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ABSTRACT

We show the existence of a lexicographically optimal base of a submodular system
with respect to a weight vector. We also show a greedy procedure to get it through

an algebraic consideration.

1. Introduction

Submodular system has been developed by S. Fujishige [1978-1987]. Le
posed an algorithm to get a lexicographically optimal ‘base of a polymatroid
with respect to a weight vector through geometric consideration [1980]. We
have shown that the same results hold for a submodular system with f(A) >
0(9 # A € D) and have presented a greedy procedure in an algebraic way
[1987]. In response to our work and to questions proposed by the author, S.
Fujishige [1987] has extended the same results for an arbitrary submodular sy-
stem and has presented an algroithm to get it. His algorithm, which is not
a direct extension of the algorithm for polymatroid, contains an oracle com-
putation which has been pointed out by G. Morton, R. von Randow and K.
Ringwald [1985]. Here, we show a greedy procedure to get it through algebraic
consideration, which is quite different from Fujishige's algorithm {1980, 1987|,
but is an algebraic counterpart of his geometric consideralion.

Submodular system is essentially a poset greedoid with submodular func-
tion on it, which is implicitly stated in S. Fujishige and N. Tomizawa [1983].
Greedoids are created and has been investigated by B. Korte and L. Lovasas
[1982-1986]. Our result is a natural consequence through the study of greedo-
ids and submodular systems.
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2. Submodular system, submodular polyhedra and their basic characteri-

stics

We use the same symbol and terminology as that of S. Fujishige (1934]. Let
E be a finite set and denote by 2% the set of all the subsets of E. Let a collection
D of subsets of E be a distributive lattice with set union and intersection as the
lattice operations, i.e., for any X,Y € D we have X UY, XNY € D. A function
f from D to the set It of reals is called a submodular function on D if {or each
pairof X,Y € D

FX)+[(Y) 2 f(XUY)+ f(XNY).

A pair (D, f) of a distributive lattice D C 2% and a submodular function
f: D — Ris called a submodular system. We assume that 0, E € D and
f(9) = 0. Note that the value f(0) doesn't affect the other value f(A) at A € D
because AUD = A4, ANP = 0. leen a submodular system (D, f), define a
polyhedron P, by ‘

Py i={z € RF | 3(X) < f(X)(¥X € D)},

where 1€ is the set of vectors z = (z(e) : e € E) with coordinates indexed by
E and z(e) € R(e € E) and

z(X) 1= Z a:(e).“b

eeX

We call Py the submodular polyhedron associated with the submodular system
(D, f). Define
. By = {z € Py|=(B) = f(E)},

which is called the base polyhe’dran associated with (D, f).

Lemma 2.1 Let z € Py and A,B € D. If z(A) = f(A),z(B) = f(B), then
z(ANB) = f(ANB) and z(AU B) = f(AUB) hold

Proof. Same as that of S. Fujishige [1978].
U

Let x. be a characteristic funclion of u, i.e., xu(e) = 1 for e = u and
xu(€) = 0 for e € E\{u}. Define a saturation function sat ():P; — 2E by
sat(z) 1= {u € E | Vd>g,7 + dxu & Pr}(z € P¢). Then we have the following
Jemma, where p(z) := (A€ D|z(A) = f(A)} e
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Lenuna 2.2 Let = € Py. Then sat(z) satisfies

sat(z) € D, z(sat(z)) = f(sat(z)).

Furthermore, p(z) is a distributive lattice with a partial order relation
defined by the set inclusion and sat(z) is the maximum element of p(z).

~ Proof. Same as that of S. Fujishige [1980].

u
Note that sat(z) is a function from Py into D.
Lemma 2.3 Let z € P;. Then z € By iff sat(z) = E.
Proof. Use the definition of By ah‘d Lemma 2.2.
U

For z € Py,u € sat(z), we can define dependence function dep(): Py — D
and also we can introduce capacity, exchande capacity and so on (Fujishige
(1984,1987]), but we don’t go into the details because we don’t use them.

Let n := |E|. For any real sequences a = (aj,...,an) and b = (by,...,b,)
of length n, a is called lexicographically greater than or equal to b if [or some
je'{l)""n}_— ‘

a;i=0b (i=1,...,5-1)
aj > b,’

or

a;=0b (i=1,...,n).

A vector w € RF such that w(e) > O(e € E) is called a weight vector. For
a vector ¢ € RF, denote by T(z) the n—tuple (or sequence) of the numbers
z(e)(e € E) arranged in order of increasing magnitude. Given a weight vector
w, a base z of (D, f) is called a lezicographically optimal base with respect
to the weight vector w if the n—tuple T'((z(e)/w(e))eck) is lexicographically
maximum among all n—-tuples T'((y(e)/w(e))eer) for all bases y of (D, f). The.
mathematical Programming problem to get z € B such that

Lezicographically mazimum

T((z(e)/w(e))ece) = subject toy € By T((y(e)/w(e))ecE)

is called wlob (weighted lexicographically optimal base) problem for submodular
system. _ ;
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3. Existence and uniqueness of a lexicographically optimal base with

respect to a weight vector

Let ¢; := rﬁin{% | 0 # A € D},uc,(e) := cyw(e)(e € E). Then we
see that u., € Py holds. By Lemma 2.2, we have u.,(sat(u.,)) = f(sat(u.,))-
Let A; be a set such that ¢ = L4100 #£ A, € D. Then 4; C sat(u,,),
because Ve € Ay, Vd > 0,(ue, + dxe)(41) = ciw(Ay) +d > f(A1). Thus we get
0 # sat(uc,) € D. Therefore, we are in a position such that

e, (e) = cyw(e)(e € E),uc, € Py,0 # sat(uc,) € D and v, (sat(uc,)) = f(sat(u,)).
‘ (3.1)

In case sat(u.,) = E, by Lemma 2.3, we see that
uc, € By. STOP

In case sat(u.,) € £, let ¢ := min{ w{;’;{;;‘(y“n | A\sat(uc,) # 9,4 € D}.
ey
Then by Lemma 2.1, we get €. > 0. Let ¢z := ¢; - €1, and let

[ crw(e) = ue,(e) - for e € sat(u.,),
'U,c:(e) = { C:U)(e) — uq(e) + elw(e) forec E\sat(ucl).

By the definition of u., and ¢, and by the fact that 4., € Py, we get u., €
P;. Furthermore we get . p(u.,) C p(u.,) and so sat(u.) C sat(uc,). From
the definition of ¢;, we have a set A; € D, A,\sat(u,) # @ such that ¢ =

](Al)_ur. (Al)
w(A\5al(uey))" Lben

Ue,y (Al) = Ue, (Al n sat(ucl)) + u‘-‘z(Al \sat(uu))
= cyw(A Nsat(u,,)) + (c1 + €1 )w(A4; \sat(u,,))[by the definition of u.,]
= cw(A) + erw(di\sat(ue,)) = ue, (A1) + cw(di\sat(ue,)) = f(4i)
and so 4; € p(u.,). B

By Lemma 2.1 and sat(u.,) € p(ﬁc,), we have sat (u.,) €* sat(u.,)UA €
p(ue,)- Thus sat(u.,) € sat(u.,). From Lemma 2.2 and u., € Py, we have

ucz(sat(u‘!z )) = f(sat(ucz )) '(3'2)

Therefore, we are in a position such that

wey(e) = {qw(e)(e € sal(u,,))

caw(e)(e € E\sat(uc,)), uc € Ps(i =1,2),9 # sal(u,,) € sat(u,) € D,

uc;(sat(ue;)) = f(sat(ue))(1 £i1<2)and ¢y < .
(3.3)

* X € Y means that X is a proper subset of Y.
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Continuing this process, we get u., such that sat(u.,) = E, i.e., uc, € By. Set

[ c1(e € sat(u,)) )

ca2(e € sat(u.,)\sat(uc,))

c(e) := ¢ ‘ ) (3.4)

;:;(e € sat(uc; )\sat(uC£—i))

{ cp(e € sat(u,)\sat(u,_,) = E\sat(u,_,). )
Then we have

( ciw(e)(e € sat(uc,))
caw(e)(e € sat(uc,)\sat(uc,))

4 () = 0 Coun(e)(e € sat(uer)\sat(uer_,)

{ ;:pw(e)(e € sat(hc’)\sat(uc,_‘))

ﬁcn € By,0 #sat(u,) € ... € sat(u.,) = E which are all in D, u,,(sat(u,)) =
f(sat(ue;))(1 <i < p) and - | |
| g <...<Cp. v (3.5)'

Note. For a positive submodular system (D, f), i.e., submodular system with
f(A) > 0(0 # A € D), we see that ¢; > 0.

Theorem 3.1 (Existence) Let c(e)(e € E) be those defined by (3.4). Then the

vector z defined by ,
z = (c(e)w(e))eck ‘ - (3.9)
is a lexicographically optimal base with respect to the weight vector w.

Proof. Let z € By. We show that

T(((e)/w(e))eez) T T((z(e)/w(e))ecs) (3.7)
holds. First note that
HA)<f(4) (0£AeD) (3.8)

holds. Let ¢q := (ql,...,an), n = |E|, be any permutation corresponding to z
such that

_ z(4;) <.

z(q1) _ =(9;,) (Tjs+r) _
w(gi+1) w(gy)

= =1 <

U(ql) a w(?il)

-
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2(qj, _y41) z(g;,) . ~ — .
-‘;Gi’;ﬁj =, .. == ;G!;:—)- = CpyJp = N, Cjy = 0.Let §; = {qj‘_‘+1,qj‘_l+2,...,q“}(l <

i < p). Then we have Sy = sat(uc, ), Si = sat(uc,)\sal(ue,_,)(2 < i < p).
If 242 < ) then (3.7) holds.

w(qy)
It *:(th) 2 \:(q:) < ¢y, the (3.7) holds.
IS 2 e ’3%%% > ¢y, then we see that
z(e) z(e) - ‘
= = S 3.9
wle) w(e) ci(e € 1) | (3.9)

holds by z(S5)) 2 ciw(851) = e (S1) = f(S1) and by (3.8).
I 2e) = ci(e € S1); Haiyen) o ¢z, then (3.7) holds.

w(e) 'ow(gy 1) :

z(e z(q; ) z(q; )
I r,,i(;)j = él(e € S1), w(?i:.ill)- 2 c3, w&;‘j’,) < ¢z, then (3.7) holds.
If %(% = Cl(e € Sl)r““’*“;((?i:l)) 2> Cz,~-~,—:,—((%’;t"-); > ¢, then we see that —;—((‘;)5 =
cy = Z((:))(e € 53) holds because z(e) = cyw(e)(e € $)) and z(52 + 5;) <

o5}

f(52+51), f(52+51) == uc,(52+51) = z(51)+'c2w(52) < z(52+‘51). Continuin
in this way, we see that (3.7) holds lor any z € By.

a

Theorem 3.2 (Uniqueness, Fujishige, S. [1980]) Let c(e)(e € E) be those defi-
ned by (3.4). Then the vector z defined by (3.6) is the unique lexicographically
optimal base of (D, f) with respect to a weight vector w.

Proof. Same as that of Fujishige, S. [1980]. Use (3.5), especially sat(u,) €
D, u.(sat(uc,;)) = f(sat(u,))-
U

Based on these algebraic arguments, we present an algorithm to get the
lexicographically optimal base of a submodular system (D, f) with respect to a
weight vector w. o

Algorithin to get the lexicographically optimal base |
Step 1.- Set ¢ :=1 and compute ¢; := min{ﬁ{% | ¢ #AeD} and
set uc(e) i= ciw(e)(e € E).

Step 2. K sat(ug) = L, then STOD.
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Step 3. Compute ¢; := min{j((:\);a";'u(:;) | AeD,A\sat(ue) #0}
and set ci41 = ¢i + € and get

L uc;( foree t(uc;)
uca+1(e) = {uc‘(zg + e;w(e) f(o)r e c ?\sat(uc‘).

Set ¢ :=1-+1 and go fo Step 2.

Theorem 3.3  (Fujishige, S. [1980]) Let £ € By and let w be a weight vector.
Define
é(e) = E(e)/w(e)(e € E)

and let the distinct numbers of ¢(e)(e € E) be given by
€1 <cé<...<ép.

Furthermore, define $; C E(1<i<p)bySi:={ee E|ée) <&}l <i<p).
Then the following three conditions are equivalent:

(i) # is the lexicographically optimal base of Py with respect to w;
(i) $i €D and 3(5:) = f(5:)(1 <i<p);
(iii) For any e € S'i’ 0 # dep(2,¢e) C 3;(1 <i< p)-

Bemark If one of the three conditions holds, then we have j = p.

Given a submodular system (D, f) and a weight vector w and p > 1, define
a mathematical programming problem

e e)? :
P  minimize fw(:c) - = Z -1_1)—2(—:;(;)%:1‘ subject to z € By and z > 0.

Fujishige, S. [1980]showed that for a polymatroid (D, f) with p = 2, its unique
solution is the lexicograhphically optimal base w.r.t. w. Morton, G. and von
Randow, R. and Ringwald, K. [1985] extended it for p > 1, where (D, f) is a
polymatroid. We can easily see that for a positive submodular system (D, f)
with p > 1, the same result holds. As for an arbitrary submodular system, p
might be infeasible. For example, for a submodular system (D, f) with f(A) <
0 (A € D). So, consider another problem

P : minimize f,(z) = 1 >

p e€EFE

z(e)?
w(e)p—1

subject to z € By.
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We have an example for which P has no optimal solution as follows: Let I =
{1,2,3},D = {9,{3},{1,2,3}}, f(0) = 0, f({3}) = -2, f({1,2,3}) = —3. Then
(D, f) is a submodular system with base polybhedron By = {(z;,2,,23) | 1 +
T4y = —3,2zy < —2}. Let w = (1,1,1). The lexicographically optinal base z*
becomes z* = (——%,—%,—2). Letp=3andlet 2y =z, = ——(%—3—2,1:3 ={(< -2).
Then (z1,z3,2s) € By with 3fu(z) = — 1(t+3)* - —o00 as t —+ o0. Problem
P for this case has no minimum so}ution. For an even natural number p, if there
exists a minimum solution £ for P, then we see that £ is the lexicographically
optimal base w.r.t. w. ,

Theorem 3.4  (Fujishige, S. [1980], Morton, G. and von Randow, R. and Ring-

wald, K. [1985])

Let z* be the lexicographically optimal base of a positive submodular system
(D, f) with respect to a weight vector w and let p > 1. Then z* is the unique

optimal solution of the problem p.

4. Example

We will show here that the first problem of G. Morton, R. von Randow
and K. Ringwald [1985]can be solved within our framework. Their problem is
as follows: ‘

minz Ajz} subject to Az > ¢, z 20, (4.1)

i=1

where A; > 0(1<j<n),p>licn2cp1>...2¢1 20, and

. 1, 123
A= (a;j),.,m with a;j = {0, i 2 :;.’
) .

Let e; be the i-th column vector of 4, F := {e; | 1 < i < n}, F; = {e: |
1<:1< .7}(1 SJ < n))FO = @1D]' = E\FJ = {CJ'.H,...,C,,}(O < ] < n’)'
Let D = {E = Dy, Dy,...,Dn_1,D,, = 0}. Let p(D;) := ¢, — ¢;(0 < j.< n),
where ¢y = 0. Then (£, D, p) is a submodular system with 0, E € D, p(0) = 0.
For z,y € R}, define z < y if z(e) < y(e)(e € L), where I, is the set of
nonnegative reals. (IR}, <) is a poset with this partial order. Define P := {z €
R} | Az > c},0(4.1) := the set of optimal solutions to (4.1), minimal P :=
the set of minimal elements of P. Then we easily see that

0(4.1) C B, C minimal P C P,

Hence rmue'm, ¢ 4 niuiva\wnt +to
. _J_ T '_ N
mim { %x‘eifw@) ”xé%“_}y

173



Lexicographically optimal bsse of a submodular system

174

where w(e;) = /\,_Gé—" Let dj = Yi_, w(es)(1' < j < n) and dg = 0. Then

w(D;) =dn —d;(0 < j < n). Apply our algorithm to this problem:

—Cp €h—C Cph—C2

L

Cn — Cn-1

cy = mm{p( i) j0<j<n- 1}—-mm{

w(D;) dn—do'dn—di'du—ds"

,dn"‘dn—-l )

Let .s'(O) = n and ¢; = }:—___—:‘;J'TE% and uc;(e;) = cyw(e;)(1 5 i < n). Then

us(D;) = ¢(dn — dj), sat(u) = U{A | A € D,u.(A) = p(A)} = D,y for
which s'(1) is the least index j such that ¢, = -3—"—_—9— 0 < s'(1) < $'(0).
If s'(1) = 0, then sat(uc-‘) = E. STOP.
If s'(1) # 0, then sat(ucrl) # E and so compute

' p(A) —ua(A) cn —¢j — ¢;(dn — dj)

"— M ‘1 , — . n 7 1 n J

€, := min w(A\sat(ucrl)) |A e D,A\sat(uc‘) # 0} = min{ docy — 4; |
0<j<n—1,j<s'(1)}, where 24— aldn=di) _ Cr =6 ¢

d_'l(l) - d_, - d,'(l) - d}

Let e', PP e . c'l Then (dyr(2)s €or(2y) is @ point (dj,cj), 0 < j < s'(1)

iy =du ()
. . c —¢j ‘
with the smallest slope coeflicient ;%(L::Td’;. Hence we see that
- .

s'(0)=n= s(m),s'(lj = 3(m — 1)‘,..>.,s'(m ~1) = s(1),s'(m) = 3(0),

which is the same result as that of G. Morton, R. von Randow and K. Ringwald,
although the decision proceeds inversely. The reader would have noticed that
the (E, D) here, is a poset greedoid which comes from a chain as follows:

€1
i €n-1
Cen

The reason for the inverse decision process will be investigated in another paper.
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