
the set of sequences {kn} of noﬁnegative integers with kn'z iﬁ‘for
éll n, where {in} is as in Lemma 7. It follows from Lemma 7 (iid
that Hs(n;kh) - fl conyerges as nké o for every {kn} e A
and f € F(T). Define r({kn};f), r({kn}), and r by

r({kn};f) = lim s n;k ) - £l for (k } € A and f e F(D),

n-=wo

r({kn}) = inf {r({kn};f) : f e F(T)} for {kn} e A,
and
r= inf {r({kn}) : {kn) e A},

¢+

respectively. Now, choose {k;l)} e A, 1 =1,2,--+, such that
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(.

. (i) _ ‘ —
lim r({kn }) = r, and let hn,— ma§ {kn

io®

1 £isn} + N forn 2 1,

where {Nn} is as in the proof of Lemma 7,2CIearlyr{hn}\e A.

Moreover, we obtain
(3. D r({hn)) = r.

To show this, let n 2 i 2 1 and f € F(T). Then,

o nm1 R
(3. 2 Hs(n;hn) - fll & H.E ij+h - T X (i)”
j=0 n j+k
. n
,n=1 hn—k;i) hn—kél) n-1
+ ol LT X iy T T (; X (i)>u
j=0 J+kn j=0 J+kn
(i
n-1 n—1
+qqT " (% X gy) — A0S % T sup Ix D - T ot %
j=0 j+k j=0 920 4k +Q j+k
n . n n
+ A+ (.)>ns(n;k;1)> - .
h -k*
n n

Letting n » », it follows that r({hn};f) s r({kél)};f)
id

for all f € F(T) and so r({hn}) < lim r({kn

i2o

But r S.f({hn}) by the definition of r. Thus (3.1) holds.

}» = r.

Since F(T) is closed convex ( For example, see [3, Theorem 2].) and
{s(n;hn)} is bounded, the reflexivity of X implies that there is an
element y of F(T) such that rc{h };y) = r{h b =r ).

Set hh =h + N . Then we shall show
n n n

3.3 w—1im s(n;h;+ﬂ) =y uniformly in & 2 O.

If this is shown, the conclusion follows from Lemma 8.

Z17-
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‘ : , , ,
To show (3.3) let {Qn} be an arbitrary sequence such that &n = hh
for all n. {Qn} e A and by Lemma 7 (ii) there exists

z € F€T) such that w—lim s(n;ﬁn) = z. Suppose z ¥ y.
n->o

Then Opial’s condition implies that

r({&n}) S lim Hs(n;ﬂn) - zlIl ' < lim Hs(n;ﬁn) - yll = r({Qh};y).

n-ow n-w

But, by the same way as in (3.2), we have
r({ﬁn};y) s r({hn};y) s r({hn}) = r. Thus r({Rn}) < r and this

contradicts the definition of r. Hence z = y and so w*lim,s(n;&n) = vy,
: ‘now

Clearly, this implies (3.3). : Q. E. D.

Proof of Theorem 2. Let {xn} be an almost—orbit of T and

suppose that lim Ilix_ - xn+i” exists uniformly in i 2 0,
n-ow

We shall show that there exists an element y of F(T) such that
lim s(;2n+9) = y uniformly in 2 2 0. By Lemma 9, for any £ > 0
n->o ! R

there exists N 2 1 such that

-1 n—1
1" n+e _ .nt8 1 , ,
I 5T Xitn T (n X xi+n)” < = and sup lIx

- Tran < £
i=0 : i=0 r20

n+r

~for every n 2 N and & 2 0.

By Lemma 10, there exists an element y of F(T) such that

lim s(;n) = y. Then we have
n-o
n-—1
1 n+Q
. + p— —— —
lIs (n;2n+9Q) yll s niEOHxi+2n+g T xi+n“
n—1 . n—1 i n—1
+ +
T A LA NI s o N D L I T & hliae S VU S
n,- i+n n,-. . i+n n,_, i+tn
i=0 i=0 , i=0
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-4 2é'+ M'Hs(n;n) - yH for every n 2 N and 2 2 0.

Hence lim s(n;2n+%) = y uniformly in 2 2 0 and so the conclusion
) n-o

follows -from Lemma 8. : , d Q. E.D.
Remark. The assumption » C is bounded ” in Theorems 1 and 2

may be replaced by * F(T) » ¢ ”,
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