<table>
<thead>
<tr>
<th>Title</th>
<th>Periodic solutions of Boussinesq equations (Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MORIMOTO, Hiroko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1991), 745: 157-161</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102190</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Periodic solutions of Boussinesq equations

MORIMOTO, Hiroko (森本浩子) *

Let Ω be a bounded domain in \mathbb{R}^2 with the boundary $\partial \Omega$ such that

$$\partial \Omega = \Gamma_1 \cup \Gamma_2, \quad \Gamma_1 \cap \Gamma_2 = \emptyset.$$

We consider the following initial boundary value problem:

$$\begin{align*}
\frac{\partial u}{\partial t} + (u \cdot \nabla)u &= -\frac{1}{\rho} \nabla p + \nu \Delta u + \beta g \theta \\
\text{div} u &= 0, \quad x \in \Omega, t > 0, \\
\frac{\partial \theta}{\partial t} + (u \cdot \nabla)\theta &= \chi \Delta \theta, \\
u(x,t) &= 0, \theta(x,t) = \xi(x,t), \quad x \in \Gamma_1, t > 0, \\
u(x,t) &= 0, \frac{\partial \theta(x,t)}{\partial n} = \eta(x,t), \quad x \in \Gamma_2, t > 0, \\
u(x,0) &= a_0(x), \\
\theta(x,0) &= \tau_0(x), \quad x \in \Omega,
\end{align*}$$

where $u = (u_1, u_2)$ is the fluid velocity, p is the pressure, θ is the temperature, $u \cdot \nabla = \sum_{j=1}^{2} u_j \frac{\partial}{\partial x_j}$, $\frac{\partial \theta}{\partial n}$ denotes the outer normal derivative of θ at x to $\partial \Omega$, $g(x,t)$ is the gravitational vector function, and ρ (density), ν (kinematic viscosity), β (coefficient of volume expansion), χ (thermal diffusivity) are positive constants. $\xi(x,t)$ (resp. $\eta(x,t)$) is a function defined on $\Gamma_1 \times (0,T)$ (resp. $\Gamma_2 \times (0,T)$) and $a_0(x)$ (resp. $\tau_0(x)$) is a vector (resp. scalar) function defined on Ω.

*School of Science and Technology, Meiji University
In order to state our results, we introduce some **Function spaces**([1],[2],[3]).

$L^p(\Omega)$ and the Sobolev space $W^l_p(\Omega)$ are defined as usual. We also denote $L^p(\Omega) = L^p(\Omega) \times L^p(\Omega)$, $H^l(\Omega) = W^l_2(\Omega)$. Whether the elements of the space are scalar or vector functions is understood from the contexts unless stated explicitly.

$D_\sigma = \{\text{vector function } \varphi \in C^\infty(\Omega) \mid \text{supp } \varphi \subset \Omega, \text{div } \varphi = 0 \text{ in } \Omega\}$,

$H = \text{completion of } D_\sigma \text{ under the } L^2(\Omega)-\text{norm}$,

$V = \text{completion of } D_\sigma \text{ under the } H^1(\Omega)-\text{norm}$,

$D_0 = \{\text{scalar function } \varphi \in C^\infty(\overline{\Omega}) \mid \varphi \equiv 0 \text{ in a neighborhood of } \Gamma_1\}$,

$W = \text{completion of } D_0 \text{ under the } H^1(\Omega)-\text{norm}$,

V', W' are dual space of V, W.

Definition 1

$\{u, \theta\}$ is called a weak solution of evolitional problem (1),(2) if, for some function θ_0 such that

$\theta_0 \in L^2(0, T : H^1(\Omega))$, \hspace{1cm} $\theta_0 = \xi$ on Γ_1,

$\{u, \theta\}$ satisfies following conditions:

$u \in L^2(0, T : V)$, \hspace{1cm} $\theta - \theta_0 \in L^2(0, T : W)$,

\[
\begin{cases}
\frac{d}{dt}(u, v) + \nu(\nabla u, \nabla v) + ((u \cdot \nabla)u, v) - (\beta g \theta, v) = 0, \hspace{1cm} \forall v \in V, \\
\frac{d}{dt}(\theta, \tau) + \chi(\nabla \theta, \nabla \tau) + ((u \cdot \nabla)\theta, \tau) - \chi(\eta, \tau)_{\Gamma_2} = 0, \hspace{1cm} \forall \tau \in W,
\end{cases}
\]

(4)

where

$(\eta, \tau)_{\Gamma_2} = \int_{\Gamma_2} \eta(x')\tau(x')d\sigma$.

2
As for the smoothness of $\partial \Omega$, we suppose

Condition (H)

$\partial \Omega$ is of class C^1 and divided as follows:

$$\partial \Omega = \Gamma_1 \cup \Gamma_2, \quad \Gamma_1 \cap \Gamma_2 = \emptyset,$$

and the intersection $\overline{\Gamma}_1 \cap \overline{\Gamma}_2$ consists of finite points.

In [3], we showed the existence and the uniqueness of weak solution of evolutional problem for $2 \leq n \leq 4$. For $n = 2$, we have the following result:

Theorem A

Let Ω be a bounded domain in \mathbb{R}^2 with C^1 boundary satisfying Condition (H). If the function g is in $L^\infty(\Omega \times (0, T))$, $\xi \in C^1(\overline{\Gamma}_1 \times [0, T])$, $\eta \in L^2(\Gamma_2 \times (0, T))$, $a_0 \in H$, $\tau_0 \in L^2(\Omega)$, then there exists one and only one weak solution $\{u, \theta\}$ of (1), (2) satisfying the initial condition (3). Furthermore

$$u \in C([0, T] : H), \quad \theta \in C([0, T] : L^2(\Omega)).$$

Definition 2

$\{u, \theta\}$ is called a periodic weak solution of (1), (2) with period T_0, if $\{u, \theta\}$ is a weak solution of (1), (2) for $T = T_0$ satisfying

$$u(x, T_0) = u(x, 0), \quad \theta(x, T_0) = \theta(x, 0). \quad (5)$$

We also obtained the existence of periodic weak solutions([3]).

Theorem B

Let Ω be a bounded domain in \mathbb{R}^2 with C^1 boundary satisfying Condition (H). Let $g(x, t)$, $\xi(x, t)$, $\eta(x, t)$ be periodic with respect to t with period T_0, satisfying $g \in L^\infty(\Omega \times (0, T_0))$, $\xi \in C^1(\overline{\Gamma}_1 \times [0, T_0])$ and $\eta \in L^2(\Gamma_2 \times (0, T_0))$.

Set $g_\infty = \|g\|_{L^\infty(\Omega \times (0, T_0))}$. If $\frac{\beta g_\infty}{\sqrt{\nu \chi}}$ is sufficiently small, then there exists a periodic weak solution of (1), (2) with period T_0. Furthermore

$$u \in C([0, \infty) : H), \quad \theta \in C([0, \infty) : L^2(\Omega)).$$

Now we can state our results. As for the uniqueness of periodic weak solutions, we obtained:
Theorem 1

Let \(\{u_{\pi}, \theta_{\pi}\} \) be a weak periodic solution of (1), (2) with period \(T_{0} \) such that for some \(p > 2 \),
\[
\text{ess.sup}_{t}\{c\|u_{\pi}(t)\|_{p} + \frac{1}{4\chi}(c\|\theta_{\pi}(t)\|_{p} + c'\beta g_{\infty})^{2}\} < \nu, \tag{6}
\]
where \(c \) and \(c' \) are constants depending on \(\Omega \). If \(\{u_{\pi} + u, \theta_{\pi} + \theta\} \) is a weak periodic solution of (1), (2) with period \(T_{0} \), then \(u = 0, \theta = 0 \).

Let \(g \in L^{\infty}(\Omega \times (0, \infty)) \), \(\xi \in C^{1}(\overline{\Gamma}_{1} \times [0, \infty)) \), \(\eta \in L^{2}(\Gamma_{2} \times (0, \infty)) \), \(a_{0} \in H, \tau_{0} \in L^{2}(\Omega) \). Let \(T \) be any positive number. Then there exists one and only one weak solution \(\{u_{T}, \theta_{T}\} \) of (1), (2) satisfying (3). Therefore, for \(T < T' \),
\[
u(t) = u_{T'}(t), \quad \theta_{T}(t) = \theta_{T'}(t) \quad \text{for } \forall t \in (0, T)
\]
hold, and we can omit \(T \). This solution is called a global weak solution. We obtained the asymptotic property of solutions of Boussinesq equations as follows.

Theorem 2

Let \(g, \xi, \eta \) satisfy the condition of Theorem B, \(a_{0} \in H, \tau_{0} \in L^{2}(\Omega) \). Let \(\{u, \theta\} \) be a global weak solution of (1), (2) satisfying (3), \(\{u_{\pi}, \theta_{\pi}\} \) a periodic weak solution satisfying (6). Then
\[
\lim_{t \to \infty}\{\|u(t) - u_{\pi}(t)\|^{2} + \|\theta(t) - \theta_{\pi}(t)\|^{2}\} = 0.
\]

Remark

(i) Since \(u_{\pi} \in L^{2}(0, T : V) \cap C([0, T] : H) \), \(u_{\pi} \) belongs to the space \(L^{2p/(p-2)}(0, T : L^{p}(\Omega)) \) for \(\forall p > 2 \). Similarly \(\theta_{\pi} \) is in \(L^{2p/(p-2)}(0, T : L^{p}(\Omega)) \). The condition (6) is stronger than this one.

(ii) When (6) holds, such periodic solution is unique (Theorem 1).

References

