A modulus of uniform continuity with some order in $L^s_{loc}(\Omega\,;R^N)$ $(2\leq s<\infty)$ and a sharp estimate of *Lebesgue points* of the first-derivatives of minimizers of a Quasi-convex functional in the calculus of variations .

掘畑和弘

KAZUHIRO HORIHATA

Department of Mathematics, Faculty of Science and Technology , Keio University

Abstract. This paper establishes that minimizers of strictly quasi-convex variational functionals, satisfy a modulus of uniform continuity with some order in the norm of $L^s_{loc}(\Omega\,;R^N)$ with $2\leq s\leq\infty$. This modulus of uniform continuity combined with a result in the present author's paper and one of Evans's results implies a local Hölder continuity and a sharp estimate for the Hausdorff dimension of Lebesgue points of the first derivatives of minimizers .

1. Introduction

In this paper we establish that minimizers for certain functionals in the calculus of variations satisfy a modulus of uniform continuity of some order in the norm of $L^s_{loc}(\Omega\,;R^N)$ with $2\leq s<+\infty$. This functional is given as follows: Let n,N be positive integers. We denote by $M^{n\times N}$ the space of all real $n\times N$ matrices and suppose that $\Omega\subset R^n$ is a bounded with smooth boundary. Then for $v:\Omega\mapsto R^N$, we consider the functional

$$(1.1) I[v] \equiv \int_{\Omega} F(\nabla v) dx \,,$$

where $v=(v^i)$, $\nabla v=(\partial v^i/\partial x_\alpha)$ $(\alpha=1,\cdots,n\,,i=1,\cdots,N)$ is the gradient matrix of v and $F:M^{n\times N}\mapsto R$ is any given mapping , which is strictly defined later. Here we introduce another notation which will be used in this paper : $L^s(\Omega;R^N)$ is sth- power integrable function space. We also denote by $L^s_{loc}(\Omega;R^N)$ locally sth- power integrable function space . $H^{1,s}(\Omega;R^N)$ and $\mathring{H}^{1,s}(\Omega;R^N)$ are the usual Sobolev spaces. Also |A| and $H^\gamma(A)$ means the Lebesgue measure and the $\gamma-$ dimensional Hausdorff measure of measurable set A in R^n , respectively , (see Giaquinta [Gm1] and Giusti [Gi] for detailed definition).

We introduce a forward translation operator and also a forward difference operator of a map in $f \in L^s(\Omega; \mathbb{R}^N)$: Let h be any small number and e be a unit vector in \mathbb{R}^n . We define a forward translate operator $^+$ by

$$(1.2) f^+(x) \equiv f(x+he)$$

and define a forward difference operator τ_h by

$$\tau_h f = f^+ - f.$$

We adopt the summation convention: For $\forall A, P, Q \in M^{n \times N}$, we define

$$DF(A) = \left(\frac{\partial F}{\partial p_{\alpha}^{i}}(A)\right),$$

$$D^{2}F(A) = \left(\frac{\partial^{2}F}{\partial p_{\alpha}^{i}\partial_{\beta}^{j}}(A)\right)$$

$$(\alpha, \beta = 1, \dots, n, i, j = 1, \dots, N),$$

$$DF(A) \cdot P = \sum_{\alpha=1}^{n} \sum_{i=1}^{N} \frac{\partial F}{\partial p_{\alpha}^{i}}(A)P_{\alpha}^{i},$$

and

$$D^{2}F(A) < P, Q > = \sum_{\alpha,\beta=1}^{n} \sum_{i,j=1}^{N} \frac{\partial^{2}F}{\partial p_{\alpha}^{i} \partial p_{\beta}^{j}} (A) P_{\alpha}^{i} Q_{\beta}^{j}.$$

Let $F(x,z,p): \Omega \times \mathbb{R}^N \times \mathbb{M}^{n \times N} \mapsto \mathbb{R}$ be a function satisfying

(H1)
$$F(x,z,p) \le K[1+p^s]$$

(H2)
$$F(x, z, p) \ge m$$

$$|F(x,z,p_1) - F(x,z,p_2)| \le K[1 + |p_1|^{s-1} + |p_2|^{s-2}]|p_1 - p_2|$$

$$|F(x_1, z_2, p) - F(x_1, z_2, p)| \le K[1 + |p|^s][|x_1 - x_2| + |z_1 - z_2|]$$

for $\exists m \ K > 0$ and $s(1 \le s < \infty)$. The first question in the calculus of variations can be considered as the existence problem of minimizers in some function space. Under the above condition, *Morrey* [Mo] has isolated that a necessary and sufficient condition of certain functional F(x, z, p) for the lower semicontinuity of $I[\cdot]$ on some *Sobolev space* is *quasi-convex*:

$$\int_{O} F(x_0, z_0, p_0) dy \leq \int_{O} F(x_0, z_0, p_0 + \nabla \phi) dy \quad \text{for} \quad \forall (x_0, z_0, p_0) \in \Omega \times \mathbb{R}^N \times M^{n \times N},$$

for an arbitrary smooth , bounded , open set $O\subset R^n$, $\forall A\in M^{n\times N}$ and $\forall \phi\in C^1_0(O\,;R^N)$.

Recently Acerbi and Fusco [AF] has refined Morrey's theorem , who have obtained the following for F(p):

THEOREM 0 ([AF]). Assume that $F: M^{n \times N} \mapsto R$ is continuous and for some positive numbers C and s the following

$$0 \le F(p) \le C(1 + |p|^s)$$

holds for $\forall p \in M^{n \times N}$. Then $I[\cdot]$ is weakly sequentially lower semicontinuous on the Sobolev space $H^{1,m}(\Omega; \mathbb{R}^N)$ if and only if F is quasi-convex.

Also the second question can be considered as the regularity problem of such minimizers . However one often encounters that a minimizer is not necessarily regular everywhere in Ω , even when F is uniform convex (see [Gm1], [Gm2], [Gm3], [GG2] and [GI]). For the study of partial regularity, Evans [Ev] (see also [EG] and [GM]) has showed that minimizers has Hölder continuous first derivatives on some open subset $\Omega_0 \subset \Omega$ satisfying $|\Omega/\Omega_0| = 0$, when $F \in C^2(M^{n \times N}; \mathbb{R}^N)$ and $D^2F(p)$ is uniform continuous in $M^{n \times N}$ and strictly quasi - convex: For $\exists \gamma > 0$ and $\exists s$ $(2 \le s < \infty)$ F satisfies

$$(1.4) \gamma \int_{\Omega} (1 + |\nabla \phi|^{s-2}) |\nabla \phi|^2 dy \le \int_{\Omega} [F(A + \nabla \phi) - F(A)] dy$$

for
$$\forall A \in M^{n \times N}$$
 and $\forall \phi \in \mathring{C}^1(\Omega; \mathbb{R}^N)$.

and suppose that

(H5)
$$|D^2 F(p)| \le C_0 (1 + |p|^{s-2})$$

for some constant C_0 and $\forall p \in M^{n \times N}$.

We remark that assumption (H5) implies that there exist positive constants C_1 and C_2 such that

(H6)
$$|F(p)| \le C_1(1+|p|^s)$$

(H7)
$$|DF(p)| \le C_2(1+|p|^{s-1})$$

for all $p \in M^{n \times N}$. Under the above condition, Evans has proved

THEOREM 1 ([EV]). Assume that $2 \le s < +\infty$, the function F satisfies (1.5) and (H5). Let $u \in H^{1,s}(\Omega; \mathbb{R}^N)$ be a minimizer of $I[\cdot]$. Then there exists an open subset Ω_0 of Ω such that

$$(1.5) |(\Omega/\Omega_0)| = 0$$

and the first derivatives of a minimizer u are locally Hölder continuous on Ω_0 :

$$\nabla u \in C^{\alpha}(\Omega_0; M^{n \times N})$$

for each $0 < \alpha < 1$.

This proof is performed by combining a blow-up argument with the following Caccioppoli inequality:

THEOREM 2 ([EV]). There exists a constant C_3 independent of r such that a minimizer u satisfies

$$(1.6) \int_{B_{r/2}(x)} (1+|\nabla u|^{s-2})|\nabla u|^2 dx \le C_3[(1/r)^2 \int_{B_r(x)} |u-a|^2 dx + (1/r)^s \int_{B_r(x)} |u-a|^s dx]$$

for
$$\forall B_r(x) \subset\subset \Omega$$
 and $\forall a \in \mathbb{R}^N$.

From Theorem 2 and a Gehring inequality [Gm], it follows that

THEOREM 3. When ∇u satisfies the inequality (1.7) of Theorem 2, there exist positive numbers t (t>s) depending only on C_3,s,Ω and C_4 depending only on C_3,s,Ω and $\tilde{\Omega}$ such that $\nabla u \in L^t_{loc}(\Omega;R^N)$ and moreover the following holds:

$$(1.7) \qquad \left[\frac{1}{|\tilde{\Omega}|} \int_{\tilde{\Omega}} (1 + |\nabla u|)^t dx \right]^{1/t} \leq C_4 \left[\frac{1}{|\Omega|} \int_{\Omega} (1 + |\nabla u|)^s dx \right]^{1/s}$$

$$for \qquad \forall \tilde{\Omega} \subset C \Omega .$$

2. Main result

Now we can state the main theorem

THEOREM 4 (MAIN THEOREM). Assume that $2 \le s < +\infty$, the function F satisfies (1.4) and (H5). Let u be minimizer of $I[\cdot]$ in $H^{1,s}(\Omega; \mathbb{R}^N)$. Then for an arbitrary open set $\tilde{\Omega}$ compactly contained in Ω , the following holds:

where C_5 is a constant depending only on n, N, γ , C_0 , $||\nabla u||_{L^s}$, $\tilde{\Omega}$ and Ω .

Here we notice that as in the same way of author's previous result, one finds

THEOREM 5([Ho]). Let f be a function belonging to $L^p_{loc}(\Omega; \mathbb{R}^N)$ $(1 \leq p < \infty)$ with the following condition: Let $\tilde{\Omega}$ be an arbitrary open set compactly contained in Ω and suppose that there exist positive numbers C_6 and α $(0 < \alpha < n/p)$ independent of h such that f satisfies

(2.2)
$$\int_{\tilde{\Omega}} |\tau_h f|^p dx \leq C_6 \cdot h^{p\alpha}$$

for any number h with $0 < h < \frac{1}{4} \operatorname{dist}(\tilde{\Omega}, \partial \Omega)$. Then for the singular set S_f of the map f defined by (2.3)

$$S_f = \{x \in \Omega : \lim_{\rho \to +0} f_{x,\rho} \} \cup \{x \in \Omega : \lim_{\rho \to +0} |f_{x,\rho}| = +\infty \} \cup \{x \in \Omega : \lim_{\rho \to +0} \int_{B_\rho(x)} |f - f_{x,\rho}|^p dy > 0 \}$$

where $f_{x,\rho} = 1/|B_{\rho}| \int_{B_{\rho}(x)} f(y) dy$, the following holds:

$$(2.4) H^{(\beta)}(S) = 0$$

for any positive number β with $n - p\alpha < \beta$.

From Theorem 4 and Theorem 5, we obtain

THEOREM 6. A singular set $S_{\nabla u}$ of the first derivatives of such minimizers, have at most

(2.5)
$$H^{n-1+\epsilon}(S) = 0$$
 for $\forall \epsilon > 0$.

In addition, noting [Ev] and [EG], one finds that (2.5) shows the first derivatives of minimizers satisfy local Hölder continuity on Ω/S :

$$\nabla u \in C^{\alpha}(\Omega/S; M^{n \times N})$$
 for $0 < ^{\forall} \alpha < 1$.

3. Proof of Theorem 4

Since u is a minimizer of $I[\cdot]$ in $H^{1,s}(\Omega\,;R^N)$, u satisfies the following first-variational formula

(3.1)
$$\int_{\Omega} DF(\nabla u) \cdot \nabla \phi dx = 0 \quad \text{for} \quad \forall \phi \in \overset{\circ}{H}^{1,s}(\Omega; \mathbb{R}^N).$$

Transferring x to x + he along the direction of a unit vector e, we have

(3.2)
$$\int_{\Omega} DF(\nabla u^{+}) \cdot \nabla \phi dx = 0 \quad \text{for} \quad \forall \phi \in \overset{\circ}{H}^{1,s}(\Omega_{1}; \mathbb{R}^{N}).$$

where $\Omega_0 = \tilde{\Omega}$, $\Omega_k = \{x \in \Omega : dist(x, \tilde{\Omega}) < \frac{k}{4} dist(\tilde{\Omega}, \partial \Omega)\}$ $(k = 0, 1, \dots, 4)$. (3.1) subtracted after (3.2) gives

(3.3)
$$\int_{\Omega} [DF(\nabla u^{+}) - DF(\nabla u)] \cdot \nabla \phi dx = 0 \quad \text{for} \quad \forall \phi \in \overset{\circ}{H}^{1,s}(\Omega_{1}; \mathbb{R}^{N}).$$

Thus we have

$$(3.4) \quad \int_{\Omega} \int_{0}^{1} D^{2} F(\nabla u + t \nabla(\tau_{h} u)) < \nabla(\tau_{h} u), \nabla \phi > dt dx = 0 \quad \text{for} \quad \forall \phi \in \overset{\circ}{H}^{1,m}(\Omega_{1}; \mathbb{R}^{N}).$$

Substituting $\tau_h u \eta^2$ for ϕ , where a cut-off function $\eta \in C_0^{\infty}(\Omega)$ satisfies

$$\eta = \begin{cases} 1 & \text{in } \Omega_0, \\ 0 & \text{outside } \Omega_1 \end{cases} \quad \text{with} \quad \begin{cases} |\nabla \eta| \leq \frac{2}{dist(\Omega_0, \Omega_1)}, \\ 0 \leq |\eta| \leq 1. \end{cases}$$

We can proceed the calculation of (3.3) as follows:

$$\int_{\Omega} \langle \tau_{h}[DF(\nabla u)], \nabla(\tau_{h}u)\eta^{2} \rangle dx$$

$$= \int_{\Omega} \int_{0}^{1} D^{2}F(\nabla u + t\nabla(\tau_{h}u))$$

$$[\langle \nabla(\tau_{h}u), \nabla(\tau_{h}u)\eta^{2} \rangle + 2 \langle \nabla(\tau_{h}u), \tau_{h}u\eta\nabla\eta \rangle]dtdx$$

Consequently, the following

$$\int_{\Omega} D^{2}F(A) < \nabla(\tau_{h}u), \nabla(\tau_{h}u) > \eta^{2}dx$$

$$= \int_{\Omega} [D^{2}F(A) - \int_{0}^{1} D^{2}F(\nabla u + t\nabla(\tau_{h}u))]$$

$$< \nabla(\tau_{h}u), \nabla(\tau_{h}u) > \eta^{2}dtdx$$

$$- 2 \int_{\Omega} \int_{0}^{1} D^{2}F(\nabla u + t\nabla(\tau_{h}u))dt < \nabla(\tau_{h}u)\eta, \tau_{h}u\nabla\eta > dtdx,$$
(3.6)

holds for $\forall A \in M^{n \times N}$. Now let Ω_1 be approximated by a union of hypercubes $D_{k,i}$ with each edge length 1/k sufficiently large k > 0:

$$\Omega_1 \subset \bigcup_{i=1}^I D_{k,i} \quad \text{with} \quad \Omega_1 \subset H_k \subset \Omega_2 ,$$

$$\mathring{D}_{k,i} \cap \mathring{D}_{k,j} = \varnothing \quad \text{in} \quad i \neq j ,$$

$$|H_k - \Omega_2| \to 0 \quad \text{as} \quad k \to +\infty ,$$

$$|D_{k,i}| = (1/k)^n .$$

Moreover we remark that there exists subsequence of I which we call I(k) such that $H_k = \bigcup_{i=1}^{I(k)} D_{k,i}$ satisfies $\Omega_1 \subset H_k \subset \Omega_2$ and $|\Omega_2 - H_k| \to 0$ as $k \to +\infty$. For $x \in H_k$, we define

$$\overline{\nabla u}(x) \, \equiv \, \frac{1}{|D_{k,i}|} \int_{D_{k,i}} \nabla u(y) dy \quad \text{for} \quad x \in D_{k,i} \quad \text{and } i = 1, \cdots, I \, .$$

When we adopt $\overline{\nabla u}(x) + s\overline{\nabla(\tau_h u)}(x)$ $(0 \le s \le 1)$, $\overline{\nabla \tau_h u}(x) \equiv \overline{\nabla u^+}(x) - \overline{\nabla u}(x)$ as A, then it follows from (3.5), (3.6) and (3.7) that

$$\int_{\Omega} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} dx$$

$$= \int_{\Omega} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) dx - \int_{0}^{1} \int_{\Omega} D^{2} F(\nabla u + t \nabla(\tau_{h} u)) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} dt dx$$
3.8)
$$- 2 \int_{\Omega} \int_{0}^{1} D^{2} F(\nabla u + t \nabla(\tau_{h} u)) < \nabla(\tau_{h} u) \eta, \tau_{h} u \nabla \eta > dt dx.$$

By integrating (3.8) over [0,1] for s, we obtain

$$\int_{\Omega} \int_{0}^{1} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} ds dx$$

$$= \int_{\Omega} \int_{0}^{1} [D^{2} F(\overline{\nabla u} + t \overline{\nabla(\tau_{h} u)}) - D^{2} F(\nabla u + t \nabla(\tau_{h} u))] < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} dt dx$$
(3.9)
$$- 2 \int_{\Omega} \int_{0}^{1} (D^{2} F)(\nabla u + t \nabla(\tau_{h} u)) dt < \nabla(\tau_{h} u) \eta, (\tau_{h} u) \nabla \eta > dx.$$

The above (3.9) is a starting point to our proof. The original technique used here is seen in [Da] and [Mo]. At first, we estimate the left-hand side in (3.9) from below:

$$\int_{\Omega} \int_{0}^{1} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} ds dx$$

$$\geq \int_{0}^{1} \int_{H_{k}} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} ds dx$$

$$+ \int_{0}^{1} \int_{\Omega_{2}/H_{k}} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} ds dx$$

$$= \sum_{i=1}^{I(k)} \int_{0}^{1} \int_{D_{k,i}} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} ds dx$$

$$+ \int_{0}^{1} \int_{\Omega_{2}/H_{k}} D^{2} F(\overline{\nabla u} + s \overline{\nabla(\tau_{h} u)}) < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} ds dx.$$
(3.10)

If we use the mean value theorem for s, then there exist positive numbers $s_{0,i}$ $(i=1,\cdots,I(k))$ such that

$$= \sum_{i=1}^{I(k)} \int_{D_{k,i}} D^2 F(\overline{\nabla u} + s_{0,i} \overline{\nabla (\tau_h u)}) < \nabla(\tau_h u), \nabla(\tau_h u) > \eta^2 ds dx$$
$$+ \int_0^1 \int_{\Omega_2/H_k} D^2 F(\overline{\nabla u} + s \overline{\nabla (\tau_h u)}) < \nabla(\tau_h u), \nabla(\tau_h u) > \eta^2 ds dx$$

Here we remark that from Morrey ([Mo], Th 4.4.3) and Federer ([Fe], Th 5.1.10) assumption (1.4) implies the strong Legendre - Hadamard condition:

(3.11)
$$\sum_{\alpha,\beta} \sum_{i,j} \frac{\partial^2 F}{\partial p_{\alpha}^i \partial p_{\beta}^j} (A) \xi_{\alpha} \xi_{\beta} \eta^i \eta^j \ge \gamma |\xi|^2 |\eta|^2$$

for
$$\forall A \in M^{n \times N}$$
, $\forall \xi \in R^n$ and $\forall \eta \in R^N$.

Thus by noting that $\overline{\nabla u}$ is a constant on each hypercube $D_{k,i}$ $(i=1,\cdots,I)$, we have

$$(3.10) \geq \gamma \sum_{i=1}^{I(k)} \int_{D_{i,k}} |\nabla(\tau_h u)|^2 dx + \int_0^1 \int_{\Omega_2/H_k} D^2 F(\overline{\nabla u} + s \overline{\nabla(\tau_h u)}) < \nabla(\tau_h u), \nabla(\tau_h u) > \eta^2 ds dx$$

$$(3.12)$$

$$= \gamma \int_{H_k} |\nabla(\tau_h u)|^2 dx + \int_0^1 \int_{\Omega_2/H_k} D^2 F(\overline{\nabla u} + s \overline{\nabla(\tau_h u)}) < \nabla(\tau_h u), \nabla(\tau_h u) > \eta^2 ds dx.$$

Next we estimate the first term on the right - hand side in (3.9): From uniform continuity assumption of $D^2F(p)$, there exists a non-negative function w(t) increasing in t, and w(0)=0 concave, continuous and bounded and a constant C_7 , such that we obtain

$$\int_{\Omega} \int_{0}^{1} \left[D^{2} F(\overline{\nabla u} + s \overline{\nabla (\tau_{h} u)}) - D^{2} F(\nabla u + s \nabla (\tau_{h} u)) \right] < \nabla(\tau_{h} u), \nabla(\tau_{h} u) > \eta^{2} dt dx$$

$$\leq C_{7} \int_{\Omega_{1}} \int_{0}^{1} \left[1 + |\overline{\nabla u} + s \overline{\nabla (\tau_{h} u)}|^{s-2} + |\nabla u + s \nabla (\tau_{h} u)|^{s-2} \right]$$

$$w(|\overline{\nabla u} - \nabla u|^{2} + |\overline{\nabla u^{+}} - \nabla u^{+}|^{2}) |\nabla(\tau_{h} u)|^{2} dx$$

$$\leq 2C_{7} 2^{s-1} \int_{\Omega_{1}} \left[1 + |\overline{\nabla u}|^{s-2} + |\overline{\nabla u^{+}}|^{s-2} + |\nabla u|^{s-2} + |\nabla u^{+}|^{s-2} \right]$$

$$(3.13) \qquad [|\nabla u|^{2} + |\nabla u^{+}|^{2}] \cdot w(|\overline{\nabla u} - \nabla u|^{2} + |\overline{\nabla u^{+}} - \nabla u^{+}|^{2}) dx.$$

Since $\nabla u \in L^t_{loc}(\Omega; \mathbb{R}^N)$ (t > s) from (1.8) of Theorem 3, we can apply Hölder inequality to (3.13) as follows: For $s_1 = t/(s-2)$, $s_2 = t/2$ and $s_3 = t/(t-s)$, we estimate the right-hand in (3.13)

$$\leq 2^{s}C_{7}5 \cdot 2\{\int_{\Omega_{1}} [1 + |\overline{\nabla u}|^{t} + |\overline{\nabla u^{+}}|^{t} + |\nabla u|^{t} + |\nabla u^{+}|^{t}]dx\}^{(s-2)/t}$$

$$\{\int_{\Omega_{1}} [|\nabla u|^{t} + |\nabla u^{+}|^{t}]dx\}^{2/t} \{\int_{\Omega_{1}} w^{t/(t-s)} (|\overline{\nabla u} - \nabla u|^{2} + |\overline{\nabla u^{+}} - \nabla u^{+}|^{2}) dx\}^{(t-s)/t}.$$

Successively by using bounded and concave properties of w(t), we have

$$\leq 2^{s} 10C_{7} \{ \int_{\Omega_{2}} [1 + |\overline{\nabla u}|^{t} + |\nabla u|^{t}] dx \}^{(s-2)/t} \\
\{ \int_{\Omega_{2}} |\nabla u|^{t} dx \}^{2/t} \{ \int_{\Omega_{1}} w(|\overline{\nabla u} - \nabla u|^{2} + |\overline{\nabla u^{+}} - \nabla u^{+}|^{2}) dx \}^{(t-s)/t} \\
\leq 2^{s} 10C_{7} |\Omega_{1}|^{(t-s)/t} \{ \int_{\Omega_{2}} [1 + |\overline{\nabla u}|^{t} + |\nabla u|^{t}] dx \}^{s/t} \\
\{ \frac{1}{|\Omega_{1}|} \int_{\Omega_{1}} w(|\overline{\nabla u} - \nabla u| + |\overline{\nabla u^{+}} - \nabla u^{+}|) dx \}^{(t-s)/t} \\
\leq 2^{s} C_{7} 10 |\Omega|^{1-s/t} \{ \int_{\Omega_{2}} [1 + |\overline{\nabla u}|^{t} + |\nabla u|^{t}] dx \}^{s/t} \\
\cdot w(\frac{1}{|\Omega_{1}|} \int_{\Omega_{1}} [|\overline{\nabla u} - \nabla u| + |\overline{\nabla u^{+}} - \nabla u^{+}|] dx)^{(t-s)/t} .$$
(3.14)

From L_1 - norm continuity of integrable function , for ${}^\forall \epsilon>0$, there exists $k=k(\epsilon)$ such that

$$(3.15) (3.14) \le 2^{s} 10 C_7 |\Omega|^{1-s/t} \cdot \epsilon \cdot \{ \int_{\Omega_2} [1 + |\overline{\nabla u}|^t + |\nabla u|^t] dx \}^{s/t}.$$

Finally we shall estimate the second term on the right-hand side in (3.9): From assumption (H5) and using Newton - Leibnitz formula we obtain

$$-2\int_{\Omega_{1}} \int_{0}^{1} (D^{2}F)(\nabla u + t\nabla(\tau_{h}u))dt < \nabla(\tau_{h}u)\eta, \tau_{h}u\nabla\eta > dtdx$$

$$\leq 2C_{0} \int_{\Omega_{1}} \int_{0}^{1} (1 + |\nabla u + t\nabla(\tau_{h}u)|^{s-2})|\nabla(\tau_{h}u)| \cdot |\tau_{h}u| \cdot |\nabla\eta|dx$$

$$\leq 2^{s}C_{0} \int_{\Omega_{1}} (1 + |\nabla u^{+}|^{s-2} + |\nabla u|^{s-2})|\nabla(\tau_{h}u)| \cdot |\tau_{h}u| \cdot |\nabla\eta|dx$$

$$\leq 2^{s}C_{0} \frac{2}{dist(\Omega_{0}, \Omega_{1})} \{ \int_{\Omega_{1}} [1 + |\nabla u^{+}|^{s-2} + |\nabla u|^{s-2}]^{s/(s-2)} dx \}^{(s-2)/s}$$

$$\{ \int_{\Omega_{1}} [|\nabla u^{+}| + |\nabla u|]^{s} dx \}^{1/s} \{ \int_{\Omega_{1}} |\tau_{h}u|^{s} dx \}^{1/s}$$

$$\leq 2^{s}C_{0} 3 \cdot 2 \frac{2}{dist(\Omega_{0}, \Omega_{1})} \{ \int_{\Omega_{2}} [1 + |\nabla u|^{s}] dx \}^{1-1/s} \{ \int_{\Omega_{1}} |\tau_{h}u|^{s} dx \}^{1/s}$$

$$\leq 2^{s}12C_{0} \frac{h}{dist(\Omega_{0}, \Omega_{1})} \{ \int_{\Omega_{2}} [1 + |\nabla u|^{s}] dx \}^{1-1/s} \{ \int_{\Omega_{2}} |\nabla u|^{s} dx \}^{1/s}.$$

Consequently it follows from (3.12), (3.15) and (3.16) that

$$\gamma \int_{H_{k}} |\nabla(\tau_{h}u)|^{2} dx$$

$$\leq 2^{s} 10C_{7} |\Omega_{1}|^{1-s/t} \epsilon \left\{ \frac{1}{|\Omega_{1}|} \int_{\Omega_{2}} (1+|\nabla u|^{t}+|\overline{\nabla u}|^{t}) dx \right\}^{s/t}$$

$$+ \frac{122^{s} C_{0} h}{dist(\Omega_{0},\Omega_{1})} \left\{ \int_{\Omega_{2}} (1+|\nabla u|^{s}) dx \right\}^{1-1/s} \left\{ \int_{\Omega_{2}} |\nabla u|^{s} dx \right\}^{1/s}.$$

Now letting pass to the limit $k \to \infty$, we deduce the desired estimates :

(3.18)
$$\int_{\tilde{\Omega}} |\nabla(\tau_h u)|^2 dx \\ \leq \gamma^{-1} \frac{2^s 80 C_0 h}{dist(\tilde{\Omega}, \partial \Omega)} \left\{ \int_{\Omega_2} (1 + |\nabla u|^s) dx \right\}.$$

This completes our proof.

Acknowledgement

The author is very grateful to Prof. N.KIKUCHI for especially drawing my attention to the problem and his constant encouragement .

References

- [Ad]. R.A.Adams, "Sobolev space," Academic Press, 1975.
- [AF]. E.Acerbi and N.Fusco, Semicontinuity problem in the calculus of variations, Arch Rat Mech Anal.
- [Da]. B.Dacorgna, LNM No 922, "Weak Continuity and Weak Lower semi Continuity of Non-Linear Functionals," Springer.
- [Ev]. C.L.Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch Rational Mech Anal 95 (1986), 227-252.
- [EG]. C.L.Evans and R.F.Gariepy, Blowup, Compactness and partial Regularity in the calculus of Variations, Indiana Math Jour 36 (1987), 361-371.
- [Fe]. H.Federer, "Geometric measure theory," Springer, New York, 1969.
- [GG1]. M.Giaquinta and E.Giusti, Differentiability of Minima of Non-Differentiable Functions, Invent Math 72 (1983), 285–298.
- [GG2]. ______, Sharp estimates for the derivatives of Local Minima of Variational Integrals, Boll U.M.I. 3-A (1984), 239–248.
 - [Gi]. E.Giusti, Precisazione delle funzione H^{1,p} e singolarita delle soluzioni deboli di sistemi ellittici non lineari, Boll U.M.I. 2 (1969), 71–76.
 - [GI]. M.Giaquinta and P.A.Ivert, Partial regularity for minima of variational integrals, Preprint.
- [Gm1]. M.Giaquinta, "Multiple integrals in the calculus of variations and nonlinear elliptic systems," Annals of Math Studies 105 Princeton, 1983.
- [Gm2]. _____, Growth Conditions and Regularity a Counterexample, preprint.
- [Gm3]. _____, Quasi Convexity, growth conditions and partial regularity, preprint.
- [GM]. M.Giaquinta and G.Modica, Partial regularity of minimizers of quasi convex integrals, Ann Inst Henri Póincare.
- [Ho]. K.Horihata, On the Hausdorff dimension of Singular set of L^p -function with certain condition, Boll U.M.I 3-A (1989), 1521–1529.
- [Mo]. C.B.Morrey Jr, "Multiple integrals in the calculus of variations," Springer, 1966.
- [Ne]. J.Nečas, "Les Méthodes en theorie des équations elliptiques," Praha Akademia, 1967.