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Material derivative of potential energies
and its application for design sensitivity by BIE

KoHil OHTSUKA (K E)
HIRosmMA-DENKI INSTITUTE OF TECHNOLOGY ([EEZBH# KF)

Introduction.

There are many studies about the differentiation of the potential energies
with respect to variable domains (see e.g. Haug, Choi and Komkov[2], Petryk
and Mréz[5]), mostly in field of shape design. In this paper we calculate rigor-
ously the derivative of potential energies with respect to variable domains and
variable interfaces for the mixed boundary value problems. Next, the obtained
result is applied for the shape design problem under the condition; volumes of
materials are constant. In the last, an algorithm that find optimal shape is
proposed by the use of the boundary integral equation (BIE).

o In lsisl;on_.lyea‘u[G],w it 1s ’exﬂp‘la.ihed_tmhq.t t_hé» boundary élemenf mgthod ha.é an
advantage over other methods. ‘ "

1. Material derivative of potential energies.

Let ©Q be a domain in R® with smooth boundary T'. Let ®,,0 < 7 < T
be a family of C*°-diffeomorphisms from R™ onto R™. We assume that the map
(z,7) —» &,(2):R" x[0,1] — R™ is of class C2. :

A typical example of the above situation is the perturbation of domains.
Let Us(T') be an open neighborhood of the surface T in R™, consisting of points
whose distance from I' is less than § (see Fig. 1). o '
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Fig. 1. Neighborhood Us(T') and P(z)
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We can take for § so that, for each point z € Us(T'), there will exist a unique
point P(z) € T such that |z—P(z)| = minyer |2 —y|. Let h be a function defined
on I'. We consider the surface I'; ; defined by

T = {2 + Th(z)i(z)|z € T}

and let Q,; the domain enclosed by I, ;. Let 8 be a function in C§°(Us(T'))
such that 8 > 0,8 =1 near I. Setting

%, = { :+ 8(2)h(P(2))i(P(z)) for 2 € Us(T),

(1.1) for z € R*\Us(T),

we get the C®-diffeomorphisms from R™ onto R™, satisfying that &, () = Q, 1.
In this case,

a2 R(e) = J-2.4(2) = BMP()i(P(e)).

Let f(z,7) be a function defined on 02, = &,(N), for each 7 > 0. Let ¥, = &,
then f(¥,(z),7) is the function defined on Q. The pointwise material derivative
of f is defined by

(13) f(z) = lim [f(2+(e),7) ~ £(z,0).

In engineering, the material derivative of potential energies are calculated by the
use of Reynolds formulas

(1.4) ;’—T /0 flz,7)de = /ﬂ f(2) + f(z)divX(z)
/ g—i—(z)+div(ff)(z)dz,
1]

(1) 2 [ steyie = [196e) + Hofe)(X, i,

where X(z) = :—T<I>,(z)|.,=o, H the mean curvature of I', # the outward unit
normal on T'.

Such calculations appear in shape design sensitivity analysis (see e.g. [2]),
assuming the pointwise material derivative to be able.
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For the elliptic boundary value problems, we check material derivability in
terms of functional analysis. As a matter of convenience, we try to check them
the following simple boundary value problems defined on 2, = ¥,(1),

—Au, = fg_ in Q,,
(1.6) ur =0 onI'p,r,
T(u,)=0 onI'y,,,

where fq, is the restriction of f € L?(R") on Q,, 'p,» = ,(T'p) and T(u,) the
normal derivative du, /n.

In generalized sense, u, is said to satisfy (1.6), if u, minimize the potential
energy functional

E(; [,Q,,I'p,)= / %IV'vl2 — fv d=
Q. «

over the functional space
V(Q,,Tp,)={ve H(Q,)Jv=00nTp .},

where H'(S2,) stands for Sobolev space of order 1 defined on £2,. The potential
energy is defined by

(1.7) £(£,9.,Tp,r) =/ %lV'u.,I2 - fu, dz.
Q.

By the change of variables #2v(z) = v(®,(z)) for v € H(R,), we have for
v,w € HY(Q,),

[ (@) v@we = [ (v8,)8:(90) - (V38 (Vw) 1z,

Q.

where J, is the Jacobian detV®,.

Then we obtain the following lemma.

LEMMA 1.1(OHTSUKA[4]). There exists a constant C independent of T such
that

(1.8) 872, —ull1,0 < Cr,

where || - ||1,a is the norm of H'(R2) and u = u,.

REMARK: In Necas[3], there are analogue of estimations in Lemma 1.1. The
differentiation with respect to domains is discussed in Simon([7].
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Using Lemma 1.1, we arrive at the result

(1.9) %s( £,9.,Tp.+)|r=0 = —Ra(u; X) + /ﬂ (X - V)(fu) + FudivX]de

if f e HY(R™).
The right-hand side of (1.9) is expressed as the surface integral defined on
T, if u € H*(9).

GENERALIZED J-INTEGRAL. Let w be a domain in R™ and let X(w) be a set
of all suitably smooth vector fields defined on w. We call a domain w “regular
relative to Q” if w is a bounded domain in R™ and the divergence theorem holds
on w' =wNQ, for all suitably smooth functions and all elements in X (w). Let
us define GJ-integral Jw(u;f ) as a functional of all domains w in R™ regular
relative to §, all solutions u of (1.6) (r = 0) and X € X ().

P(u; X) = - A I[W(u)(f ) — T(u)(X - Vu)]dy,

Ru(u; %) = / (X V. W(e,u, Vu) — Ai(=, u, Vu)(D; X1)(Diw)
¢ + W(n)divX + f - (X: Vu)}dz
are finite, then Generalized J-integral J,,(u; X ) is defined by
Ju(u; X) = Py(u; X) + Ry (w; X),

where 7 is the outward unit normal to 8w' and dv the surface element of 8u'.

For the problem (1.6), W(z,u, Vu) = 1|Vu|?, X -V,W(z,u,Vu) = 0and
Ai(z,u,Vu) = Ou/de;.

Using the property;
ve H (wnQ) = J,(u;X)=0

we get for (1.6)
(1.10)

d .
—g(f’ QT‘)I‘D,T)IT:O = —/
dr M\U(Tpw)

\ ou\?l -
[W(u)—fu—— (5) ](X'n)d'y
+VRU(I‘DN) |

’ /"U“‘DN)““ [W(u) e (‘—;—:‘;) 2] (X - fi‘)dmy |
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“where Tpy = Tp NTx and U(I‘DN) an open nelghborhood of T'py. If the
interface Tpn does not move, i.e.

P (2)=ecforallr & X = 0 near 'py,

then we have
(111)  SE T o= - [ W)~ £ —("“ (X -i)d
. dr y Sy, D,'rvv‘r:O— A u u n n)ay.

In the case n = 2, I'py consists of two points {v1, 72} Let VDEV(y,-) be the open
disc of radius € centered at v;,7 = 1,2. Then

d
(112) d_‘rg(‘f’ Q‘ra:[‘D,‘r)l =0

=0 Jr\(D(11)uDe(12))
.2

=3 Ray(X ),

i=1

— —lim [W(u) fu— (0—2)2]()5-11)&,

where a; is the coefficients of the singular term of v and 7 the tangential unit
vector as in Fig. 2.

Fig. 2. The tangential vector & aﬁd'pe(yg)
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2. Shape design problem.

In this section, we consider the problem:
PROBLEM 2.1. For a given f € H'(R"), find Q°P*, T')P*, u°P* such that
nltcligl‘ E(f,Q,Tp) with Volume of Q = constant.
In this situation, f represent the gravitational field, the electromagnetic
field, the heat flow, etc. The problem 2.1 is not uniquely solvable. If, moreover,
Ta.p C Ty p, then we have from (1.12),

g(f’ 97 ra,D) S g(f'p 91 Pb.D)-

This indicates that the potential energy of Neumann problem is less than that
of the mixed boundary value problem (1.6, |I'p| # 0). Here |I'p| is the surface
measure of I'p.

THEOREM 2.1. IfTpy does not move and Q°P exists, then

21) /r [W(u) ~ fu- (g—:) 2] hdy =0

for all fanction h € éT',h = 0 near I'pn,
6T = {h € C°°(I‘)|/ hdy = o} .
: r

I, moreover, W (u°P*) — fu°P* —(8u°P*/dn)? is continuous, then W(u°P*)— fu°P*
is constant on 'y and —1(8u°? /8n)? is constant on I'y. Here we assumed.
connected component of T\I'pn areT'p and T'n.

Proof. Let Q2 = Q°P* u = w°P*. By (1.1), (1.2) and (1.11), we have

d
0 = d—rg(‘f’ Qb Lrn)

_ _/r [W(u)—fu— (%)2] hd—} Vh € oT.

“We note that

{ W(u) — fu— (0u/8n)* = W(u) — fu on Ty,
W(u) = -1 (8u/8n)’ ,u=0 onTp.
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I W(u)~ fu is not constant on I'y, there exists a number k > 0, points z;, 2, €
I';y and neighborhoods U(z1),U(22) of 21, 2, respectively such that

min  W(u(z)) - f(2)u(z) — max W(u(z))+ f(2)u(z) =
2€U(2;1)nI zEU(:B;)n

We can construct the function A € 8T such that

supph C (U(21) UU(23)) NT and / hd-y =(-1)"11,i=1,2.
U(a;)nT’

Then
W(u) — fudy > k> 0.

'n
This contradict the formula (2.1). §

We assume that there exists a domain Q which approximates the optimal
shape and the surface T'p = @ for simplify.

By the mean value theorem and Theorem 2.1,
E(f,Qn,TD) - E(f,Q2,Tp)=—-07F(h), 0<6<1, 7>0

where

F(h) = / [W(u) - fulhdy, h € oT.

H the potential energy £(f,Q.,4,Tp) is strictly lower than £(f,Q, I‘D), then
F(h) > 0, and the converse is true.

~ Let E(z) be the fundamental solution, that is,
| AE(z) = §(z), where § is Dirac function.

We set
w(e)= [ Be-niea,

then v = u + u; satisfy

{ Av=0 ~in Q,
T(v) =T(us) onTy,

Algorithm to design the shape by BIE
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Step

Step

1. Solve the boundary integral equation (BIE)

@;/q(y

(Solvability is proved in e.g. Dautray-Llons[l] )
Then

¥)dy(y) = T(us)(z) on T

(22) w(z) = [ Bz = v)awy+ v1(a).
2. By the use of (2.2), calculate
F(h) = /r [W(o+us) — f(o+u)lhdy for b€ dTu.

If  max F(h) < 0, then stop. Otherwise, find hpa.xy € 8T.q such that
€

6rad

" F(hmax) = hlerzz}.‘x F(h). where 6I‘,d is a ﬁmte dlmensmna.l subset of 6I‘

Step

[1]

3]
[4]
[5]
[6]
[7]

3. Let the domain enclosed by the surface {z + h(z)@(z)|e € '} be the
new approximation of °P*.
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