goooboooogn lg-
O 7430 19910 15-25 '

Introduction to Mathematical Theory of Brownian Motion

W e (ElRP)
Norihiko Kazamaki (Toyama Univ.)

§1. Prologue. ‘ 7 _ ) ‘

The molecular phenomenon which is now named after Robert Brown has
been known for many years. The meaning of his work done in 1828 is that the
phenomenon concerns not the biological problem but physical one. The motion
of pollen obeys the randomness as time goes on.

Let (2, F, P) be a probability space, and
X :Q5%wr X(w) eR!

be a random variable (namely a measurable function) on (£2, 7, P). This means
that '
VeeR; {we : X(w)<a}€eF.

A (stochastic) process is a family of random variables parametrized by
nonnegative real numbers: (Xt)tzo- In 1923, N. Wiener gave the mathematical
foundation to the Brownian motion in terms of probability theory.

DeriNITION 1. A Brownian motion is a pro’cess' (B¢)e>o satisfying the
following three conditions:

(i) Vw e Q; t— By(w)is continuous and By(w) = 0,

(i) 0< Vit <Vt < -+- < Vtn ;5 {B¢,,Bs, — Btyy.-.,Be, — Be,_,} is
independent, .

and .

(iii) 0<s<t= By— B, € N(0,t—s), namely

L
e t-9de,

" P(Bt—B,eA)=A¢—E;r%t—T”

for any Borel set A.

REMARK. The first condition is a mathematical representation of the
continuous path with no derivatives at any point, which was pointed out by J.
Perrin in his famous book “Les Atomes”. The second one, the distribution at
present time is completely independent from the amount of change appears in
a paper of P. Langevin. The third one comes from the central limit theorem.

1



16

The spatial symmetry yields that m = 0, while 02 =t — 5 was proved by A.
Einstein.

The theory has an application to signal processing. The Brownian motion
represents the noise in information theory. For the filtering theory, cf. H. Kunita
[4].

Not only the engineers but also mathematicians are interested in this the-
ory, e.g., the works of H. Kaneko, A. Sakai, T. Kono and the others.

§2. Three constructions of the Brownian Motion.

Let
Q= C([O,oo) - Rl),

w€Q,
Bi(w) :==w(t) (t € [0,00)).

Then the family (B;)o<ti<o 15 a stochastic process. In this case, the path
t — By(w)is nothing but w itself.

For each
0<ti <ty <---<ty,

A1, As,...,A, : Borel,
define a cylinder set A C 2 by

Azz{weﬂ : ISViSn;Bt,.EAa},

and the o-field F generated by those cylinder sets. Obviously (2, F) is a mea-
surable space. The Gaussian distribution

1 ey
g(t,2,y) == me"uﬁl' (t>0,2,y€R)

on the cylinder set defined by

P(4) :=["'/AIXA,X...xAn

g(t1,0, 931)9(& —ty,21,22) g(tn —tu_1, 201, 2, )derd2y - - day

can be extended to a probability measure on the o-field F by Kolmogorov’s
extension theorem.



Recall that
/ 9(t,0,z)de = 1
R
yields that P(Q2) = 1.

The process is a Brownian motion in the preceding sense. In fact, the first
_condition is shown as follows:

(i)

= lim lim P ([Bt[ < 1)
n

n—oot—0

o U1
:nlgr;oth—-% -1/n ‘/27rte *d=
1/nvt 1 2
= lim lim e~ Td
n—oo t—0 -1/ vV y
=1. ‘

The third condition comes as follows: Let
_ én : R" S (21,22,...,2,) — (¥1,¥2,.--,%a) ER"
be defined by

n=a
J

=3 & (i>2).
i=1

This is a homeomorphism and hence maps the Borel sets to the Borel ones. Let
0 < s < t. Then one has

P(B, € A;,B, — B, € A;)
=P ((B,, B;) € ¢2(A1 x A3))

:// 9(8,0,91)g(t — 3,91, y2)dy1dy.
$a(A1xAj)

by change of variables z; = y;,2; = y, — 23,

=// g(s)ovzl)g(t - 3,0,22)d21d22

A1XA3

—_——/ g(s,O,zl)dzlf g(t - 8,0,22)d2§2
Al . A3

3
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and in particular, (A; = R'), one has
P(B; — B, €As)
=/ g(t - 3701 32)d32
) Ajg i ‘

o3 C
(t—l) dz

As \/21r(t — 8)

Hence B; — B, € N(0,t — s)
The second condition is obtained by calculating the following simultaneous
distribution: -

(Btl,Btga ey Bt,.)"= ¢n(Bt,,B¢, - Btl, .o "Bfn - Btn-—l)'

P(Bh € AI)Bh - Bt; € A21'“)Bt,, f‘Btan € An)

B / o /,.(A1 o+ An)

g(t1’07 yl)g(tZ - tl, Y1, y2) e g(tn o tn-—la Yn—1, yn)dyl‘ e dyn

by change of variables 2y = yy,2; =y; —2; — 1 (j > 2),

=/ f g(tl:o’zl)g(tz _tl:oazz)"'.g(tn"tn—lvoszn)dzl"'dmn
Ay An

'—“/ 9(t1,0,31)d=¢1/ g(tz —t1,0, zz)dzz / g(tn —tn-1,0,2,)de,
A, Az A,
=P(>Btl € A‘l)]"(.Bt2 - Bt1 EAz) e P(-Bt,. _,B‘n-—l € An)

Thus (B;) is a Brownian motion. The next step is to change the starting
point of the motion:
Pa,(Bt € A) - P(Bt +ac A).

In fact,
PG(BO = a) =P(Bo+a=a) - P(Bo‘—_ 0) - 1,

and so on. In general, one may consider for any initial distribution g,

Pu4) = [ Po(du(de).
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This is the construction of the Brownian motion given by N. Wiener himself.
There are other constructions. The first one is due to R.E.A. C Paley and N.
Wiener [16]. '

Consider a sequence X, of independent random variables subject to
N(0,1).
Then the process B; defined by

sin 1rt

By(w) = T'Xo(W)Jr ZX ()

gives a Brownian motion on finite time interval [0, x|. Since X,’s form an ONS
in L*(f2), the convergence is obvious. The convergence is uniform on [0, x| for
Vw € Q. The construction of those independent sequences are realized by

= v/—2log U; cos(27U,),

‘where U; is a pair of random variables with uniform distribution on (0,1).

The third construction. Consider a sequence of +1 valued random variables
w, with

P(w; = 1) = % = P(w; = —1).

This is obtained as a sequence of coin tossing. The first amount of the coin
tossing
n
W.,,, = Z w;
i=1

is called the random walk. Let (B;) be a Brownian motion. Set
T(J; =0,

T,{(w) :=min{t > 1,1 : |B;— B

1
Tu—1| - \/3'}

Then one has

2G
P(Vt; |By| <G)< P(|B;] <G) < —— — 0.

And hence

W,‘l = \/;BT'{
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is a random walk. In fact, F. Knight [12] proved that
P(lim max |Bi —BtI:O) =1.
j—oo0 0<t<1
The converse is the construction of a Brownian motion.

§3. Sample Properties of the Brownian Motion.
THEOREM 1.

P ({w € Q : t — By(w) differentiable at sometime t}) = 0.

A beautiful proof of A. Dovoretsky, P. Exdds, and S. Kakutani [5] was told.
The details are omitted here.

THEOREM 2 (N. Wiener).

Yw € Q; {t — By(w)} ¢ BV[0,1].

Using the elementary inequality

zz
e—°S1—2+—2-— (220)3

2“
E [exp (Z |B,/2n. - B()—-l)/2"|)] -0

i=t

one has

as n — oo and the result follows.

THEOREM 3.
— 2“ 2
Yw € Q; Z (Bjt/zn - B(j_]_)t/gn) —t  ((as n — o0)).
ji=1
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For h > 0, let

C(h):= sup |B, — By.
ls—t|<h

THEOREM 4 (P. Lévy, 1937).

P (ﬁh_,w—c(f)— = 1) =1.

\/2hlog #

§4. Transition Operators.

Let Coo(R! — R1') be the totality of bounded continuous functions on the
real line. For f € Coo(R' — R'), and a time parameter ¢ > 0, let

THE) = BB = [ fP(Becd) = [ 1G24
It is obvious that (Tof)(z) = f(=).

THEOREM 5. ,
(i) T: : Cxo > f—>Tif € Cx is a linear operator, and

1Tl = 1,
(11) fI.'t+a = TAT‘t = TltTt

The semigroup property ii) comes from the well known Chapman - Kol-
mogorov’s identity:

/ 9(s,2,9)9(t,y,2)dy = g(s + t,2,2).

- 00

And the semigroup property applied to an indicator function f = I, yields also
that

o0

P(Baied)= [ P (BicNP.(B, edy).

— O

A physical interpretation of this identity is that the entrance probability into
A at time s + ¢ of a particle starting from z is identical to the total sum of the
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entrance probability into A at time s 4 ¢ starting from ¢ and passing through
dy at time 3.

§5. Kakutani’s Theorem. ‘

Let B = (B;) be a two dimensional Brownian motion, namely an ordered
pair of mutually independent Brownian motions, say, B = (B;) = (B;, B;').
Suppose further that z € R* and R? D A is a Borel set. Since

. 1 s—z|2
B = —e 3t
P, (B €A) /Ame e b,

one has that
, A,
0 < P(Vt; BtEA)SPz(BtEA)SL—;lt'—W) (as t — o).

For the upper half plain
R} :={z=(z,9) €R? : y> 0},
the first exit time will be denoted by 7 :
7(w) :=inf{t : By(w) € ORZ}.
S. Kakutani [11] provéd the following theorem which- gives the probability of

the event that a particle starting from zp and going out the half plain from left
to right. '

THEOREM 6 (S. Kakutani, 1944).

| 1 f*® Yo
Ve — RY; P(B- <A) == [ ————dt.
zo = (%o, %) € R} (B- < A) x /:00 (zo—t)2+ 43

There is a close relationship between this theorem and the Dirichlet prob-
lem. If f € C(8R2), then

f(z,y) = %\/;: (z_——t:;lz—-{—_g—ﬁdt = E,[f(B;)]

gives a solution to the Dirichlet problem.
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LEMMA. For any dngdlar domain D := {0 < a < 27}, I‘?tv o be the first
ezit ttme from D. Then \ . . .

- 6
p(z) = P,(B, € 53) =
where 0 = arg z,a = arg B.
The conformal image of this theorem goes as follows: Let D := {lz| < 1}

and ¢ :=inf{t : B; ¢ D} be the first exit time from D.
THEOREM 7. IfT be a Borel set on the one dimensional torus, then

P,(B er')—l/ = dt
A C 2 Jp1—2rcos(f —t)+r

The Cayley transform is available for the proof.

Let m(dt) be a measure on 8D.
COROLLARY 1.

PO(BC € F) = %

COROLLARY 2. Ifh is continuous on D and harmonic in D, then
h(z) = E,[h(B)].

This is a representation of the solution of Dirichlet problem using the Brow-
nian motion.

§6. Applications.

ExAMPLE 1. Let 0 < » < R and D, g be the corresponding annulus.
Then the function h defined by

log R—lo .

'l)ong—logglfl if z € 'D’.R’
h(z) =1 0 if |z = R,

1 if |2| =,

is continuous on D, g and harmonic in D, g. If 5 is the first exit time from
D, g, then

h(z) = E,[h(By)] =1- Pz(!Bnl =7)+0-P,(|B,|=R) = PZ(IBnl =r).

9
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Letting R — oo, one has h(z) — 1, and hence the particle falls down into the
smaller ball as time goes on.

ExAMPLE 2 (T. Kéno, 1984) The theory of Brownian motion is available to
prove the fundamental theorem of algebra. Let f(z) € C[z]. Since the function
f(z) on the complex plain is non-constant and entire, P. Lévy’s theorem is
" applicable to show that (f(B;)) is again a Brownian motion with a time change.

Since .
S(e)={z€C : [f(z) <¢)

is a compact set, one has from the preceding exarhple that
P(3t>0; f(B:) € S(e)) =1.

Hence S(e) # 8, and
(] S(e) # 6,

>0

which completes the proof.
Q.E.D.

The last example which is a converse of the mean value theorem, is obtained
recently by H. Kaneko and A. Sakai.

THEOREM 8 (H. Kaneko and A. Sakai, 1989). Let a domain D has a
C'-smooth boundary curve 8D, and zo € D. If

h(zo) = gy [ HOmd0)

for any function h that is continuous on the closure of D and harmonic in D,
then D is a ball around zq.
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