ooooobpooooo 89
7320 19900 89-101

A Characterization of Expansiveness of Shift Homeomorphisms

of Inverse Limits of Graphs

Hiroshima University 7{)[13‘&7\% (Hisao KATO)

1. Introduction.

All spaces under consideration are assumed to be metric. By a
continuum, we mean a compact connected nondegenerate space. Let X
be a compact metric space with metric d. A homeomorphism f: X -+ X
is called expansive if there is a positive number ¢ > 0 (called
an ezpansive constant for f) such that if x and y are different

points of X, then there is an integer n = n(x,y) € Z such that
act™(x), " (y)) > c.

Expansiveness does not depend on the choice of metric d of X. In
[15], Mane proved that if f: X » X is an expansive homeomorphism
of a compact metric space X, then dim X < «» and every minimal

set is O-dimensional. This result shows that there is some
restriction on thch spaces admit expansive homeomorphisms. we
are interested in the following problem [3]: What kinds of
continua admit expansive homeomorphisms? In [19], Williams first
showed that there is a l1-dimensional continuum admiting an

expansive homeomorphisms. In fact, he proved that
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the shift homeomorphism of the dyadic solenoid is expansive.
Ffom.continuum théory in topology, we know that'inversé iimit
spaces yield powerful techniques for constructing complicated
spaces and maps'from-simplé spaces and maps. Naturally, we are
also interested in the next problem: What kinds of maps induce
expansiveness of the shift homeomorphisms? It is well-known that
positively expansive maps induce expansiveness of the shift
homeomorphisms(e.g.,see [19]). In [6], Jacobson and Utz asserted
that shift hémeomorphisms of the inverse l1limit of every
surjectiﬁé map on an arc‘is not expénsiﬁe (see [1,p. 648] for the
complete proof).

It is known that "Plykin's attraétors" are l-dimensional continua
in the plane Rz and are examples of Williams' 1-dimensional
expanding attractors, homeomorphisms on which are not only
expansive homeomorphisms

but even hyperbolic diffeomorphisms (see [20] and

[21]). Also, Plykin's attractors can be represented as inverse
limits of maps g: K = K of graphs such that the shift homeomor-
bhisms of the maps are expansive (see [20, p. 243] and [21, p.
121]1). In [10], we proved that if an onto map f: G » G of a
graph“G is null—homotopié, then the shift homeomorphism ¥ of f is
not expansive. In particular,

shiff homeomorbhisms of tree-like continua are not

" expansive. Also, we proved that |

for;any graph G containing a simble closed curve, there is

an onto map f: G - G such that the shift homeomorphism ¥ of f is



expansive. Hence, there is a G-like continuum X admiting an

expansive homeomorphism.

In this note, we investigate expansive homeomorphisms from a

point of view of inverse limits.

2. A characterization of expansiveness of shift homeomorphisms
of inverse limits of graphs.

Let X be a compact metric space with metric d. By the hyperspace
of X, we mean C(X) = {A]| A is a nonempty subcontinuum of X} with

the Hausdorff metric d i.e., dH(A,B) = inf{g > 0| Ue(A) > B and

q’
U,(B) > A}, where U_(A) denotes the g-neighborhood of A in X. It
is well-known that if X is a continuum, then C(X) is arcwise
connected.

Let f be an expansive homeomorphism of a cdmpact metric space X

with an expansive constant ¢ > 0, If g > 0, let W: and Wg be the

local stable and unstable families of subcontinua of X defined by

{A € C(X)| diam f®(A) < & for any n > 0},

mem®n

{A € C(X)] diam f ™(A) < g for any n > O}.

Also, define families w5 and wY of stabbe and unstable

subcontinta as

=
i

X n
{A € C(X)| lim_,_diam f"(A) = 0},

{A € C(X)| lim _diam £ (A) = 0}.
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Then we know that if § < c, then W° = U{f_n(A)I A € W:, n z 0}

and W9 = u{r(A)] A € wg, n > 0} (see [15, p.3151).

Let X be a compact metric space with metric d. For a map
f: X = X, let

(X, ) = {(x)yo,] x5€ X, £(x;,,) = x,(1 2 D}.

1)
Define a metric d for (X,f) by

~

~ _ © i ~ oo _ o
a(xy ) - zi=1d(x1’yi)/2 ’ Where X = (Xi)i=1r y = (y1)1=1 E

(X,f).

@

Then the space (X,f) is called the inverse lLimit of the map f:
X - X. Define a map ¥ by
o [+ 0] oo

FOxy) o) = (F(x)) gy = (kg q) 4~
Then T is a homeomorphism and called the shift homeomorphism of
the map f.
Let pn:(X,f) - Xn = X be the projection defined by pn((xi)i=l) =
X .
n
Let A be a closed subset of a compact metric space X with metric

d. Amap f: X » X is positively expansive on A if there is

a positive number ¢ > 0 such that if X, y € A and x # y, then



there is a natural number n > 0 such:' that
a(e™(x), " (y)) > c.

Such a positive number c¢ is called a positively expansive consit-
ant for f|A. If f: X » X is a positively expansive map dn X,
then f is called positively expansive. Clearly, if f: X » X is a
positively expansive map on A, then f|A: A - X is locally injec-
tive.

Let 4 be a finite closed covering of a compact metric space X.

A map f: X » X is called a positively pseudo—ezxpansive map with

regpect to 4 if

(Pl) f is positivey expansive on A for each A € 4, and
(Pz) for the case A, B € 4 and A n B # ¢, one of the foll-

owing two conditions holds:

(#) f is positively expansive on A U B.
(##) If f is not positively expansive on A U B, then there
is a natural number k > 1 such that for any A', A" € 4 with

A" n A" # ¢,
k- . * ” k A4 ” .
f"(A'VA") n (A-B) =¢ or f (A" UA") n (B - A) = ¢.

Amap f: X » X is called positively pseudo—-ezxpangsive if f is

positively pseudo-expansive with respect to some finite closed
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covering 4 of X. This notion is important for constructing vari-
ous kinds of expansive homeomorphisms(e.g., see (2.1), (2.2) and
(2.3)). By the definitions, positively expansive maps imply posi-
tively pseudo-expansive maps, but the converse assertion is not
true. Concerning positively pseudo-expansive maps of graphs (=
l1-dimensional compact connected polyhedra), we know the following

facts (see [101]).

(2.1). If f: X » X be a positively pseudo-expansive map
of a compact metric space X, then the shift homeomorphism T of f

is expansive.

(2.2). Let G be a graph. Then G admit a positively pseudo-

erpansive map if and only if G contains a simple closed ciurve.

(2.3). Let f: G » G be an onto map of a graph G. [If £ ig
null-homotopic, then the shift homeomorphism ¥ is not expansive,

hence f isynot a positively pseudo—-erpansive map.

(2.4). If f: G > G is a positively ezpansive map of a graph G,
then the inverse limit space (G,f) of f can not be embedded in
the plane, but there are various kinds of positively pseudo-
erpansive maps

such that the inverse Limits of the maps can be embeddable in the

‘plane. -
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Now, we shall give the following characterization of
expansiveness of shift homeomorphisms of inverse limits of graphs

as follows [12].

(2.5) Theorem. Let f: G - G be an onto map of a graph G. Then

the shift homeomorphism T of f is expansive if and only if f is a
positively pseudo-erpansive map‘uith respect to some finite
closed over 4 of G, where 4 = {e| e is an edge of some simplieal
complezr K' such that

IK*| = G}.

(2.6) Corollary. Let f: G » G be an onto map of a graph G.
If the shift homeomorphism T of f is expansive, then there is a
positive number oo > 0 such that if A € C((G,f)) and diam A < o,

A€W = {Dec(6,1r)]| 1im_ diam ¥™" D) = 0}. Also, for any

-5
x € (G,f), there is an arc A in (G,f) containing x such that

A € wY.

(2.7) Corollary. Let f: X » X be an onto map of a graph G.
If ¥ is an expansive homeomorphism, themn W° = {{x}| x € (G,f)},

where W° = {A € C((G,f))| lim ,_diam ?"(a) = 0}.

-
(2.8) Remark. In the statement of (2.5), the cases of
n—dimensional polyhedra(n_z 2) are not true. It is well-known
there is an expansive homeomorphism f of the 2-torus T = Slx Sl.

The shift homéomorphism T of f is topologically conjugate to f.
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Note that if f: X » X is an expansive homeomorphism of a Peano
continuum X, then for any open set U, f|U is not positively
expansive. Then ¥ is expansive, but f is not positively

pseudo-expansive.

(2.9) Remark. There is an expansive homeomorphism F of a
1-dimensional continuum X such that F and F_1 can not be repre-

sented by ‘shift homeomorphisms of maps of graphs.

Let 81 = {z € C| |z| = 1}, where C is the set of complex numbers

and let f: S1 - S1 be a map defined by f(elg) = e129_ Then ¥ is

an expansive homeomorphism of the dyadic solenoid (Sl,f). Let p
be the fixed point of ¥. Let D = (Sl,f) and

let X = (Dl,pl) v (D2’p2) be the

one point union of two copies of (D,p).

Define a map F: X » X by F(x) = T(x) for

x € D; and F(x) = ¥ 1(x) for x € D

expansive homeomorphism.

- By (2.7), F is a desired

(2.10) Example. In [20] and [21], it was shown that for each

n=3,4,5,.., there exist a graph Gn and an onto map g," Gn - Gn

0 )
such that nl(Gn) = I#Z». . . *7, g, is a homotopy equivalence,
the shift homeomorphism én of gn is expansive (hence, gn is a
positively pseudo-expansive map) and (Gn,gn) c Rz.

Here, we give an example which implies that

the case n = 2 is not true. Let G2 be the one point union of two
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oriented circles a and b. Note that nl(Gz) = Z*Z. Define a map

8o! G2 - G2 by

*

ol ol

. *
ol

ol pd
ol ol

Then we can easily see that gs is a positively pseudo-expansive
and g2 is a homotopy equivalence. In fact, the homotopy inverse

h: G2 - G2 is defined by

ol el

Hence (Gz,gz) is movable.

Also, we can easily see that the case n = 1 is not true, i.e.,
for any graph G1 with nl(Gl) = 71, there are ﬁo positively
pseudo-expansive maps which are homotopy equivalences. The case
n = 0 is not true. In fact, there are no positively pseudo-
expansive maps on trees [11]. But, we can prove that if f: G » G
is a positively pseudo-expansive map on G with nl(G) = Z#7Z, then
the inverse limit (G,f) of f can not be embedded in the plane,
which implies that Plykin's example is best possible concerning
expansiveness of shift homeomorphisms and embedding into the

plane.
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3. Stable and unstable subcontinua of expansive homeomorphisms.
In [9], we proved that there are no expansive homeomorphisms on
Suslinian continua. In this section, we give more precise result

which is related to the stable and unstable properties [12].

(3.1) Theorem. Let X be a compact metric space with dim X 2 1.
If £f: X - X ig8 an expansive homeomorphism, then there is a
closed subset Z of X such that each component of Z is mnondegene-
rate, the space of components of Z is a Cantor set,

the decomposition of 2

into components is continuous (i.e., upper—semi and lower—-semi

continuous), and all components of Z are contained in W° or W9 .

3. Problems.

The following problems remain open.

Problem 1. For each n'= 1, 2, 3, does there exist a plane
continuum Xn admiting an expansive homeomorphism such that R2— Xn
has n-components? Also, is there a tree-like continuum admiting
expansive homeomorphisms? (Note that there are no Peano continua
in the plane which admit expansive homeomorphisms and there are
no hereditarily decomposable tree-like (or circle-like) continua

admiting expansive homeomorphisms.)

Problem 2. Does there exist a l1-dimensional Peano continuum

admiting an expansive homeomorphism? How about Menger's
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universal curve?

Problem 3. If a continuum X admits an expansive homeomorphism,
does X contain an indecomposable (nondegenerate) subcontinuum?
{Note that if a continuum X is tree-like or circle-like, this

problem has a positive answer.)
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