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A modulus of uniform continuity with some order in L§, (£ ; RNy (2<s< 00)

and a sharp estimate of Lebesgue points of the first-derivatives
of minimizers of a Quasi-convex functional in the calculus of variations .
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Abstract. This paper establishes that minimizers of strictly quasi-conves variational functionals , satisfy

a modulus of uniform continuity with somie order in the norm of L3, (82 RM) with 2 < s < co. This

modulus of uniform continuity combined with a result in the present author’s paper and one of Evans’s
results implies a local Hélder continuity and a sharp estimate for the Hausdorff dimension of Lebesgue
points of the first derivatives of minimizers .

1. INTRODUCTION

‘ In this paper we establish that minimizers for certain functionals in the calculus of variations
satisfy a modulus of uniform continuity of some order in the norm of L3 (Q; RN) with2 < s < +00.
This functional is given as follows : Let n, N be positive integers . We denote by M nXN the space
of all real n X N matrices and suppose that & C R™ is a bounded with smooth boundary . Then
for v: Q — RY , we consider the functional '

(1.1) ] = /Q F(Vv)da,

where v = (v'), Vv = (6v'/0zo) (@=1,---,n,1=1,--" ,N) is the gradient matrix of v and
F: M™N s R is any given mapping , which is strictly defined later. Here we introduce another
notation which will be used in this paper : L*(£; RM) is sth— power integrable function space.
We also denote by Lf (92; RY) locally sth— power integrable function space . HY5(Q; RY) and

loc

o
HY5(Q; RN) are the usual Sobolev spaces. Also |A] and H7(A) means the Lebesgue measure and
the y— dimensional Hausdorff measure of measurable set A in R™ , respectively , ( see Giaquinta
[Gm1] and Giusti [Gi] for detailed definition).

We introduce a forward translation operator and also a forward difference operator of a map
in fe L*(Q; RM) : Lét h be any small number and e be a unit vector in R™. We define a forward
translate operator -* by

(1.2) fH(z) = f(z + he)

and define a forward difference operator 75 by

(1.3) wf=fr-1.
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We adopt the summation convention : For YA, P,Q € M™*VN | we define

oF
DF(4) = (5-(4),
0*'F
-(A
i)
(a,8=1,---,n ij:1-~-,N),

DF(A)-P = Zz 6pa

a=1 =1

D*F(A) = (

and

D*F(A) < P,Q >= Z }:

a,B=114,7=1 apaa y
Let F(z,2,p): @ x RN x M™¥ s R be a function satisfying

(A)PLQ% -

(H1) F(z,z,p) < K[1+p°]

(H2) F(z,z,p) > m

(H3) |F(e,2,pm) — F(z,2,p2)] < K[1+4|p1]*" + |p2|*~*]lp1 — pal
(H4) |F(21,22,p) — F(21,22,p)] < K[1+ |p|°][le1 — 22| + |21 — 22]]

for Im K > 0 and s(1 < s < o0). The first question in the calculus of variations can be considered
as the existence problem of minimizers in some function space . Under the above condition , Morrey
[Mo] has isolated that a necessary and sufficient condition of certain functional F(z,z,p) for the
lower semicontinuity of I[-] on some Sobolev space is quasi-convez :

/ F(zo, 20, po)dy < / F(zo,20,p0 + Vé)dy for Y(zo,20,p0) € @ x RN x M™N |
O o]

for an arbitrary smooth , bounded , open set O C R”’, VA€ M™N and V¢ € CE(O; RN).
Recently Acerbi and Fusco [AF] has refined Morrey’s theorem , who have obtained the follow-
ing for F(p) :

TurorEM 0 ([AF]). Assume that F: M™*N s R is continuous and for some positive numbers
C and s the following

0< F(p) <COA+Ip*)

holds for ¥p € M™*N . Then I[] is weakly sequentially lower semicontinuous on the Sobolev space
HY™(2; RN) if and only if F is quasi-convex.

Also the second question can be considered as the regularity problem of such minimizers .
However one often encounters that a minimizer is not necessarily regular everywhere in Q , even
when F is uniform convex ( see [Gm1], [Gm2] , [Gm3] , [GG2] and [GI] ). For the study of partial
regularity , Fvans [Ev] (see also [EG] and [GM]) has showed that minimizers has Holder continuous
first derivatives on some open subset Qg C Q satisfying |2/Q| = 0 , when F € C*(M™*N ; RN)
and D?F(p) is uniform continuous in M™*N and strictly quasi - conver : For ¥y > 0 and s
(2 < s < ) F satisfies

(1.4) 7 /Q (1+|VeP~2)|Vefdy < /Q [F(A + V) — F(A)dy
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for YA € M™ and V¢ € C1(Q; RN).
and suppose that
(H5) ID*F(p)| < Co(1+ |p|*™?)
for some constant Cy and Yp € M™*V .

We remark that assumption (H5) implies that there exist positive constants C and Cj such
that ‘

(H6) _ |F(p)|

IN

Ci(1+ |p*)

(H7) [DF(p)] < C2(1+ pI°™")
for all p € M™*N | Under the above condition , Evans has proved

THEOREM 1 ([EV]). Assume that 2 < s < 400, the function F satisfies (1.5) and (H5). Let
uw € HY*(Q; RN) be a minimizer of I[-]. Then there exists an open subset Qq of  such that

(1.5) ' (/)] = 0
and the first derivatives of a minimizer u are locally Holder continuous on £y :
Vu € CQ(QO; Man)

foreach 0 < a<1.

This proof is performed by combining a blow-up argument with the following Caccioppols
inequality :

THEOREM 2 ([EV]). There exists a constant Cs independent of r such that a minimizer u satisfies
(1.6) / (14 |Vul]*~)|Vul?de < Cg[(l/'l")2/ lu — al’dz + (l/r)s/ |lu — a|’dz]
B2z B, (=) B, (z)

for  YB.(z)cC Q and Ya € RV .
From Theorem 2 and a Gehring inequality [Gm] , it follows that

THEOREM 3. When Vu satisfies the inequality (1.7) of Theorem 2, there exist positive numbers
t (t > s)depending only on C3,s,Q and C4 depending only on Cs,s, Q and Q such that Vu
€ Lt _(9; RN) and moreover the following holds :

loc
_}__ : ultdz]t/t i uldz1/ s
@7 [IQI/Q(HW Vda]!/* < Clrgr [ (14 |Vulyde

for Qcc .

2. MAIN RESULT

Now we can state the main theorem



THEOREM 4 (MAIN THEOREM). Assume that2 < s < 400, the function F satisfies (1.4) and (H5).
Let u be minimizer of I[-} in H“*(Q; RN) . Then for an arbitrary open set Q compactly contained
in Q , the following holds :

1 ~
(2.1) / |7 Vul’dz < Cs - h for 0<¥h< gdist(Q,GQ),
Q

where Cs is a constant depending only onn, N, v, Co , ||Vullzs , QandQ.
Here we notice that as in the same way of author’s previous result , one finds

TueoreM 5([Ho]). Let f be a function belonging to L}, (2; R™) (1 < p < o0) with the following

loc
condition: Let €1 be an arbitrary open set compactly contained in Q! and suppose that there exist

positive numbers Cg and a (0 < a < n/p) independent of h such that f satisfies
(2.2) / | nf I? do < C - AP
Q

for any number h with 0 < h < % dist(fl,aﬂ). Then for the singular set Sf of the map f defined
by
(2.3)

— L3Py .1
Sy ={zeq: pl_z_ﬁzofx,p}u{z‘ €N : ,al—szo

|fepl = +ooYU{z € Q : lim |f = fz.,pPdy > 0}
p=+0 /B, (2)

where f., = 1/|B,| pr(x) f(y)dy, the following holds:

(2.4) | H®(S) =0

for any positive number 3 with n — pa < (.
From Theorem 4 and Theorem 5 , we obtain

THEOREM 6. A singular set Sy, of the first derivatives of such minimizers , have at most
(2.5) H™1e(8) = 0

for Ve > 0.

In addition , noting [Ev] and [EG] , one finds that (2.5) shows the first derivatives of minimizers
satisfy local Holder continuity on §2/5 :

Vu € CH(Q)S; M™N)  for 0<"a<l.
3. ProoF or THEOREM 4

Since u is a minimizer of I[-]in H1'*(Q; RN) , u satisfies the following first-variational formula

(3.1) /QDF(VU)-wdz =0 for Vg€ I%l’s(Q;RN).
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Transferring « to @ 4+ he along the direction of a unit vector e , we have
(3.2) / DF(Vu)-V¢dz =0  for =~ ¢ e H*(Qy;RY).
Q

where Qo = Q, Q) = {z € Q : dist(2,Q) < kdist(Q,0Q)} (k = 0,1,---,4). (3.1) subtracted
after (3.2) gives

(3.3) /[DF(Vu+) — DF(Vu)]-Véde =0  for.  Ype HY*(Q;RN).
Q
Thus we have
1 o
(3.4) / / D*F(Vu +tV(rpu)) < V(thu),Vé > dtdz = 0 for ¢ € H'™(Q; RY).
QJ0

Substituting T,un? for ¢, where a cut-off function 7 € C§(Q) satisfies -

. 2
n = { 1 in 90, with Vil € wmadeoyy
0 outside €y 0< |nf <1,

We can proceed the calculation of (3.3) as follows :
/ < [ DF(Vu)], V(rpu)n?) > da
Q
1
= / / D?*F(Vu + tV(rhu))
QJo

(3.5) (< V(mpu), V(Thw)n® > +2 < V(rhu), ThunVny >)dtdz

Consequently , the following
/ D*F(A) < V(hu), V(Thu) > nde
Q

= /Q [D*F(A) - /0 1 DZF(Vu'+\tV(Thu))]
< V(hu), V(mpu) > ndtde

1
(3.6) -2 / / D*F(Vu + tV(rpu))dt < V(rpu)n, 7nuVn > dtdz
QJo :

holds for YA e M™*N . Now let 1 be approximated by a union of hypercubes Dy.,; with each edge
length 1/k sufficiently large £ > 0 :

I
0 C U Dk,z' with Q C Hy CQy,
=1 ' .
Bk,iﬂﬁk,j=@ in 1#7,
|Hy — Q2] =0 as k— 400,
(3.7) |Diil = (1/k)™.



Moreover we remark that there exists subsequence of I which we call I(k) such that Hy = Uf(zkl) Dy i
satisfies Q; C Hx C @y and |Q2 — Hx| — 0 as k — +oo. For z € Hy , we define

Vu(z) = . Vu(y)dy for z € Dg; andi=1,---,1I.
[Dril Jp, '

When we adopt Vu(z)+ sV(mpu)(z) (0 < s < 1), Vrru(z) = Vut(z) —Vu(z) as 4,
then it follows from (3.5) , (3.6) and (3.7) that

/ D*F(Vu + sV(rpu)) < V(rpu), V(Thu) > n*dz
Q
o 1
- / D*F(Va + sV(ru))dz — / / DYF(Vu + 1V(rhu)) < V(ryw), V(ru) > nidtde
Q 0o Ja
(3.8)
, 1
-2 / / D?*F(Vu + tV(thu)) < V(rhu)n, ThuVn > didz .
aJo
By integrating (3.8) over [0, 1] for s , we obtain '
1
/ / DY*F(NVu + sV(rpu)) < V(rau), V(Thu) > n*dsdz
aJo
1
- / / (D?F(V + (9(r)) = D*F(Vu + tV(mu)] < V(raw), V(rsw) > n*ddz
aJo
(3.9)
1
-2 / / (D2F)(Vu + tV(mhu))dt < V(rpu)n, (Thu)Vn > dz .
aJo

The above (3.9) is a starting point to our proof. The original technique used here is seen in
[Da] and [Mo] . At first , we estimate the left-hand side in (3.9) from below :

1
/ / D?*F(Vu + sV(rpu)) < V(7hu), V(Thu) > n*dsdz
o Jo
. ,
> / DYF(Vu + sV(rpu)) < V(thu), V(Thu) > n*dsdz
o JH

1 .
+ / / D?F(Vu + sV(rpu)) < V(rpu), V(Thu) > n*dsdz
0 Qo /Hi

I(k) 1 L
= Z/ / D2F(W + sV(1pu)) < V(rat), V(Thu) > 772dsda:
=1 0 Dk,;‘

1
(3.10) + / / DEF(Va + sV(mna)) < V(rau), V(rpu) > n’dsda

0 JQo/Hy
If we use the mean value theorem for s , then there exist positive numbers so; (¢ =1, , I(k))
such that

(k)

=y D2F(Vu + s0.:V(mhe)) < V(mhu), V(Tau) > n’dsde
i=1" Dk,

1 .
+ / / D*F(Vu + sV(rpu)) < V(rpu), V(rpu) > n°dsde
0 JQofHj
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Here we remark that from Morrey ([Mo] , Th 4.4.3) and Federer ([Fe] , Th 5.1.10 ) assumption
(1.4) implies the strong Legendre - Hadamard condition :

' 9*F o
(3.11) SN —(A)abn'n’ 2 vIEP I
o5 17 OPuOPp

for YAe M™YN Vee R"and"ne RN .
Thus by noting that Vu is a constant on each hypercube Dy i (i=1,---,I), we have \
I(k) 1 L
(3.10) > v Z/ |V (rhu)Pdz + / / DYF(Vu + sV(rpu)) < V(mhu), V(Tpu) > n*dsdz
i=1 Y Dik 0 JQo/Hy

(3.12)
1 .
= 7/ |V(rpu)|?dz . + / / D?*F(Vu + sV(rpu)) < V(thu), V(Thu) > n*dsdz .
Hy 0 JQo/Hg

Next we estimate the first term on the right - hand side in (3.9) : From uniform continuity
assumption of D2F(p) , there exists a non-negative function w(t) increasing in ¢ , and w(0) =0
concave , continuous and bounded and a constant C7, such that we obtain

/Q /1[D2F(W+ sV(Thu)) — D2F(Vu + sV(hu))] < V(rpu), V(Tru) > n*dtdz

1
s C?/ / [L+ [Va+sV(mu)l*™ + [Vat sV(ru)|"~]
2, v0
w(|Vu— Vul? + [Vut — Vut )| V(rpu)|*de
< 207277 / [+ [Vel™ + [VuF°7 + [Vul"™ + |[Vu' "]
M

(3.13)
Vul* + |Vat|*] - w(|Vu - Vul|? 4+ [Vut - Vut|*)dz .

Since Vu € Lt _(Q; RN) (t > s) from (1.8) of Theorem 3 , we can apply Hélder inequality to (3.13)

loc

as follows : For sy = t/(s —2), sz = t/2 and s3 = t/(t — s), we estimate the right-hand in (3.13)

< 23075-2{/ [1+ [Vt + |[Vut|t + |Vul* + |Vut|tde} s~ D/
Q3
{] [IVul" + |vu.+|t]dz}2/t{/ w9V - Vul? + |Vat — Vat|?) de}=2/
Ql Ql
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Successively by using bounded and concave properties of w(t) , we have

< 2°10C{ [ 1+ [Vult + |Vult]dz}s~D/
Q2

{] |Vultdz}?t{| w(|[Vu-Vu* + [VuF - Vut|?) dg} =)/t
Qg Q1

< 281007191|<f-s)/t{/ 1+ [Vult + |Vult]dz}*/?
Q2

1 — -
{I_QTI/Q w([Va = V| + [VaF — Vut|) da}t=9/t
1

< 23c71019|1—s/t{/ [+ [Valt + [Vu|de)*!
22
(3.14) -w("‘l—/ [[Vu — Vu| + |[Vut — Vut|]de)t)/t,
1] Jo,
From L; - norm continuity of integrable function , for Ye > 0 , there exists k = k(¢) such that
(3.15) (3.14) < 251007|Q|1_s/t-€-{/ 1+ |Val* + |Vuldz}*/.
Q2

Finally we shall estimate the second term on the right-hand side in (3.9) : From assumption
(H5) and using Newton - Leibnitz formula we obtain

1
—2/ / (D*F)(Vu + tV(rhu))dt < V(hu)n, ThuVn > dtdz
Ql 0

1
< 200/ / (14 |Vu+ tV ()| 2)|V(Thu)| - |Thul - |Valde
0, Jo _
< 2°Cy [ (14 [V 4 [9ul )V ()] -l - [Vlda
2
< 2Oy [ |
= ° 7%dist(Q0, ) o,

{[ IV +|ValPde}/*{ | |rhul*dz}'/?
Q Q3

2
' 14 |Vul®ld 1-1/s / s 1/s
dzst(Qo,Ql){ 92[ Vulldz} { Q, Irhulde}

1+ |V,a+|s—2 + !Vu{s—z]s/(s—a)dx}(s._z)/s

(3.16) < 2°Co3 -2

h
< 21200 —7+—+— / 14 |Vu|)de}t—Y/s Vul*dz}/s.
< 21200 grmas (| 14 IValde) o | [Vupds)

Consequently it follows from (3.12) , (3.15) and (3.16) that
1[IVl
Hy,

| 1 .
< 231oc7|91|1-s/fe{m/ (14 |Vul' + [Val)de )/
Q3

122°Coh s 1-1/s / s 1/s
* diSt(Qo,Ql){/sqz(1+‘vu| Jaey T, Vel

8
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(3.18)

Now letting pass to the limit £ — oo , we deduce the desired estimates :

/_ IV (ra)|2da
Q

dist(%, 39){/ (Lt [Vuf)de}

This completes our proof.
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