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Split Rank One Semisimple Symmetric Spaces and c-Functions

J. Sekiguchi

ABSTRACT: 94Llit rank one gdemisinrle oymmefric o9faced and their
étzuctuieo are discugsed and o nethod of comiuting c—funclions for
ouck osymmelric a9rtaces are exrlained. Hoal #4arls of thio nole are

taged on a joint word with 7. BGshina.

§1. Split rank one semisimple symmetric spaces. Let g be a
semisimple Lie algebra and let ¢ be its involution. Denote by h and g
the (+1)- and (-1)-eigenspaces of 0, respectively. Then (g,bh) is
called a (gemisimrle) sypmelric fair. It is known the existence of a
Cartan involution 6 of g commuting with o. Let g={+p be the
corresponding Cartan decomposition. Take a maximal abelian subspace a
of pNnq and a maximal abelian subspace j of g containing a. Then dim |
(resp. dim a) is called the rani (resp. 9ALil 2ané) of (g,h). In
particular, (g8,b) is of 9ALil 1ank one if dim a = 1. There are a lot
of such symmetric pairs which we are going to list up (cf. [0S2,

Table 111):.1,(p,q)=(s0(p+l,q+1l),s0(p+1,q)), I?(p,q)=(so(p+q+1,1),

1
so(p+l)®so(q,1)), Iz(p,q)=(su(p+1,q+l),u(p+1,q)), I?(p,q)=
(su{p+q+l,1),su(p+1)®su(q,1)®iR), Ia(p,q)=<sp(p+1,q+1),
sp(p+l,q)®sp(l)), Ig(p.q)=(sp(p+q+1,1),sp(p+1>$sp(q,1)), Ii=(i4(_20).
$0(9)), 12=(f, .0 ,s0(8,1)), 1, (pr=(sl(p+2,R),8l(p+1,R)), 11{(p)=
(su(p+1,1),s0(p+1,1)), Ilz(p)=(sp(p+2,lR),sp(p+1,R)®sP(1,iR)), 113(p)=
(sp(p+1,1),ulp+1,1)), Il =Cf, . ,50(5,4)), Ilg'—‘(f‘“_éo).

sp(2,1)esp (1)), IIIl(p)=(50(p+2,C),SU(p+l,€)), III?(D)=
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(so(p+1,1)®s0(p+1,1),50(p+1,1)), IIIQ(p)=(sl(p+2,C),gl(p+1,€)),

IIIg(p)=(su(p+1,1)$su(p+1,1),5u(p+1,1)), 1113(p)=(sp(p+2,C),

sp(p+1,Cr@sp 1,00, III;(p)=(sp(p+l,1)®sp(p+1,1),5P(p+1,1)), Ii,=
(f ,s0(9,0)), IIIi=(f

(ys 4-200%4-20) Tac-200 >
so¥(2p+2)®50%(2)), Ivf<p)=(so<2p+2,2),u(p+1,1)), 1V, (p)=(su™(2ped),

f f Ivl(p>=<so*<2p+4),

* * d - ;7 .
su” (2p+2)@su” (2)8R), IV, (p)=(su(2p+2,2),5p(p+1,1)), IVg=(eg  _agys
d_ . s -
s0(9,1)8R), IVa=tec _1uyr Taconny ) Vl—(sl(B,m),sl(S,R)), V,=(su(3,3),
" d_,_ % . _ d_
sp(3,R)), V= (su (6),s1(3,O18iR)y, Vg'(es(z)’f4(4))’ Va=(ee ogye

su™(6r®su(2)).

In this note, it is assumed that (g,b) (9 of 9ALi¢ rand one
untess otherwise otated. Let G be a connected Lie group with LieG=g.
Suppose that o is lifted to G and write its lifting by the same
letter. Then G/G° (G°=(g€G;o(g)=g)) is called a (semisinhle)
oynmelric o9%ace belonging to (g,h). In general, for a given (g,bh),
there are non-isomorphic symmetric spaces belonging to (g,h). In the

g
case where G=$ntg, F(g,bh)=n_(G/G ) is generated by one element and

1
depends only on (g,bh). There is a one to one correspondence between
the totality of non isomorphic symmetric spaces belonging to (g,bh)
and that of subgroups of F(g,h). For this reason, a classificatiqn of
symmetric spaces of split rank one is accomplished if F(g,h) is
determined for each pair (g,h). Now the result is as follows (cf.

d d

(Se31>: (A.1) F(q.b)=Z if (g,h) is one of I,(p,1), 11;(p), TILl,(pP),

Ivf(p), Ivg. (A.2) F(q.h)=23 if (g,b) is one of V. (i=1,2,3).

(p) (p>1),

(A.3) F(a.h)=Z, if (g,b) is one of I,(p,q) (a>1), II,

19(p), I11,(p), I115¢p) (p>1), T115Cp), V5. (A.4) Fla,h)=1 othervise.
For example, consider III? (i =1, 2, 3, 4. In these cases,

symmetric spaces are nothing but group manifolds. Let G be a
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connected simple Lie group whose Lie algebra g is of dA{cl 2ank one.
Then g is isomorphic to one of so(p,1), su(p,1), sp(p,1), f, _,4,-
Since GXG/AG=G, a group manifold G with actions of GXG from both
sides is a special éase of semisimple symmetric spaces. If g=so(p,1)
(p>2), then G is SOO(p,l) or_Spino(p,l), the latter is simply
connected. If g=sp(p,1) (p>1) or f4(_20), then G=%ntg. In the case
where g=su(p,1l), there arevinfinitely many non-isomorphic choices of

G because $nfg = SU(p,1)/Z nl(ﬁnt9)=2. Return to our situation.

p+1’
It is easy to show (B.1) if #F(g,h)<> and if G is a real form of a

simply connected complex Lie group, then G/Gg is simply connected and

(B.2) if #F(g,h)==, then | is not semisimple and the center of the
motion group of the unive;sai covering of (fntg)/(!ntg)o has infinite
center.

From the assumption, there is Y€a such that {eigenvalues of
adg(Y)} is {0,%1} or {(0,%1,*2) and that a=RY. Put gj=(26g;[Y,Z]=jZ)
(j=0, #*1, %£2). Then 068 leaves each S invariant. Since (06)2=1,

define g§={Zegj;062=tZ} and put m§=dimg?, m.=m.+m> (j=1, 2). Then the‘

I3
following hold:(C.1) mI+mI>0. (C.2) If m >0, then mI=mI. (C.3)
m;=m;:0 if and only if (g,b) is Riemannian. (C.4) If mI=m£=O, then

{(g,h) is of [g—type (for the definition of IE-type, see [0S1]1). Put

no=glegz, no=g_1eg_2 and denote by A, No, No the analytic subgroups

of G corresponding to a, 1 no, respectively. Let Po be the

O,'l
parabolic subgroup of G whose unipotent radical is No and let

P0=M0AoNoxbe its Langlands decomposition. May assume that there is a

closed subgroup A, of 6% such that Ay=A A. Moreover, (DY if (g,bh) is

1 1
split rank=1 but rank>l, then M, is connected. I am now going to

mention connected components of Mo for the remaining cases. For
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g
simplicity, we assume that G/H (H=Co) {9 ointly connected and of rank

one. Then MonH=Mc and #(Mo/MonH) coincides with the number of open

o

H-orbits of G/ P In particular, (E.1) for simply connected

g,0°

symmetric spaces SOo(p+1,q+1)/SOO(p+1,q) (g>1),

Sp(p+2,R)/Sp(p+1,RIxSp(1,R), F /Spino(5,4), there are two open

4(4)

H-orbits of G/Po o (E.2) for simply connected symmetric spaces

SL(p+2,R)/GL_ (p+1,R) (p>1), there are four open H-orbits and (E.3)
for a simply connected symmetric space SOo(p+1,2)/SOO(p+1,1), Mo has

infinitely many connected components.

§2. c-functions for Riemannian symmetric spaces. Consider a
Riemannian symmetric space G/K of non-compact type. dgoume f£aet G/K

(s of rané one. Any zonal spherical function on G/K is expressed as

=f e(v—p)H(gk)
K .

wv(gK) dk. By changing variables, we have wv(gK)=

S e(v—p)H(gn)ef(v+p)H(n)dE' Let G=KAPN be an Iwasawa decomposition

N
and put 0p=LieA

Let a. be its positive Weyl chamber. Since a=a

p’ p p
from the assumption that G/K is of rank one, we may take YEO; which
. . . s -(v-p) (tY) tY
is so chosen as in 81. Define CoygvVr= limg, e ¢,(e” K)

. . . *
which is convergent when v varies an open subset of op ¢’ has an.

(v)= f_e-(v+p)H(n)

N.
-gfandra” o c—funcltion. The quantity cG/K(v) plays an importaﬁt role

integral formula CG/ dn and is called Xa2ri94

K

in the determination of the 2lancherel Keaoure of G/K (cf.[HC11).

I am going to explain two methods of computing c(v), the first
one is due to Harish-Chandra (HC-method) ([HC11) and the second one
is due to Gindikin—Karpelevic ([GK11), Helgason ([H1]) and Schiffmann

({Scl)) (GKHS-method). HC-Heffod: It is known that ?, is an
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eigenfunction of the Laplace- Beltrami operator L of G/K, that is,
D) L¢v=A(L)(v)¢v for a.constant A(L)(V)vdepending on v. If fv(t)
=wv(etYK), then fv(t) satisfies an ordinary differential equation
obtained from (F). Taking x=—(Sht)2 as a new variable, we find that
the differential equation in question turﬁs out to be a Yaudgsian
Ryrerpeometric differential eguetion of . From properties of ¢,
(G.l)fv(t) is a real analytic solution of t near t=0 and (G.2)fv(0)=1.
Therefore fv(t) =F(a,b,c;—(sht)2) for some constants a, b, ¢
depending on m;, my. Then, by using a well-known formula for
hypergeometric functions

e LTI T o1, -84l
T rHrp-an 't R AR

Cy)r(x-8>
*Feorv-gy X1 P8, 8-ve1,B-ue1

which holds when x<-1, we can obtain a concrete formula for c

(H) F(a,B,7;%)

><I>—‘><IH

G/K(v)
GKHS-%effod: On the other hand, Gindikin and Karpelevic computed c(v)

in an alternative way. Their method is available for general

Riemannian symmetric space case and is improved by Helgason and

Schiffmann in order to study analytic continuations of intertwining
operators between principal series representations. In particular, in

the rank one case, Helgason and Schiffman showed that the integral

-(
[ e v+p)H(n)dn is reduced to S {(1+|x]2)2+|T|2}SdXdT, where
N 8_1%8_9

2 2
IX1® and |T|" are positive definite quadratic forms on g_, and g_,,

respectively and that the last integral becomes

m, -1
Ittt foto {(1+t )2+t5}5dt, which is easily computed. As a

result, c (V) is expressed as a product of Gamma functions.

G/K



39

§3. c-functions for semisimple symmetric spaces. In the sequel, I
focus my attention to explain how to obtain concrete forms of
c-functions for arbitrary symmetric spaces of split rank one. As
explained in §2, Harish-Chandra's c-function is defined as a leading
term of the "eoymAfolic exfansion” of a zonal spherical function on
G/K. Noting this, T. Oshima introduced c—functions for arbitrary
semisimple symmetric spaces as "Coundarv vafues" of certain joint

eigenfunctions of all the invariant differential operators.

Hereafter, G/H (H=GY) is assumed to be simply connected. Let D(G/H)
be the algebra of invariant differential operators on G/H. Since
D(G/H) is commutative, for any algebra homomorphism x of D(G/H) to C,
it is possible to define a system of differential equations on
G/H:(JX)Du=x(D)u for YDeD(G/H). If | is a makimal abelian subspace of
g containing a, then Homc(D(G/H),C) is parametrized by iz due to
Harish-Chandra. Let Z(G/H;(Jy)) be the Ayseafunction solution space
to the system (JX)' Then ﬁ(G/H;(JX)) is a G-space. Now assume that G
is linear. namely, #F(g,h)<=, for simplicity. Due to Xelgadon Tyre
Theoren of Oshima (cf.[011) , if x is "generic”, there is a non-zero
G-invariant subspace Q(G/H,@;(Jx)) of E(G/H;(Jx)) for each open

H-orbit @ of G/Po via Poigoon {ranoformation and ﬁ(G/H;(Jx)) is a

direct sum of ﬁ(G/H,O;(JX)), wherée ¢ runs through all the open
H-orbits. Then, basically, to each open H-orbit €, there associates a
"c~function” for G/H which is defined by use of "6oundary value maro"
to a compact boundary component of a compactification of G/H. In the
case of F(g,b)=Z, a modification is needed in the definition of

c-functions. Nofe: As mentioned at the end of §1, there is a unique

open H-orbit of G/Po o0’ whereas sometimes not.
b4

- 6 -
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Before treating the general case, I discuss two simpler cases.

First consider the case where (g,h) is of fe—type but not Riemannian.
Then (g,h) is one of Ii(O,q) (i=1, 2, 3) and Ii. In this case,
GKHS-method is available for the computation of c-functions for G/Go
because we can obtain an integral formula similar to that for

Riemannian symmetric space and the integral reduces to

ml—l 2.8

f9_1<1—lx12>§dx=f8t (1-t%)>3dt if (g,h)=1;(0,q) and

m,-1 m,_-
2.2 2s e ™ w M 2.2
fg_lxg 9{(1 Ix1<ye+1T1°} dxdT=Sgt," dt,fot, )

1
{(1—t1

21s
+t2} dt,

&

m,-1 .
1 (1—t2)

otherwise. In spite that the integrals f;t dt,

S
*
Com,~1 m,-1
@ 1 © 2

oty dtyfoty

meaning in general, it possible to regularlize these divergent

2.2 ,2s . .
{(1—t1) +t2} dt2 are divergent and lose their

integrals by careful investigation of intertwining integrals.

Next consider the case where {(g,h) is one of Ii(p,q),(i=1,2,3)
and the corresponding symmetric space is G/H, where G=¢%2n{g and
H=(%2¢9)%. In this case, a c-function for G/H is nothing but the
leading term of a left K-invariant eigenfunction of the Laplace

-Beltrami operator L on G/H. So let ws(gH) be a left K-invariant

G/H
function on G/H with the condition (F') L(pS=A(L)(s)<.os for a constant

s€C. Then ws(gK)=¢s(g-1H) is regarded as a left H-invariant

eigenfunction of LG/K on the Riemannian symmetric space G/K. From
this, it follows that ws is réal analytic. Because of the
decomposition G=KAH, fs(t)=ws(etYH) determines ws itself and fs(t)
satisfies a differential equation obtained from (F') which turns out

to be a hypergeometric differential equation for the variable

"
x=-(sht)®. So far, the argument is parallel to HC-method for

- 7 -
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Riemanniann case except that the value fs(0)=¢s(eH) is unknown on the

contrary to (G.2). But using an integral formula for ws and using the
c-function for G/K, we can determine the value fS(O) and therefore
the c-function for the space in question.

Return to the general case. For a moment, we assume that (4£eze
(9 @ non—zer0 Left K-fixzed golution Uy to (Jx). I£f LG/H is the

Laplace-Beltrami operator on G/H, then

d 2. ( + - " - a_ .2 (1 2
o { o +(mlctht+m1tht+2mzcth2t+2m2th2t)dt}fs(t)—(s (2m1+m2) )£ ()
Ly

where fs(t)=ux(e H) and s is a complex number depending on x. First

consider the case where m;=0. Then, rewriting (K) by use of the

variable x=—(3ht)2, we have

(K" [x(l-x)(%§)2+(c-(a+b+1)x}%§~ab]v(x)=0,

h v(x)=f (t) and a'}(s+lm +m+) b-l(— +lm +m+) c-l(m++m++1) For
where vixi=ig TisTaM Ty, 0= 0TS 9lr CEZIM T, TL.

the same reason as in the case Ii(p,q) explained before, fs(t) is a

1

real analytic solution of (K) near t=0 and (K') is a hypergeometric
differential equation. Hence we f;nd that fs(t) coincides with
F(a,b,c;—(sht)z)xup to a constant factor. On the other hand, since
ux(gH) is a left K-invariant solution of (FX), ux(gH) has an integral
representation ux(gH)=fKEs(g—lk)dk, where £_ is a left H-invariant
Lyterfunction section of a certain line bundle over G/Po. As in the
case of zonal spherical functions on Riemannian symmetric spaces, the

-1-=_ ~(v+p)H(n) - .
last integral is rewritten as f_&s(g 1n)e tvee) dn, where ve;;

N
depending on s linearly. (Baufion: Qon"t conjuse the sgr0usr H with Lhe

function H(g) for $waoaouwa decomtrosition.) Then, since fs(t)=

1

SRV v =N -(s+5m,+m,) t
[ g ce e  WHPHM T it follows that lime 2 1 2 f(t) =
N

i to+
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L e WHPIHNGR  The 1ast integral is nothing but the Harish-

N

(s—%ml-mo)t
Chandra's c-function. On the other hand, lim e = = f(t) is the

to+o

quantity what we want to compute if the limit exists. With the help
of (H), we finally obtain a concrete formula for the leading term of
the asymptotics of ux(gH). Next consider the case mé#O. In this case,

due to (C.2), we find that

(g‘)2+[m+ctht+ Ttht+2m cth2t+2 “thzt)g*
dt 1 m My My

dt
cal A2 [, o pp )
-4{(dt,> +((m1+m Yetht' +m) tht )dt, ,

where t'=2t. Hence an argument parallel to the caée m£=0 goes well by

D 4

changing m’, m;, m; with m;+m;,

We give here some remarks on the asymptotics of left K-invariant

mg, 0, respectively.

solutions of (JX)' (L.1) The relation (C.2) first observed by Oshima
is easy to show but plays a crucial role in the determination the

leading term in question. It is left open whether for arbitrary

+
1 ’

obtain a connection formula for solutions of (J) similar to (H) or

parameters m m; (that is, forgetting (€.2)), it is possible to

not. (L.2) It is also important to construct left H-invariant

hyperfunction sections &S(g) of certain line buﬁdles’over G/P The

(Xx-p)H(2)

g,o’

function e is a left K-invariant section and is constructed

by using an Iwasawa decomposition. Instead, to construct &S, we need
a theorem of J. Bernstein on the analytic continuation of complex

powers of polynomials. (L.3) Consider the case SU(2,1)/50(2,1). In

(S+2)tu(etYH) is

this case, the concrete form of e
i1+222+(12|2-ix)2)(5+Q)/2{1+222+([z[2+ix)2)(S-Q)/z

s++2 s-0+2

M dxdzdz

y S
5,2 RxC {l+e t(|2|2+ix))

(s+2)t
u

(ve Y21 2-ix0)
substituted with =0 and and lim e

t2+

(etYH) is convergent when
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Res<-1 and its limit value is
-5-0-2 s+0-2

S 1+222+(|2|2~ix)2} (1+22%+(z21%+ix05) 7 dxdzdz
(NS,Q) rRxC zcz

substituted with £=0 if it were convergent. It is possible to

regularize this definite integral but it seems hard to compute it
directly unlike the integrals for Riemannian and teftype cases
mentioned before. In spite this, due the the armument above based on
HC-method, we can compute the value of (Ns,O) and the result is
Z‘ZSF(28*3)F(S+2)-2 up to a constant factor independent of s.

Return to the differential equation (JX)' In the above, we
assumed the existence of a non-zero left K-invariant solution td (JX).
But this does not hold in general. Next I mention two cases for which
HC-method or GKHS-method is available.

Assume that F(g,b)=Z aend G/H (0o simAly connected. Then, due to
(A.1>), G/H is the universal covering space of one of
Soo(p+1,2>/soo<p+1,1), SU(p+1,1)/S0(p+1,1),
SU(p+1,1)xSU(p+1,1)/ASU(p+1,1), SU(2p+2,2)/Sp(p+1,1). In this case, G
has infinite center. Let K be the analytic subgorup of G
corresponding to [. Assume that f{Aeae (9 a @etative K-invariani
go0lution to the systenm (JX). Under this assumption, the argument
explained before goes well and a similar conclusion is obtained. For
example, treat the case G/H=the uﬁiversal covering space of
SU(2,1)/80(2,1). Then the c-function for G/H is the integral (Ns,l)

for arbitrary parameters s, £. A regularization of (Ns Q) equals to

. N, (P s+Q+2 s-0+2 3
51n§(s+2)51n§(s ) T¢ > ¢ 5 )F(s+2)
sinns s+Q+3 s-4+3

< 2 Y ( 5 T (s+2)

Next consider the case where #F(g,bh)<{~ and G/Po o has plural

up to a constant factor.

open H-orbits. Then G/H is one of SOO(p+l,q+1)/SOO(p+1,q) (g>1),

- 10 -



10

SL(p+2,R)/GL+(p+1,R), Sp(p+2,R)/Sp(p+1,R)xSp(1,R), F /Spin0(5,4).

4(4)
At first, note that G/H is of rank one. Now we treat the case G/H=

SOo(p+1,q+1)/SOO(p+1,q) (@>1). For a generic X, ﬁ(G/H;(JX)) has two
G-invariant subspaces. One is spanned by left translations of a
K-invariant function but the pther is not. Since G/H is of rank one,
GKHS-method is available for the determination of the c-function for
such a G-invariant subspace. In fact, considering the intertwining
integral between degenerafe principal series for G, we find that the

c-function coincides with the special value (t=0) of the definite

integral
—gmT- 2
[y g rlxt 2=y J87T RO 2 (apxn-yi®) 2 eyl ?) Taxdy
R¥xR ‘
_ © p-1 © g-1 2 2 -s-Tt-(p+q)/2 2 2.2 2. T
= cfor1 drlfor2 (1+ri-r3), ((1+ri-ry)"+4ry) dr,

which is divergent, but is regularizable. Hence we can obtain a
concrete form of the c-function in this case. Similar arguments go
well for the remaining symmetric spaces SL(p+2,R)/GL_(p+1,R),
Sp(p+2,R)/Sp(p+1,R)XSp(1,R),vF4(4)/Spino(5,4).

Last, I give a comment on general c-functions. For simplicity, -
assume that #E(g,h)<w and that there is an open dense H-orbit of
G/Pc,o. If rank of G/H = r+1, then the set Xé(x;ﬁ(G/H;(JX))¢O} has
one continuous parameter and r discrete parameters.'The discrete’
parameters run through a set isomorphic to N'. Hence X=CxN'. Then
the c-function is written as c(s,pn) with seC, ueNr. On the other
hand, consider the Rienannian formn Gd/Kd of G/H and its c-function.
Then (0) c(s,m) satisfies difference equations same as those for

] d(v). Since ¢ d d(v) is known, (0) implies that c(s,u) can be

cd/x c4/k

obtained if one knows ¢(s,0) which is the c-function for the case



41

where K-invariant solution to (JX) exists. In this way, it is

possible to obtain c(s,Xx) for all parameters x€X.
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