Asymptotic Analysis for the Emden-Forsler Equation - DN=ACU
To Baski SUZUKI (44 ti)

Tokyo Meiropshiton Viv. (首成 理)

81. Introduction.

Let $\Sigma \subset \mathbb{R}^2$ be a bounded domain with the smooth boundary $\partial \Sigma$, and λ be a positive constant. For the classical solution $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ of the Enden-Fowler equation

(1.1)
$$-\Delta u = \lambda e^{tt} \quad (in \Omega), \quad u = 0 \quad (on \partial \lambda)$$

we have proven the following theorem in [3] where $(1.2) \qquad \qquad \sum = \int_{a} \lambda e^{it} d\lambda.$

Therem 1 As $\lambda \neq 0$, the values $\{\Sigma\}$ accumulates to other for some $m=0,1,\ldots,+\infty$. The solutions $\{u\}$ believe as follows:

- (a) T/ m=0, Non 11 ull 0 (a)
- (b) I, $0 < m < +\infty$, then there exists a set of m-points $k = \{x_1^*, \dots, x_m^*\}$ < SI such that $\|M\|_{\mathcal{O}_{SI}}(\overline{x_1}) \in O(1)$ and $\|M\|_{SI}(\overline{x_1}) \in O(1)$.
- (C) If m=+0, show w(x) -> +00 (x + SL)

In the case (b), the limiting function of (U), the singular limit, is given as

(1.3)
$$No(x) = 8\pi \frac{\pi i}{\int_{-1}^{\infty}} G(x, x)^{2}$$
 and the blow-up points & is located as

 $\frac{1}{2} \nabla R(t_{j}^{*}) + \sum_{\ell \neq j} \nabla_{k} G(t_{\ell}^{*}, t_{j}^{*}) = 0 \quad (1 \leq j \leq m),$ where $G(t_{i}, t_{j}^{*})$ denotes the Green function of $-\Delta$ in Ω under the homogeneous Dirichlet boundary condition and $R(t_{i}) = EG(t_{i}, t_{j}^{*}) + \frac{1}{2\pi} \times \log |x-y| \int_{y=0}^{y} is the Robin function. In other words, <math>(x_{i}^{*}, t_{j}^{*}) = 0$, $x_{i}^{*} = 0$,

The numbers of the breder's article is to did all inverse purb

The purpose of the present article is to study the enverse problem. The following decreen can be proven:

Theorem 2. Suppose that SL is simply connected, and let (dit, , dit) be a non-dogenerate critical point of K(x1, , dm). Then there exists a family of classical solutions (U) of (1.1) will sufficient small 4>0 such that

 $(1.5) \qquad u(x) \longrightarrow u_0(x) \qquad (x \in \Omega)$

as 210, where dold) is the function in (1.3).

Thus, we have almost classified the solutions of (1) when 200 is sufficiently small. As for the global bifurcation diagram, see

82. Outline et Proot

Theorem 2 with m=1 had been proven for a generic case by V. H.

Western and J. L. Moseley by means of a Newborn's ideration scheme

(It 1, [27) What we shall do is that their fixed point equation

can be solved by a simple iteration scheme without Newborn's one,

reducing their assumptions, and that the same argument on a

Riemannian surface with m-leaves produces the multi-point blow

up solutions.

First, we observe that the singular limit volue in (1.3) with m=1, is related to the conformal mapping $h: \Omega \longrightarrow D = \{1 \ge 1 < 1\}$ satisfying f(d) = 0 when $\Omega \subset \mathbb{R}^2$ is simply connected. In fact we have

$$(2.1) \qquad e^{-40} = |\mathcal{R}|^2$$

The condition $\nabla R(d_1^*) = 0$ is equivalent to $R''(d_1^*) = 0$. Here, we deduce the equation satisfied the function $V = \overline{C}^U$, that is, (0.2) $V \le V - |\nabla V|^2 = \frac{\lambda}{2}$ (in S2), V = 1 (on $\partial \Omega$). We want to construct a family of non-negative solutions $\{v\}$ for small $\lambda > 0$ so that

 $(2.3) \qquad V \rightarrow |\mathcal{R}|^2 \quad \text{as} \quad \lambda \downarrow 0.$

Introducing the inverse mapping $g=h^{-1}:D\to SL$, we pull-back those relations into D so that $V=g^*v$ satisfies

(5.4)
$$|\nabla A - |\Delta A|_2 = \frac{5}{3} |\delta_1|_2 \quad (im D)$$
 $|\nabla = 1| \quad (an 30)$

with

We note the relation

implied by h"(x) = 0.

The left-hand side of (2.4) is a quadratic form of V, which we write as Q(V) to define

$$(\sigma, \Delta) \qquad \mathcal{O}\{\Lambda', M\} = \frac{2}{7}(\Lambda \nabla M + M \nabla \Lambda) - \Delta \Lambda \cdot \Lambda M.$$

A calculation yields

(2.8)
$$Q\{|p|^2,|g|^2\} = 2|\omega(p,g)|^2$$

for holomorphic functions $\beta(z)$ and g(z), where $\omega_{2}(\beta, g)$ denotes the Wonskian;

(2.9)
$$\omega_{z}(P, 8) = P g' - P' g$$
.

In particular ve have Q(1912) = 0.

Now we can introduce the integral for the first relation of (2.4).

which was essentially discovered by T. Liouville T 1 T:

(2.10) $V = \frac{17}{4} \frac{1^2}{8} \frac{1}{1} \frac{1}{4} \frac{1}{1} \frac{1$

where G(2) and M(2) are kolomorphic functions. From (2.8) we have that

$$Q(V) = \frac{\lambda}{4} Q \{ |Z_G|^2, |H_G|^2 \} = \frac{\lambda}{2} |\omega_g(Z_G, H_G)|^2$$
$$= \frac{\lambda}{2} |\omega_g(Z_M)/G^2|^2.$$

We have only to solve that

(2.11)
$$\omega(z, M) = 2^{1}q^{2}$$
 (in D) with $|q|^{2} = 1 + \frac{\lambda}{\delta} |H|^{2}$ (on ∂D).

Given K(2), the colvability of

$$(9.12) \qquad \omega_{z}(z,M) = K$$

is equivalent to K(s)=0. Then the solution M(Z) is given as $(2.13) \qquad M=d(K)+aZ,$

where are denotes the integral constant and $d(K) = \sum_{n \neq 1} \frac{k_n}{n-1} Z^n$ for $K(Z) = \sum_{n \neq 1} Z^n$. The problem (2.11) is reduced to

(9.4)
$$|G|^2 = 1 + \frac{2}{8} |d(g'G^2) + \alpha z|^2$$
 on ∂D with $G'(0) = 0$.
The relation (9.5) is realized by

Here, we put $G = 1 + \lambda H$ to define (2.16) $H + \overline{H} = \frac{1}{8} |d(9') + \alpha \overline{z}|^2 + \lambda \overline{\Phi}(H, \alpha, \lambda) = 0$ with H'(0) = 0, where

+ (d(g')+az) (2d(g'H) + xd(g'H2)) + 12d (g'H) + xd (g'H2)/3}

Putting $d(g') = C_0 + Z^2 I_0(Z)$ with $C_0 \in \mathbb{C}$, we have $|a(g') + aZ|^2 = |a|^2 + 2 \operatorname{Re} \{(a\overline{C_0} + \overline{a} I_0(Z))Z\} + |a(g')|^2$ if |Z| = 1.

Therefore, the first relation of (2, H) is a general to (2, 18) $2 \operatorname{Re} H = \frac{|a|^2}{3} + \frac{1}{4} \operatorname{Re} \{(a\overline{C_0} + \overline{a} I_0(Z))Z\} + \frac{1}{3} |a(g')|^2 + \lambda \overline{D}$ (on ∂D).

Utilizing Schrorz's formula we have $(2, 19) + \frac{1}{3} \{(a\overline{C_0} + \overline{a} I_0(Z))Z\}$ $d(2, 19) + d(2) = \frac{|a|^2}{16} + \frac{1}{3} \{(a\overline{C_0} + \overline{a} I_0(Z))Z\}$ $d(2, 19) + \frac{1}{3} \{(a\overline{C_0} + \overline{a} I_0(Z))Z\}$

Hence H'(0)=0, we second relation of (2.16), is realized by (2.20) ato + $\overline{\alpha}$ $I_0(0)=9(H,\alpha,\lambda)$,

profee

(5.21)
$$g(H,\alpha,\lambda) = \frac{5\times L^{-1}}{1} \int_{0}^{8} \left\{ \frac{|\alpha(\delta_{\lambda})|_{S}}{|\alpha(\delta_{\lambda})|_{S}} + \lambda \, \underline{\mathcal{Z}}(H,\alpha,\lambda) \right\} \frac{2s}{qs}.$$

For given Rolomorphic function H(Z) with H'(0)=0, the equation (2.20) is a linear equation of (a, \overline{a}) if $\lambda=0$. In the case of $|I_0(0)/c_0| \pm 1$, which is equivalent to (2.22) $|9''(0)/9'(0)| \pm 2$,

the equation (2.20) is solved with respect to α if $\lambda=0$, and so is true for small $\lambda>0$ by the implicit function theorem.

Thus we obtain

(2.23)
$$\alpha = \alpha(H, \lambda) if 0 < \lambda < \underline{\lambda}(\|H\|_{L^{\infty}(\mathbb{R}^{n})}) << 1.$$

Substituting this into the right-hand side of (2.19), we get the fixed point equation

$$(9.24) \qquad H = \mathcal{N}(H, \lambda).$$

Here, $N(H, \lambda)'(0) = 0$ follows from H'(0) = 0 as is imposed in (2.20). H = 0 solves (2.24) when $\lambda = 0$.

The formal consideration given above will be realized if we can propose appropriate function spaces. Let HL be the Hardy-Lebesque class:

HL={f(z)| Robonorphic en D with cup \(\frac{1}{5} \frac{1}{5} \text{(Fe}^{i\theta}) \right|^2 d\theta < + \infty \). We put

 $HL_o = \{f \in HL \mid f(o) = 0\}$ and $HL_o = \{f \in HL_o \mid f' \in HL \}$.

The functional d defined before is an isomorphism from HL_0 onto HL_0^1 . The inclusion $HL_0^1 \subset X = \{f(z) \mid \text{holomorphic in D}, \text{ continuous on D}, \text{ and } f'(0) = 0 \}$ assures as of the nonlinear operator

$$\lambda = \lambda(\cdot, \lambda) : \beta \to \beta$$

defined above, where B denotes the unit ball of the Banach space X, provided that A>0 is sufficiently small. Furthermore, then the napping $V(\cdot,\lambda)$ is a contraction. Hence it has a fixed point.

We note that the condition (2.22) is equivalent to the nondegeneracy of the critical point at of the Pobin function R(a).

The multi-point blow-up colutions can be constructed in the following way. As before, we first observe that the singular limit vo(d) of (1.3) satisfies

 $(2.25) e^{-2^{4}u_{0}} = |u|^{2},$

where $w = \frac{\pi}{1-\sqrt{5}} \frac{Z-S_1}{1-\sqrt{5}}$ (18,1<1) is a finite Blaschke product and $x_1^* = 3(S_1)$. In view of this we introduce the integral (2.26) $V = |w/G|^2 + \frac{2}{3}|W/G|^2$ (in D) V = 1 (on dD) for the first relation of (2.4). From

 $Q(V) = \frac{\lambda}{4} Q \{ |w/\varphi|^2, |M/\varphi|^2 \} = \frac{\lambda}{2} |w_z(\frac{w}{\varphi}, \frac{M}{\varphi})|^2$ $= \frac{\lambda}{2} |w_z(w, M)/\varphi^2|^2$

is deduced that

(2.27)
$$\omega_{z}(\omega, M) = g'G^{2}(in D) \text{ with } |G|^{2} = 1 + \frac{2}{8}|M|^{2} \text{ (and)}$$

Here, we introduce the Riemannian surface \widehat{D} so that the mapping $\widehat{Z} \in D \longrightarrow ar \in \widehat{D}$ is a koncomorphism. It is an incovering of D, and a similar formula to that of Schwarz holds on it. The holomorphic function $g(\widehat{Z})$ in D induces that of $\widehat{g} = \widehat{g}(w)$ of w in \widehat{D} through the relation $g(\widehat{Z}) = \widehat{g}(w(\widehat{Z}))$.

We can show that (di, ..., dim) is a non-dogenerate critical point of K in (1.4) if and only if

(2.28) $\hat{g}''(0) = 0$ and $|\hat{g}''(0)/\hat{g}'(0)| \neq 2$.

Then we can solve the equation

(2.29) $(w, M) = \hat{g}(\hat{q}^2 (in \hat{D}))$ with $(\hat{q}\hat{l}^2 = 1 + \frac{2}{8}|\hat{M}|^2 (on \hat{\partial}\hat{D}))$ to obtain kelomorphic functions $\hat{G}(w)$ and $\hat{M}(w)$ of w in \hat{D} , satisfying (2.30) $\hat{G}(w) \rightarrow 1$ (as $\lambda(0)$)

The holomorphic functions $G(\Xi) = \widehat{G}(W(\Xi))$ and $M(\Xi) = \widehat{M}(W(\Xi))$ satisfy (2.27). Thus the multi-point blow-up solutions have been constructed.

References

[17 Liouville, J., Sur l'équation aux déférences partielles 82 by 2/2001 + 2/202 =0, J. de Math. 18 (1853) 91-1/2

ETI Michy J. L. Mynephilic solutions for a biricklet problem with an exponential monlinearity, SIAM J. Math. Aval. H (1983) 1719-135 ETI Nagasaki, K. Suzuki, T., Asymptotic analysis for two-discretional obliphic eigenvalue problems with the exponentially-dominated nonlinearities, Asymptotic Analysis, [4] Sujuri T., Global analysis for the two dimensional Forder Forcer equations with the exponential nonlinearity, to appear in Ann Tosts. H. Poincare, Nordinear Analysis.

[57] Westen, V. H., On the asymptotic solution of a partial differential equation with on exponential nonlinearity, SIAM I. Had. Anal, 9(1978) 1030-1053.