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GENERALIZED VECTOR MEASURES AND FEYNMAN PATH INTEGRALS

BROKZK - B REHF(Fukiko TAKEO)

§1l. Introduction.
LLet us consider the following Cauchy problem
(2

(1.1) { L w(t,x) = (-iH + V(£,%))¥(t,x)

¥(0,x) = g(x) 0 <t<T, X € Rd
2,.d N - .
where 0 < T < o, g € L“°(R;C"), V(t,-) = V(t) with
V e Cl([O,T]; B(Rd)) and H is a self-adjoint operator on a

Hilbert space L2(Rd;CN).

Feynman[3] introduced the idea of path integral to make an
intuitive representation of the Schroedinger equation. Various
’approaches to the "Feynman integral" have been taken by many
mathematicians. In [1,2,6] they treated the Feynman integral
by considereing the analytic extension. K.Ito [5] gave the
mathematical formulation of the Feynman integral by consideréing
the Gauss measure in the Hilbert space. But those integrable
functions are limited to a Fourier transform of a bounded
complex measure or so on. In [7], I. Kluvanek defined the
. space of integrable functions which is complete with respect to
the integrating seminorm depending on the norm of image of an

operator pt. In a special case of a hyperbolic system which
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includes the Dirac equation in two space-time dimensions,

T. Ichinose [4] constructed a countably additive measure by

using the Lw well-posedness of the Cauchy problem and gave the
solution of the Cauchy problem by‘the Feynman integral with this

measure.

d;CN))—Valued

In [8], we have constructed a £(L2(R
generalized measure pt on the path space Xt and in case that

V(t,x) is independent of t, i.e. V(t,x) = V(0,x), we gave the
solutioen of ¥(t) of (1.1) by the Feynman integral.

In this paper, we shall examine the space L(§,8) of
integrable functions with respect to “t’ which is defined as an

extension of a tensor product space and is complete with respect

to a seminorm B which does not depend on pt[Theorem 1]. L(&,R)

t
includes the function F(X) = exp {J V(s,X(s)) ds} with time-

0 \
dependent potential V(t,x). We shall also show that there is a
kind of dominated convergence theorem with respect to pt

[Theorems 2,3] though it is not countably additive. By using

this measure pt, we shall give the solution ¥(t) of (1.1) by the

Feynman integral [Theorem 4]

t
¥(t) = [ dp 0 exp ([ V(s,X(s)) ds} g(X(0)).
. 0

X
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§2. Generalized vector measures ¥y on Xta

For 0 < t < o, let X_ = H[O t}Rd be the product of the

d

uncountably many copies of R . Let An be a finite partition of

the interval [0,t] such that

An: 0 = to,n<t1,n<°"'<t2n n=t, where tj,n = 2n t

and lét 6n be a mapping of Xt into itself such that

X(tj,n
X(0) for

: i = o = & » n
6 (X)(s) = { ) for ty , < s Sty (j=1,2, 2™
s =0

for any X € X,. Let Xt be the subset of Xr such that

X = : g4 ©
X, = { X eX; XeC([0,t];R) or X e U ;6 (X)}.

X, » C by

For F: Xt » C, define Fﬁ(n): t

Fomy (X) = F(6 (X))  for any X e it.

Let B be the set of Borel subsets of Rd. For n € N and

.= LI n L 3 o 2 .
Bje B(j=0,1, ,27), put J(BO,B ,B n)’iX € Xt,X(tj ) €

1 9 ,

Bj(j=0,1,'°-,2n)}. Let J = {J(BO,Bl,---,an); neN, B e B}

and # be the field generated by J.

Let {Ut}tER be a C

O—group of unitary operators on

LZ(Rd;CN). For J = J(BO,B --+-,B n) € J, we shall define an

1 2

operator-pt(J) € £(L2(Rd;CN)) by
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R ’ * > 0 2 d' N
(pt(J))g = Us Xg Us Ua Xg U& Xg & for g €e L°(R;C),
n 2n n n 1 "n 0

where X, is a multiplicative operator on LZ(Rd;CN) by the

B

characteristic function of the set B and 8n= Then yt can

N et
5|

be considered as a finitely additive &(Lz(Rd;CN))—Valued
measure defined on Z.
Now we shall consider the integral with respect to this

measure H .

{ 1 Ixl s m d

Put Xm(X) = 0 x| > m for x e-R

For a € CN and J ¢ J, we shall write

(2.1) pt(J)é = s;iim pt(J)(axm)

if the 1limit of the right-hand side exists

and we shall naturally use the integral as follows

(2.2)  p (Da = j. du (X) ¥, (X)a.
X

t
For J = J(BO,Bl,--,B n) € J and relatively compact set
2
Cef, put J o C = J(BOnC,Bl,--,B n). Then we have
2

(2.3) p(J o C)a = s-1lim B (J e C)(axm) = pt(J)(axC).

m->0
Let 80 be the space of F-measurable simple functions on Xt'

€ LZ(Rd;CN) (ék e cN andCk e B is

-— r -
For g = Ek=1 akXC

k
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. . _ o] :
relaﬁfely compact) a?d ¥y = Ej:lngJj € 80 (aj e C and Jj € J),

we have

i

J. dp (X) ¥(X) g(X(0)) = nglajEKZipt(Jj)(akXC )
Xt k

by using (2.2) and (2.3).
Let B(Rd) be the space of complex-valued bounded Borel

measurable functions on Rd and B(Xt:®",ﬂn) be the space of
compléx—valued functions F on Xt for which there exist m € N

and functions fj Kk € B(Rd)(j=0,l,--7,2n and k=1,2,---,m) such

n
_ m 2 - .
that F(X) = E o1 | 2o fj,k(X(tj,n)) for any X € X equipped

J t’
with wm-norm:

2n

20 1T

" s m
IFI_ = inf £ " T PR

where the infimum is taken over all representations of F and

"f"m = sup {|f(x)]|; X € Rd}. Let B(Xt:®n,An) be the completion
of B(Xt:®n,An) with respect to m-norm.
< - 2,.,d. N, .
For F ¢ B(Xt.®n,ﬂn) and g € L°(R ;C), there exist

sequences {wn} - 80 and {gn} of CN—Valued simple functions on Rd

such that 11mnamuwn - FIIn = 0 and 11mn9mug - gnﬂz = 0.
So we shall define the integral of F € B(Xt:®n,an) by

(2.4) Ji dp, (X) F(X) g(X(0)) = s-1lim Iﬁ dp, (X) ¥ (X) g (X(0)).

t N2 t
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for g € L2(Rd;CN).
This is well-defined since the right hand side of (2.4) does not

depend onvsequences {Tn} and {gh} but only on g and F. ‘ We

shall define the space B(Xt:®n) as the space of complex-valued

functions F .on X, such that F

. s(n) belongs to B(Xt:®n,&n)

for each n € N and sup | < w. We shall define the

n Fﬁ(n)“n

%

seminorm RK on B(Xt:®n) by

~B(F) = sup IF

u s(n) Iy

for F € B(Xt:®n)-

A subset C of Xt is said to be B—null‘if XC € B(Xt:®n)

and B(XC) = 0, where XC is the characteristic function‘of the

set C. For functions f, g on Xt’ f(X) = g(X) PRB-a.e. means

that the set {X ¢ Xt; f(X) = g(X)} is R-null.

DEFINITION. We shall call a function F € B(Xt:®n) to be.

integrable with respect to p, if for any g € L2(Rd;CN), there
t

exists a sequence {Wn} of 80 satisfying F(X) = llmnemwn(x) B-

a.e. and there exists s-1im J dpt(X) WD(X) g(X(0)), which does
n->0 -

t

not depend on {Wn} but only on F.
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So we shall write

[ an 0 F(X) £(X(0)) = s-lim j dpt<X) ¥, (0 g(X(0)).

Let B([O,t]de) be the space of bounded Borel measurable

d

functions 8 on [0,t]>»xR" such that é(s) = 9(s,*) € B(Rd) is

piecewise continuous on [0,t].

Let S be the set of those functions ¥ on Xt for which

there exist m eN, C, € B([O,t]XRd)(z set of Borel subsets of

k
d m t
[o,t1xRY) (k=1,2,--,m) such that ¥(X) = J[." j x. (s,X(s)) ds.
k=1 0 Ck
Let 8 be the linear span of 80 U s.

Let L(8,8) be the space of functions F of B(thén) for

which there exists a sequence {Fj} C 8 such that

1i Jam B(F - F ) = 0. Then we hgve

Proposition. For F € L(8,R) and g € LZ(Rd;CN), there

exists a sequence {hn} of 80 such that

i) F(X) = 1imnew hn(X) R-a.e. and

1)  s-1lim j dp (X) h (X) g(X(0)) exists.

-0

t

Proof. For F e L(8,R), there exists a sequence {Fj} c 3,

such that gB(F - Fj) < l}. For g € LZ(Rd;CN) and Fj e 3,
.2
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s;i;m JA dpt(X) (Fj)d(n)(x) g(X(0)) exists. For any € > 0,
Xt
i . . - . €.
there exists h‘],n € 80 such that "(FJ)G(H) hJ,an < So
we can find {hn} C 30 satisfying the desired conditions. //

The above proposition shows that the space L(3§,R) consists

of integrable functions with respect to Hy and we have

Theroem 1. A Co—group {U of unitary operators on

t}tER

L2(Rd;CN) induces a £(L2(Rd;CN))-Valued generalized measure “t

on Xt such that the space L(8,R) consisting of an integrable
function with respect to pt is complete with respect to the

seminorm R.

§3. The property of the generalized measure pt.
The generalized measure pt defined at §2 is not countably

additive but it has a kind of convergence theorem as shown

below.

DEFINITION. We shall call a sequence {fn} C B(Rd)[resp.

B([O,t]de)] to be (x)-sequentially compact if for any

subsequence {fn(j)} of {fn}, there exists a subsequence
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{fn(j(k))} of {fn(j)} such that fn(j(k))(X)[resp.fn(j(k))(s,x)]

converges to some function g{(x) € B(Rd) for any x € Rd N N

[resp. g(s,x) € B([O,t]XRd) for any (s,x) € [0,t] x (Rd N\ N)1

with w(N) = 0 as k » o, where v is the Lebesgue measure on Rd.
Then we have the following convergence theorems.
® .
Theorem 2. For k, m € N and {Fn}n=0 C B(Xt.®n,ﬂm)
o
with Fn(X) = Eooq Hj=0 fj,ﬂ,n(X(tj,m))’ suppose
sup IF. | < ® 1lim F (X) = F (X) a.e. on R(“ZmJ'l)d and
np n'n ’ n-=w n 0 T
{fj on’ 1sjsm, 1s9sK, n € N} is (*)-sequentially compact.
Then we have
[ au () Fx) e(X(0)) = s-lim [. du (X) F (X) g(X(0))
X n-o X
t t
for any g € L2(Rd;CN)
Proof. By the assumption, there exist a subsequence
{n(k)} and sequences {% } C B(Rd) and <{h } C B(Rd)
J,2,n(k) Jj, R
satisfying
sup {If; o 1 (x)le ¢ 18J3m, 1308K, k € N} < o,
oM ~
Frao X = FoX) = 5000 LT 5 0 nae) Xty )
lim . (x) = h, (x) a.e. on Rd and
k= “j,9,n(k) Jj, 2 T



for any 2=1,-+-+,K, there exists jQ e {1,+--,m} such that
. Ty d _ ‘
llmkam Jg’ﬂ n(k)(X) = 0 a.e. on R . By using the property of
M., we have s-1lim I du, (X) (F (X) - F, (X))g(X(0)) = 0. By
t N t n(k) 0

t

the property of (*)-sequential compactness, we have

s-1im j dp, (X) (F (X) - Fy(X))g(X(0)) = 0. //
n-e
t

For ‘a function F € B(Xt:®n) we shall call F(X) = 0 x-a.e.

n
if F )(X) =0 a.e. on R(2 +1)d for any n € N.

s(n

Then we have

® d
Theorem 3. For {Bn}n=0 C B([0,t]xR™), put Fn(X) =

exp J Bn(s,X(s)) ds for any X € Xt and n = 0,1,+---. Suppose
0 -

lim F (X) = F.(X) x-a.e. and {86_}

o . .
n-wo n 0 n‘n=0 1S (#*)-sequentially

compact.

Then we have F e L(8,8) and

jA dp, (X) Fy(X) g(X(0))
X

s-1im I dp (X) F_(X) g(X(0))
n-=w

t » t

for any g € LZ(Rd;CN).

10
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Proof. By the property of (#)-sequential compactness,

there exist a subsequence {nj} and 8 e B([O,t]de) such that

(3.1) 1im. . 8_ (s,x) = 8(s,x) for any (s,x) € [0,t] x (RY \ N)
joo nj
, t_
with w(N) = 0 . Then we have lim, .  F_ (X) = exp J 0(s,X(s)) ds
jow nj 0
t~
a-a.e. , which implies FO(X) = exp J 8(s,X(s)) ds w«-a.e. Put
0
¢ (x) = g K L (fte (s,X(s)) ds)® and &, (x) = £ K Lo
n,k T "e=0 9! 0 n "’ k T "9=0 9!

t.
(J 8(s,X(s)) ds)ﬂ. By the definitions of the integral and He s
0

_ , Lot Sy S, 3
we have JA dp, (X) G (X) g(X(0)) = zﬂzljojo '~---JO Ui g B(SR)

X¢

]

U e(sg_l).."Us

s -8 9(sl)US g dslds ---dsm + g for g e

-S 2

2-1 2 71 1
L2(Rd;CN). So by (3.1), we have

s-1im j dp, (X) G, (X) g(X(0)) = j dp (X) & (X) g(X(0)). By
-0 - ’ -
X

t t

using the relation 11mk_mB(FIl - Gn,k) = 0, we have the desired

result. //
§4. The Feynman path integral.

Now we shall consider the Cauchy problem described at §1.

By using the above theorem, we héve

11
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Theorem 4. Let H be a self-adjoint operator on a Hilbert
space L2(Rd;CN) and 0 < T < w, Suppose V € Cl([O,T];B(Rd)),
V(t,+) = V(t) and g belongs to the domain of iH.

Then the solution ¥(t,-) of the following Cauchy problem

at

{3’-— W(t,x) = (-iH + 8(t,x))¥(t,x)
¥(0,x) = g(x) 0<t<T, x ¢ RY

is expressed as follows;

t
w(t, ©) = . du (X) exp{[ V(s.X(s)) ds} g(X(0)).
X 0
t

Proof. iH generates a C,.-group {Ut}tER of unitary

0

operators on L2(Rd;CN) such that Ut = elHt. By Theorem 1, the

d

C.-group induces a £(L2(R ;CN))—Valued generalized measure pt

0

-

: t
on Xt‘ Since F(X) = eXp{J V(s,X(s)) ds} belongs to L(8,R),
0

there exists its integral with respect to pt and put

¥(t) = [. dp (X)) FX) g(X(0)).
X |
t

t
Then it holds that ¥(t)= U ¥(0) + J U__V(s)¥(s) ds and ¥(t) is
0

the solution of the above Cauchy problem. //
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