GENERALIZED VECTOR MEASURES AND FEYNMAN PATH INTEGRALS

お茶の水女大・理 竹尾富貴子(Fukiko TAKEO)

§1. Introduction.

Let us consider the following Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t} \Psi(t,x) = (-iH + V(t,x))\Psi(t,x) \\ \Psi(0,x) = g(x) & 0 < t < T, x \in \mathbb{R}^d \end{cases}$$

where 0 < T < ∞ , g \in L²(\mathbf{R}^d ; \mathbf{C}^N), V(t, \cdot) = \overline{V} (t) with $\overline{V} \in C^1([0,T]; \mathbf{B}(\mathbf{R}^d))$ and H is a self-adjoint operator on a Hilbert space L²(\mathbf{R}^d ; \mathbf{C}^N).

Feynman[3] introduced the idea of path integral to make an intuitive representation of the Schroedinger equation. Various approaches to the "Feynman integral" have been taken by many mathematicians. In [1,2,6] they treated the Feynman integral by considereing the analytic extension. K.Ito [5] gave the mathematical formulation of the Feynman integral by considereing the Gauss measure in the Hilbert space. But those integrable functions are limited to a Fourier transform of a bounded complex measure or so on. In [7], I. Kluvanek defined the space of integrable functions which is complete with respect to the integrating seminorm depending on the norm of image of an operator $\mu_{\rm t}$. In a special case of a hyperbolic system which

includes the Dirac equation in two space-time dimensions, T. Ichinose [4] constructed a countably additive measure by using the L^{∞} well-posedness of the Cauchy problem and gave the solution of the Cauchy problem by the Feynman integral with this measure.

In [8], we have constructed a $\mathfrak{L}(L^2(\mathbf{R}^d;\mathbf{C}^N))$ -valued generalized measure μ_t on the path space $\hat{\mathbf{X}}_t$ and in case that V(t,x) is independent of t, i.e. V(t,x) = V(0,x), we gave the solution of $\Psi(t)$ of (1.1) by the Feynman integral.

In this paper, we shall examine the space $L(S,\beta)$ of integrable functions with respect to μ_t , which is defined as an extension of a tensor product space and is complete with respect to a seminorm β which does not depend on μ_t [Theorem 1]. $L(S,\beta)$

includes the function $F(X) = \exp\{\int_0^t V(s,X(s)) \ ds\}$ with timedependent potential V(t,x). We shall also show that there is a kind of dominated convergence theorem with respect to μ_t [Theorems 2,3] though it is not countably additive. By using this measure μ_t , we shall give the solution $\Psi(t)$ of (1.1) by the Feynman integral [Theorem 4]

$$\Psi(t) = \int_{\hat{X}_t} d\mu_t(X) \exp \left\{ \int_0^t V(s, X(s)) ds \right\} g(X(0)).$$

§2. Generalized vector measures μ_t on \hat{X}_t .

For 0 < t < ∞ , let $\mathbf{X}_t = \prod_{[0,t]} \mathbf{R}^d$ be the product of the uncountably many copies of \mathbf{R}^d . Let Δ_n be a finite partition of the interval [0,t] such that

$$\Delta_n$$
: 0 = $t_{0,n} < t_{1,n} < \cdots < t_{2^n,n} = t$, where $t_{j,n} = \frac{j}{2^n}$ t

and let σ_n be a mapping of \mathbf{X}_t into itself such that

$$\sigma_{n}(X)(s) = \begin{cases} X(t_{j,n}) & \text{for } t_{j-1,n} < s \leq t_{j,n}(j=1,2,\dots,2^{n}) \\ X(0) & \text{for } s = 0 \end{cases}$$

for any $X \in \mathbf{X}_t$. Let $\hat{\mathbf{X}}_t$ be the subset of \mathbf{X}_t such that

$$\hat{\mathbf{X}}_t = \{ \mathbf{X} \in \mathbf{X}_t; \mathbf{X} \in C([0,t]; \mathbf{R}^d) \text{ or } \mathbf{X} \in \bigcup_{n=1}^{\infty} \sigma_n(\mathbf{X}_t) \}.$$

For F: $\hat{\mathbf{X}}_t \rightarrow \mathbf{C}$, define $\mathbf{F}_{\sigma(n)} : \hat{\mathbf{X}}_t \rightarrow \mathbf{C}$ by

$$F_{\sigma(n)}(X) = F(\sigma_n(X))$$
 for any $X \in X_t$.

Let $\mathcal B$ be the set of Borel subsets of $\mathbf R^d$. For $n\in \mathbf N$ and $\mathbf B_{\mathbf j}\in \mathcal B(\mathbf j=0,1,\cdots,2^n)$, put $\mathbf J(\mathbf B_0,\mathbf B_1,\cdots,\mathbf B_{2^n}):=\{\mathbf X\in \hat{\mathbf X}_t;\mathbf X(\mathbf t_{\mathbf j,n})\in \mathbf A_t,\mathbf A_t\}$

$$B_{j}(j=0,1,\cdots,2^{n})$$
. Let $J = \{J(B_{0},B_{1},\cdots,B_{2^{n}}); n \in \mathbb{N}, B_{j} \in \mathbb{R}\}$

and ${m 3}$ be the field generated by ${m J}.$

Let $\{U_t^{}\}_{t\in \mathbf{R}}$ be a C_0 -group of unitary operators on $L^2(\mathbf{R}^d;\mathbf{c}^N). \quad \text{For } \mathbf{J} = \mathbf{J}(\mathbf{B}_0,\mathbf{B}_1,\cdots,\mathbf{B}_{2^n}) \in \boldsymbol{\mathcal{J}}, \text{ we shall define an operator } \boldsymbol{\mu}_t(\mathbf{J}) \in \mathfrak{L}(L^2(\mathbf{R}^d;\mathbf{c}^N)) \text{ by}$

$$(\mu_{\mathbf{t}}(\mathbf{J}))\mathbf{g} \coloneqq \mathbf{U}_{\boldsymbol{\delta}_{n}}\mathbf{X}_{\mathbf{B}_{2}}\mathbf{U}_{\boldsymbol{\delta}_{n}}\cdots\mathbf{U}_{\boldsymbol{\delta}_{n}}\mathbf{X}_{\mathbf{B}_{1}}\mathbf{U}_{\boldsymbol{\delta}_{n}}\mathbf{X}_{\mathbf{B}_{0}}\mathbf{g} \qquad \text{for } \mathbf{g} \in \mathbf{L}^{2}(\mathbf{R}^{d};\mathbf{C}^{N})\,,$$

where \mathbf{X}_B is a multiplicative operator on $L^2(\mathbf{R}^d;\mathbf{c}^N)$ by the characteristic function of the set B and $\delta_n = \frac{t}{2^n}$. Then μ_t can be considered as a finitely additive $\mathfrak{L}(L^2(\mathbf{R}^d;\mathbf{c}^N))$ -valued measure defined on \mathfrak{F} .

Now we shall consider the integral with respect to this measure $\,\mu_t^{}.$

$$\text{Put} \quad \mathsf{X}_{m}(x) \ = \ \left\{ \begin{array}{ccc} 1 & & \|x\| \leq m \\ 0 & & \|x\| > m \end{array} \right. \quad \text{for} \quad x \in \mathbf{R}^{d}.$$

For $\bar{\mathbf{a}} \in \mathbf{C}^{N}$ and $J \in \mathcal{J}$, we shall write

(2.1)
$$\mu_{t}(J)\bar{\mathbf{a}} := s-\lim_{m \to \infty} \mu_{t}(J)(\bar{\mathbf{a}}\chi_{m})$$

if the limit of the right-hand side exists and we shall naturally use the integral as follows

$$(2.2) \qquad \mu_{\mathbf{t}}(\mathbf{J})\bar{\mathbf{a}} = \int_{\hat{\mathbf{X}}_{\mathbf{t}}} \mathrm{d}\mu_{\mathbf{t}}(\mathbf{X}) \ \mathbf{x}_{\mathbf{J}}(\mathbf{X})\bar{\mathbf{a}}.$$

For $J = J(B_0, B_1, \dots, B_n) \in \mathcal{J}$ and relatively compact set

 $C \in \mathcal{B}$, put $J \circ C := J(B_0 \cap C, B_1, \dots, B_{2^n})$. Then we have

(2.3)
$$\mu_t(J \circ C)\bar{\mathbf{a}} = s-\lim_{m \to \infty} \mu_t(J \circ C)(\bar{\mathbf{a}} \times_m) = \mu_t(J)(\bar{\mathbf{a}} \times_C).$$

Let \mathbf{X}_0 be the space of \mathbf{F} -measurable simple functions on $\hat{\mathbf{X}}_{\mathbf{t}}$.

For
$$\mathbf{g} = \Sigma_{k=1}^{r} \bar{\mathbf{a}}_{k} \times_{C_{k}} \in L^{2}(\mathbf{R}^{d}; \mathbf{c}^{N})$$
 $(\bar{\mathbf{a}}_{k} \in \mathbf{c}^{N})$ and $C_{k} \in \mathbf{R}$ is

relativly compact) and Ψ = $\Sigma_{j=1}^{q} \alpha_j X_{J_j} \in \mathcal{S}_0$ ($\alpha_j \in \mathbf{C}$ and $J_j \in \mathbf{J}$), we have

$$\int_{\hat{X}_t} d\mu_t(X) \Psi(X) g(X(0)) = \Sigma_{j=1}^q \alpha_j \Sigma_{k=1}^r \mu_t(J_j) (\bar{a}_k X_{C_k})$$

by using (2.2) and (2.3).

Let $\mathbf{B}(\mathbf{R}^d)$ be the space of complex-valued bounded Borel measurable functions on \mathbf{R}^d and $\mathbf{B}(\hat{\mathbf{X}}_t: \otimes_{\pi}, \Delta_n)$ be the space of complex-valued functions \mathbf{F} on $\hat{\mathbf{X}}_t$ for which there exist $\mathbf{m} \in \mathbf{N}$ and functions $\mathbf{f}_{\mathbf{j},\mathbf{k}} \in \mathbf{B}(\mathbf{R}^d)$ $(\mathbf{j} = 0,1,\cdots,2^n \text{ and } \mathbf{k} = 1,2,\cdots,m)$ such that $\mathbf{F}(\mathbf{X}) = \mathbf{\Sigma}_{\mathbf{k}=1}^m \prod_{\mathbf{j}=0}^{2^n} \mathbf{f}_{\mathbf{j},\mathbf{k}}(\mathbf{X}(\mathbf{t}_{\mathbf{j},n}))$ for any $\mathbf{X} \in \hat{\mathbf{X}}_t$, equipped with π -norm:

$$\|\mathbf{F}\|_{\pi} := \inf \ \Sigma_{\mathbf{k}=1}^{m} \ \prod_{\mathbf{j}=0}^{2^{n}} \ \|\mathbf{f}_{\mathbf{j},\mathbf{k}}\|_{\infty},$$

where the infimum is taken over all representations of F and $\|f\|_{\infty} = \sup \; \{|f(x)|; \; x \in R^d\}. \quad \text{Let } B(\hat{X}_t : \hat{\otimes}_{\pi}, \Delta_n) \text{ be the completion}$ of $B(\hat{X}_t : \hat{\otimes}_{\pi}, \Delta_n)$ with respect to π -norm.

For $F \in B(\hat{X}_t : \emptyset_{\pi}, \Delta_n)$ and $g \in L^2(\mathbb{R}^d; \mathbb{C}^N)$, there exist sequences $\{\Psi_n\} \subset \mathcal{S}_0$ and $\{g_n\}$ of \mathbb{C}^N -valued simple functions on \mathbb{R}^d such that $\lim_{n \to \infty} \|\Psi_n - F\|_{\pi} = 0$ and $\lim_{n \to \infty} \|g - g_n\|_2 = 0$.

So we shall define the integral of $F \in B(\hat{X}_t; \otimes_{\pi}, \Delta_n)$ by $(2.4) \int_{\hat{X}_t} d\mu_t(X) \ F(X) \ g(X(0)) = \underset{n \to \infty}{\text{s-lim}} \int_{\hat{X}_t} d\mu_t(X) \ \Psi_n(X) \ g_n(X(0)).$

for $g \in L^2(\mathbf{R}^d; \mathbf{C}^N)$.

This is well-defined since the right hand side of (2.4) does not depend on sequences $\{\Psi_n\}$ and $\{g_n\}$ but only on g and F. We shall define the space $B(\hat{X}_t:\hat{\otimes}_{\pi})$ as the space of complex-valued functions F on \hat{X}_t such that $F_{\sigma(n)}$ belongs to $B(\hat{X}_t:\hat{\otimes}_{\pi},\Delta_n)$ for each $n \in \mathbb{N}$ and $\sup_n \|F_{\sigma(n)}\|_{\pi} < \infty$. We shall define the seminorm β on $B(\hat{X}_t:\hat{\otimes}_{\pi})$ by $\beta(F) = \sup_n \|F_{\sigma(n)}\|_{\pi}$

for $F \in B(\hat{X}_t : \hat{\emptyset}_{\pi})$.

A subset C of $\hat{\mathbf{X}}_t$ is said to be β -null if $\mathbf{X}_C \in \mathbf{B}(\hat{\mathbf{X}}_t; \hat{\otimes}_{\pi})$ and $\beta(\mathbf{X}_C) = 0$, where \mathbf{X}_C is the characteristic function of the set C. For functions f, g on $\hat{\mathbf{X}}_t$, $f(\mathbf{X}) = g(\mathbf{X})$ β -a.e. means that the set $\{\mathbf{X} \in \hat{\mathbf{X}}_t; \ f(\mathbf{X}) \neq g(\mathbf{X})\}$ is β -null.

 $\begin{array}{ll} \underline{\text{DEFINITION.}} & \text{We shall call a function } F \in B(\hat{X}_t : \hat{\otimes}_{\pi}) \text{ to be} \\ \\ \underline{\text{integrable with respect to } \mu_t} & \text{if for any } g \in L^2(\mathbb{R}^d ; \mathbb{C}^N) \text{, there} \\ \\ \underline{\text{exists a sequence }} \{\Psi_n\} & \text{of } \hat{\mathcal{S}}_0 \text{ satisfying } F(X) = \lim_{n \to \infty} \Psi_n(X) \quad \text{β-} \\ \\ \text{a.e. and there exists } s-\lim_{n \to \infty} \int_{\hat{X}_t} \mathrm{d}\mu_t(X) \ \Psi_n(X) \ g(X(0)) \text{, which does} \\ \\ \text{not depend on } \{\Psi_n\} \text{ but only on } F. \end{array}$

So we shall write

$$\int_{\hat{X}_t} d\mu_t(X) \ F(X) \ g(X(0)) = s-\lim_{n\to\infty} \int_{\hat{X}_t} d\mu_t(X) \ \Psi_n(X) \ g(X(0)).$$

Let $B([0,t]\times R^d)$ be the space of bounded Borel measurable functions θ on $[0,t]\times R^d$ such that $\tilde{\theta}(s)=\theta(s,\cdot)\in B(R^d)$ is piecewise continuous on [0,t].

Let S be the set of those functions Ψ on $\hat{\mathbf{X}}_t$ for which there exist $\mathbf{m} \in \mathbf{N}$, $\mathbf{C}_k \in \mathbf{B}([0,t] \times \mathbf{R}^d)$ (= set of Borel subsets of $[0,t] \times \mathbf{R}^d$) (k=1,2,..,m) such that $\Psi(\mathbf{X}) = \prod_{k=1}^m \int_0^t \mathbf{X}_{\mathbf{C}_k}(\mathbf{s},\mathbf{X}(\mathbf{s})) \ \mathrm{d}\mathbf{s}$. Let \mathbf{S} be the linear span of $\mathbf{S}_0 \cup \mathbf{S}$.

Let L(\$\mathbb{Z}, \mathbb{B}) be the space of functions F of $B(\hat{X}_t: \hat{\otimes}_{\pi})$ for which there exists a sequence $\{F_j\} \subset \mbox{$\mathcal{S}$}$ such that $\lim_{j \to \infty} \mbox{$\beta(F - F_j)$} = 0. \ \ \mbox{Then we have}$

<u>Proposition</u>. For $F \in L(\mathcal{S}, \beta)$ and $g \in L^2(R^d; C^N)$, there exists a sequence $\{h_n\}$ of \mathcal{S}_0 such that

- i) $F(X) = \lim_{n\to\infty} h_n(X)$ &-a.e. and
- ii) $s-\lim_{n\to\infty} \int_{\hat{X}_t} d\mu_t(X) h_n(X) g(X(0)) exists.$

 $\frac{\text{Proof.}}{\text{Proof.}} \quad \text{For } \text{F} \in \text{L}(\textbf{X},\textbf{B}) \text{, there exists a sequence } \{\text{F}_j\} \subset \textbf{X},$ such that $\textbf{B}(\text{F}-\text{F}_j) < \frac{1}{2^j}$. For $\text{g} \in \text{L}^2(\textbf{R}^d;\textbf{C}^N)$ and $\text{F}_j \in \textbf{X}$,

there exists $h_{j,n} \in \mathcal{S}_0$ such that $\|(F_j)_{\sigma(n)} - h_{j,n}\|_{\pi} < \epsilon$. So we can find $\{h_n\} \subset \mathcal{S}_0$ satisfying the desired conditions. //

The above proposition shows that the space L(§,§) consists of integrable functions with respect to $\mu_{t}^{}$ and we have

Theroem 1. A C_0 -group $\{U_t\}_{t\in R}$ of unitary operators on $L^2(R^d;c^N)$ induces a $\mathfrak{L}(L^2(R^d;c^N))$ -valued generalized measure μ_t on $\hat{\mathbf{X}}_t$ such that the space $L(\mathcal{S},\beta)$ consisting of an integrable function with respect to μ_t is complete with respect to the seminorm β .

§3. The property of the generalized measure $\boldsymbol{\mu}_t$.

The generalized measure $\;\mu_t$ defined at §2 is not countably additive but it has a kind of convergence theorem as shown below.

 $\underline{\text{DEFINITION}}. \quad \text{We shall call a sequence } \{f_n\} \subset B(R^d) [\text{resp.}$ $B([0,t] \times R^d)] \text{ to be } \underline{(*)\text{-sequentially compact}} \text{ if for any}$ $\text{subsequence } \{f_{n(j)}\} \text{ of } \{f_n\}, \text{ there exists a subsequence}$

$$\begin{split} &\{f_{n(j(k))}\} \text{ of } \{f_{n(j)}\} \text{ such that } f_{n(j(k))}(x) [\text{resp.} f_{n(j(k))}(s,x)] \\ &\text{converges to some function } g(x) \in B(R^d) \text{ for any } x \in R^d \setminus N \\ &[\text{resp. } g(s,x) \in B([0,t] \times R^d) \text{ for any } (s,x) \in [0,t] \times (R^d \setminus N)] \\ &\text{with } \nu(N) = 0 \text{ as } k \to \infty, \text{ where } \nu \text{ is the Lebesgue measure on } R^d. \end{split}$$

Then we have the following convergence theorems.

$$\underline{\text{Theorem 2}}. \quad \text{For k, m } \in \mathbf{N} \text{ and } \{\mathbf{F}_n\}_{n=0}^{\infty} \subset \hat{\mathbf{B}}(\hat{\mathbf{X}}_t : \boldsymbol{\otimes}_{\pi}, \boldsymbol{\Delta}_m)$$

with
$$F_n(X) = \sum_{k=1}^{K} \prod_{j=0}^{2^m} f_{j,k,n}(X(t_{j,m}))$$
, suppose

$$\sup_{n} \|F_{n}\|_{\pi} < \infty, \quad \lim_{n \to \infty} F_{n}(X) = F_{0}(X) \text{ a.e. on } R^{(2^{m}+1)d} \text{ and}$$

$$\{f_{j,2,n}; \ 1 \leq j \leq m, \ 1 \leq Q \leq K, \ n \in N\} \text{ is } (*)\text{-sequentially compact.}$$

Then we have

$$\int_{\hat{X}_t} d\mu_t(X) \ F_0(X) \ g(X(0)) = \underset{n \to \infty}{\text{s-lim}} \int_{\hat{X}_t} d\mu_t(X) \ F_n(X) \ g(X(0))$$
 for any $g \in L^2(\mathbf{R}^d; \mathbf{C}^N)$

<u>Proof.</u> By the assumption, there exist a subsequence $\{n(k)\} \text{ and sequences } \{\tilde{f}_{j,\varrho,n(k)}\} \subset B(R^d) \text{ and } \{h_{j,\varrho}\} \subset B(R^d)$ satisfying

$$\sup \left\{ \| \tilde{f}_{j,\mathfrak{Q},n(k)} \|_{\infty} ; 1 \leq j \leq m, 1 \leq \mathfrak{Q} \leq K, k \in \mathbb{N} \right\} < \infty,$$

$$F_{n(k)}(X) - F_{0}(X) = \sum_{\mathfrak{Q}=1}^{K} \prod_{j=0}^{2^{m}} \tilde{f}_{j,\mathfrak{Q},n(k)}(X(t_{j,m}))$$

$$\lim_{k \to \infty} \tilde{f}_{j,\mathfrak{Q},n(k)}(x) = h_{j,\mathfrak{Q}}(x) \text{ a.e. on } \mathbb{R}^{d} \text{ and }$$

for any $\ell=1,\cdots,K$, there exists $j_{\ell}\in\{1,\cdots,m\}$ such that $\lim_{k\to\infty} \tilde{f}_{j_{\ell},\ell,n(k)}(x) = 0 \text{ a.e. on } R^d. \text{ By using the property of } \mu_t, \text{ we have } s-\lim_{n\to\infty} \int_{\hat{X}_t} d\mu_t(X) \left(F_{n(k)}(X) - F_0(X)\right)g(X(0)) = 0. \text{ By } the property of (*)-sequential compactness, we have } s-\lim_{n\to\infty} \int_{\hat{X}_t} d\mu_t(X) \left(F_n(X) - F_0(X)\right)g(X(0)) = 0.$

For a function $F \in B(\hat{X}_t: \hat{\otimes}_{\pi})$ we shall call F(X) = 0 α -a.e. if $F_{\mathfrak{G}(n)}(X) = 0$ a.e. on $R^{(2^n+1)d}$ for any $n \in N$. Then we have

Then we have $F_n \in L(S, \beta)$ and

$$\int_{\hat{X}_t} d\mu_t(X) F_0(X) g(X(0)) = s-\lim_{n \to \infty} \int_{\hat{X}_t} d\mu_t(X) F_n(X) g(X(0))$$

for any $g \in L^2(\mathbb{R}^d; \mathbb{C}^N)$.

By the property of (*)-sequential compactness, there exist a subsequence $\{n_i\}$ and $\tilde{\theta} \in B([0,t] \times \mathbb{R}^d)$ such that $\lim_{j\to\infty}\theta_{n_j}(s,x) = \tilde{\theta}(s,x)$ for any $(s,x) \in [0,t] \times (\mathbb{R}^d \setminus \mathbb{N})$ with v(N) = 0. Then we have $\lim_{j\to\infty} F_{n_j}(X) = \exp \int_0^t \tilde{\theta}(s,X(s)) ds$ α -a.e., which implies $F_0(X) = \exp \int_0^t \tilde{\theta}(s, X(s)) ds \quad \alpha$ -a.e. $G_{n,k}(X) = \Sigma_{\varrho=0}^k \frac{1}{\varrho!} \left(\int_0^{\tau} \theta_n(s,X(s)) ds \right)^{\varrho} \text{ and } \widetilde{G}_k(X) = \Sigma_{\varrho=0}^k \frac{1}{\varrho!}$ $(\int_{\hat{\theta}}^{t} \tilde{\theta}(s,X(s)) ds)^{2}$. By the definitions of the integral and μ_{t} , we have $\int_{\hat{u}} d\mu_{t}(X) \ \tilde{G}_{k}(X) \ g(X(0)) = \Sigma_{\ell=1}^{k} \int_{0}^{t} \int_{0}^{s_{\ell}} \cdots \int_{0}^{s_{2}} U_{t-s_{n}} \tilde{\theta}(s_{\ell})$ $\mathbf{U_{s_0^{-s_{0-1}}}}_{\mathfrak{g}^{-s_{0-1}}}^{\mathfrak{g}^{-s_{0-1}}}(\mathbf{s_{2-1}})\cdots\mathbf{U_{s_{2}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}}}^{\mathfrak{g}^{-s_{1}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}^{-s_{1}}}}^{\mathfrak{g}^{-s_{1}^{-s_{1}}}}(\mathbf{s_{1}})\mathbf{U_{s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}^{-s_{1}}}}^{\mathfrak{g}^{-s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}^{-s_{1}}}}^{\mathfrak{g}^{-s_{1}^{-s_{1}}}}_{\mathfrak{g}^{-s_{1}^{-s_{1}^{-s_{1}}}}}^{\mathfrak{g}^{-s_{1}^{-s_{1}^{-s_{1}}}}}_{\mathfrak{g}^{-s_{1}^{-s_$ $\operatorname{L}^2(R^d; \mathbf{C}^N)$. So by (3.1), we have $\underset{n \to \infty}{\text{s-lim}} \int_{\hat{X}} d\mu_t(X) \ G_{n,k}(X) \ g(X(0)) = \int_{\hat{x}} d\mu_t(X) \ \widetilde{G}_k(X) \ g(X(0)).$ Byusing the relation $\lim_{k\to\infty}\beta(F_n-G_{n,k})=0$, we have the desired

§4. The Feynman path integral.

result.

Now we shall consider the Cauchy problem described at §1. By using the above theorem, we have

Theorem 4. Let H be a self-adjoint operator on a Hilbert space $L^2(\mathbf{R}^d;\mathbf{C}^N)$ and $0 < T < \infty$. Suppose $\overline{V} \in C^1([0,T];\mathbf{B}(\mathbf{R}^d))$, $V(t,\cdot) = \overline{V}(t)$ and g belongs to the domain of iH. Then the solution $\Psi(t,\cdot)$ of the following Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t} \Psi(t,x) = (-iH + \theta(t,x))\Psi(t,x) \\ \Psi(0,x) = g(x) & 0 < t < T, x \in \mathbb{R}^d \end{cases}$$

is expressed as follows;

$$\Psi(t, \cdot) = \int_{\hat{\mathbf{X}}_t} d\mu_t(X) \exp\{\int_0^t V(s, X(s)) \, ds\} \, g(X(0)).$$

Proof. iH generates a C_0 -group $\{U_t\}_{t\in \mathbf{R}}$ of unitary operators on $L^2(\mathbf{R}^d;\mathbf{C}^N)$ such that $U_t=e^{iHt}$. By Theorem 1, the C_0 -group induces a $\mathbf{L}(L^2(\mathbf{R}^d;\mathbf{C}^N))$ -valued generalized measure μ_t on $\hat{\mathbf{X}}_t$. Since $F(X)=\exp\{\int_0^t V(s,X(s)) \ ds\}$ belongs to $L(\mathbf{L},\mathbf{R})$, there exists its integral with respect to μ_t and put

$$\overline{\Psi}(t) = \int_{\hat{\mathbf{X}}_t} d\mu_t(X) \ \mathrm{F}(X) \ \mathrm{g}(X(0)).$$

Then it holds that $\overline{\Psi}(t) = U_t \overline{\Psi}(0) + \int_0^t U_{t-s} \overline{V}(s) \overline{\Psi}(s) ds$ and $\overline{\Psi}(t)$ is the solution of the above Cauchy problem. //

REFERENCES

- [1] R.H. Cameron and D.A. Storvick, Analytic Feynman integral equations of an integral equation related to the Schroedinger equation, J. Analyse Math. 38(1980), 34-66.
- [2] R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Math. **798**(1980),18-67.
- [3] R.P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Phys. 20(1948), 367-387.
- [4] T. Ichinose, Path integral for a hyperbolic system of the first order, Duke Math J. 51(1984), 1-36.
- [5] K. Ito, Generalized uniform complex measures in the Hilbertian metric space with their application to the Feynman integral, Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, 2(1967), 145-161.
- [6] G. Johnson and D. Skoug, A Banach Algebra of Feynman Integrable Functionals with Application to an Integral Equation Formally Equivalent to Schroedinger's Equation, J. Funct. Anal. 12(1973), 129-152.
- [7] I. Kluvanek, Integration and the Feynman-Kac formula, Studia Math. **86**(1987), 35-57.
- [8] F.Takeo, Generalized vector measures and path integrals for hyperbolic systems, Hokkaido Math. J. 18(1989), 497-511.