Example of zero viscosity limit for two dimensional nonstationary Navier-Stokes flows with boundary

北海道情報大学 松井伸也 (Shin'ya MATSUI)

1. Introduction

Our purpose in this report is to give an example for a flow u^{ν} of the nonstationary, incompressible Navier-Stokes equations in Ω which is convergent to an Euler flow \overline{u} as the viscosity ν tends to zero, where Ω is a bounded domain with smooth boundary.

Let $(u^{\nu}(t), p^{\nu}(t))$ be the unique global classical solution of the Navier-Stokes equations for the viscosity ν (we omit a variable $x \in \Omega$ for simplicity):

$$egin{align} u_t^
u -
u \Delta u^
u + (u^
u,
abla) u^
u +
abla p^
u = f^
u, \ \mathrm{div}\, u^
u = 0 & \mathrm{in}\,\,\Omega imes (0, T), \ u^
u|_{\partial\Omega} = 0,\,\, u^
u|_{t=0} = u^
u, \ \end{split}$$

where $f^{\nu}(t)$ and u_0^{ν} are outer forces and initial data which satisfy the compatibility conditions $u_0^{\nu}|_{\partial\Omega}=0$ and div $u_0^{\nu}=0$ (for existence, see [3]). If $\nu\to 0$ in (NS) formally, we have the Euler equations which has the unique global classical solution $(\overline{u}(t),\overline{p}(t))$ (see, [1]):

$$egin{aligned} \overline{u}_t + (\overline{u},
abla) \overline{u} +
abla \overline{p} &= \overline{f}, \ & ext{div } \overline{u} &= 0 & ext{in } \Omega imes (0, T), \ &\overline{u} \cdot n|_{\partial \Omega} &= 0, \ \overline{u}|_{t=0} &= \overline{u}_0, \end{aligned}$$

where $\overline{f}(t)$, \overline{u}_0 and n are outer forces, initial data and the unit outer normal to $\partial\Omega$ respectively with \overline{u}_0 satisfying the compatibility conditions $\overline{u}_0 \cdot n|_{\partial\Omega} = 0$ and div $\overline{u}_0 = 0$.

To prove the convergent of our flow in the example we need

THEOREM 1. Assume

(1)
$$u_0^{\nu} \rightarrow \overline{u}_0 \quad \text{as } \nu \rightarrow 0 \text{ in } L^2(\Omega),$$

(2)
$$f^{\nu} \rightarrow \overline{f}$$
 as $\nu \rightarrow 0$ in $L^{1}(0,T;L^{2}(\Omega))$.

Then the following three conditions are equivalent for $t \in [0, T]$.

(a)
$$||u^{\nu}(t) - \overline{u}(t)||_{L^{2}(\Omega)} \to 0$$
 as $\nu \to 0$ uniformly (pointwisely) in t,

(b)
$$\overline{\lim}_{\nu\to 0}\nu\int_0^t\int_{\partial\Omega}\overline{u}(\tau)\cdot n\times \operatorname{rot} u^{\nu}(\tau)\ dSd\tau=0\ \text{uniformly (pointwisely) in }t,$$

(c)
$$\lim_{\nu \to 0} \nu \int_0^t \int_{\partial \Omega} \overline{u}(\tau) \cdot n \times \operatorname{rot} u^{\nu}(\tau) \ dS d\tau = 0 \ \operatorname{uniformly} \ (\operatorname{pointwisely}) \ \operatorname{in} \ t,$$

where dS denotes surface area of $\partial\Omega$, rot $u = \partial u_2/\partial x_1 - \partial u_1/\partial x_2$ for vector fields $u(x) = (u_1(x), u_2(x))$ in $x = (x_1, x_2)$ and $a \times b = (a_2b, -a_1b)$ for a vector $a = (a_1, a_2)$ and a scholar b.

Remark. (1) Shirota also obtained Theorem 1 in somewhat different statements independently of ours, which is not published.

(2) Kato[2] obtained other equivalent conditions to (a) for the flows in a bounded domain of \mathbb{R}^n . One of them is

$$u \int_0^T ||\operatorname{grad} u^{\nu}(\tau)||^2_{L^2(\Gamma_{c\nu})} d\tau \to 0 \text{ as } \nu \to 0,$$

where $\Gamma_{c\nu}$ is the boundary strip of width $c\nu$ with c>0 fixed.

2. EXAMPLE

In this section Ω is the open unit disk $\{x = (x_1, x_2) \in \mathbb{R}^2; |x| = (x_1^2 + x_2^2)^{1/2} < 1\}$. For simplicity we denote r = |x| and $^t(\cos\theta, \sin\theta) = x/|x|$, where $^t(\cdot, \cdot)$ is a transported vector of (\cdot, \cdot) . We note that the unit outer normal to $\partial\Omega$ is x/|x|. Furthermore we assume $f^{\nu} = \overline{f} = 0$.

We employ the stationary solution \overline{u} , defined by a rotating eddy, to the Euler equations (see, [4]):

(2.1)
$$\overline{u}(z) (= \overline{u}_0(z)) = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} \frac{1}{r} \int_0^r \rho \overline{\omega}_0(\rho) \ d\rho.$$

For any function $\overline{\omega}_0 \in C([0,1])$ we have

$$\operatorname{div} \overline{u} = 0 \quad \text{in } \overline{\Omega},$$

$$(2.2b) \overline{u} \cdot n = 0 on \partial\Omega,$$

(2.2c)
$$\operatorname{rot} \overline{u} = \overline{\omega}_0 \quad \text{in } \overline{\Omega},$$

$$(2.2\mathrm{d}) \qquad \qquad (\overline{u},\nabla)\overline{u} = -\left(\frac{\cos\theta}{\sin\theta}\right)\frac{\overline{\varphi}^2}{r^3} = \nabla\overline{F} \quad \text{in } \overline{\Omega},$$

where $\overline{\varphi}(r) = \int_0^r \rho \overline{\omega}_0(\rho) \ d\rho$ and $\overline{F}(r) = -\int_0^r \overline{\varphi}^2(s)/s^3 \ ds$ which is well defined in [0,1], since

$$(2.3) |\overline{\varphi}(s)|^2 \leq \int_0^s \rho^2 \ d\rho \cdot \int_0^s \overline{\omega}^2(\rho) \ d\rho \leq \frac{1}{3} s^3 ||\overline{\omega}||_{L^2(0,1)}^2.$$

Thus, $(\overline{u}, \overline{p})$ is the solution of (EE) for $\overline{f} = 0$, if \overline{u} is in (2.1) and $\nabla \overline{p} = -\nabla \overline{F}$.

We construct a non-stationary solution of (NS) in the form:

(2.4)
$$u^{\nu}(x,t) = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} \frac{1}{r} \int_{0}^{r} \rho \omega^{\nu}(\rho,t) \ d\rho,$$

where $\omega^{\nu}(r,t)$ is unknown. We note that $u^{\nu}(x,t)$ in (2.4) satisfies the same identities as (2.2a)-(2.2d).

To construct $u^{\nu}(t)$, we reduce (NS) to an equation of

$$\varphi^{\nu}(r,t) = \int_0^r \rho \omega^{\nu}(\rho,t) \; d\rho$$

instead of $\omega^{\nu} = \operatorname{rot} u^{\nu}$. By (2.2d) we have

$$egin{aligned} u_t^
u -
u \Delta u^
u + (u^
u,
abla) u^
u +
abla p^
u \ &= \left(- \sin heta \over \cos heta
ight) rac{1}{r} (arphi_t^
u -
u arphi_{ au au}^
u + rac{
u}{r} arphi_{ au}^
u) +
abla (F^
u + p^
u) = 0, \end{aligned}$$

where $F^{\nu} = -\int_0^r (\varphi^{\nu})^2(s,t)/s^3 ds$ which is well defined because of (2.3), if $\omega^{\nu} \in L^{\infty}(0,T;L^2(\Omega))$. Since a vector field $^t(-\sin\theta,\cos\theta)\Phi(r)$ is solenoidal for a radially symmetric function $\Phi(r)$, that is,

$$\operatorname{div}\left\{egin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} \Phi(r) \right\} = 0 \ ext{in} \ \Omega \ ext{and} \ \left(\frac{-\sin\theta}{\cos\theta} \right) \Phi(r) \cdot n = 0 \ ext{on} \ \partial\Omega,$$

then the equation of φ^{ν} is

$$\begin{split} \varphi_{t}^{\nu} - \nu \varphi_{rr}^{\nu} + \frac{\nu}{r} \varphi_{r}^{\nu} &= 0 \quad \text{for } (r, t) \in Q_{T} \equiv (0, 1) \times (0, T), \\ \varphi_{r}^{\nu}|_{r=0} &= 0, \ \varphi^{\nu}|_{r=1} = 0 \quad \text{for } t \in (0, T), \\ \varphi^{\nu}|_{t=0} &= \varphi_{0}^{\nu} \equiv \int_{0}^{r} \rho \omega_{0}^{\nu}(\rho) \ d\rho \quad \text{for } r \in (0, 1), \end{split}$$

here $\omega_0^{\nu} = \text{rot } u_0^{\nu}$ is given data, T is any but fixed positive number and a subscript of φ^{ν} denotes partial differential with respect to its variable.

Thus let $\varphi^{\nu}(t)$ be a solution of (E). Then (u^{ν}, p^{ν}) is a solution of (NS) for $f^{\nu} = 0$ and $u_0^{\nu} = {}^t(-\sin\theta, \cos\theta)\varphi_0^{\nu}/r$, if $u^{\nu}(t)$ is defined by (2.4) and $p^{\nu}(t)$ is a solution of

$$\Delta p^{
u} = -\Delta F^{
u} \quad ext{in } \Omega,$$
 $abla p^{
u} \cdot n = -
abla F^{
u} \cdot n \quad ext{on } \partial \Omega.$

For existence of a solution to (E) we have

THEOREM 2 (EXISTENCE OF THE FLOW). Assume

$$\omega_0^{
u}(r)=rac{1}{r}\partial_r(arphi_0^{
u})(r), \ \ that \ is, \ \ arphi_0^{
u}(r)=\int_0^r
ho\omega_0^{
u}(
ho)\ \ d
ho$$

for $\varphi_0^{\nu} \in C^{2+\alpha}([0,1])$ with $\varphi_0^{\nu}(0) = \partial_{\tau}(\varphi_0^{\nu})(0) = 0$ and $0 < \alpha < 1$. Then there exists an unique solution $\varphi^{\nu} \in C^{2,1}(Q)$ of (E), which satisfies

$$arphi^
u(0,t)=0 \quad ext{for} \quad 0 \leq t < \infty, \ |arphi^
u(r,t)| \leq rac{\sqrt{3}}{3}||\omega_0^
u||_{L^2(0,1)} \quad ext{in} \quad Q,$$

where $Q = \{(r,t); 0 \le r \le 1, 0 \le t < \infty \text{ and } (r,t) \ne (1,0)\}$ and ∂_r denotes the differential operator $\frac{d}{dr}$.

Here $C^{2,1}(Q)$ (resp. $C^{2+\alpha}([0,1])$) is the Banach space whose elements have second derivatives in r and first derivatives in t (resp. second derivatives in r). Furthermore second derivatives of the elements in $C^{2+\alpha}([0,1])$ are Hölder continuous with exponent α in $r \in [0,1]$.

Remark. In Theorem 2 we don't require the compatibility condition $\varphi_0^{\nu}(1) = 0$. Thus for the existence of a solution $u^{\nu}(t)$ in (2.4) to (NS) we don't need to assume $u_0^{\nu}|_{\partial\Omega} = 0$. Hence our solution $u^{\nu}(t)$ has the initial layer.

Finally our example is

THEOREM 3 (CONVERGENCE OF THE FLOW). Assume the same in Theorem 2 and $\overline{w}_0 \in C([0,1])$ in (2.1). We put $u_0^{\nu} = {}^t(-\sin\theta,\cos\theta)\varphi_0^{\nu}/r$ and let \overline{u} and $u^{\nu}(t)$ be in (2.1) and (2.4) respectively. Finally we assume that $u_0^{\nu} \to \overline{u}_0$ in $L^2(\Omega)$ as $\nu \to 0$ and $||\omega_0^{\nu}||_{L^2(0,1)} \le C$ independent of the viscosity ν . Then we obtain for any but fixed T > 0

$$||u^{\nu}(t)-\overline{u}||_{L^{2}(\Omega)}\to 0$$
 as $\nu\to 0$ uniformly in $t\in [0,T]$.

Remark. (1) Since we don't require $\varphi_0^{\nu}(1) = 0$, we can take \overline{u}_0 as the initial data of (NS). (2) If we assume that the compatibility condition $\varphi_0^{\nu}(1) = 0$ in Theorem 2, then by arguments likely to the below we can obtain

$$u^{\nu} \to \overline{u}$$
 in $C(K)$ as $\nu \to 0$

for any compact subset $K \subset \overline{Q}$, even if $|\omega_0^{\nu}(r)| \leq \nu^{-\epsilon}$ for $1 - \nu^{2\epsilon} \leq r \leq 1$ and $\epsilon < 1$ fixed. The proof is omitted in this report.

The remaining part in this section is to prove Theorem 3.

We denote by $\psi(r,t)$, the solution of

$$\psi_{t} - \psi_{rr} + \frac{1}{r} \psi_{r} = 0 \quad \text{for } (r, t) \in Q_{T},$$

$$\psi_{r}|_{r=0} = 0, \ \psi|_{r=1} = 0 \quad \text{for } t \in (0, T),$$

$$\psi|_{t=0} = \varphi_{0}^{\nu} \equiv \int_{0}^{r} \rho \omega_{0}^{\nu}(\rho) \ d\rho \quad \text{for } r \in (0, 1).$$

Then the uniqueness of the solution to (E) implies

LEMMA 1. Let $\varphi^{\nu}(t)$ be the solution of (E) in Theorem 2. Then we obtain

$$\varphi^{\nu}(r,t)=\psi(r,\nu t)$$
 in Q

for a fixed ν .

The following lemma plays the essential role in the proof of Theorem 3.

LEMMA 2. Let $\varphi^{\nu}(t)$ be the solution in Theorem 2. Then

$$|\int_0^t \varphi_\tau^\nu(1,\tau) \ d\tau| \leq C(||\omega_0^\nu||_{L^2(0,1)} + 1) \exp C(||\omega_0^\nu||_{L^2(0,1)} T + 1)$$

for any $t \in [0,T]$, where C denotes several different positive constants independently of ν and T here and after.

Proof. Let $\psi(t)$ be in Lemma 1 and ν be fixed. In (E') we replace t by νt . Then it follows that

$$\psi_{rr}(r,\nu t)-rac{1}{r}\psi_{r}(r,
u t)-\psi_{t}(r,
u t)=0 \quad ext{in } Q.$$

To integrate this equation in t on (ε, t) for any but fixed $\varepsilon > 0$, then $f(r, t) = \int_{\varepsilon}^{t} \psi(r, \nu \tau) d\tau$ satisfies

$$f_{rr} - \frac{1}{r} f_r - f_t = a_\epsilon \quad \text{in } Q_T^\epsilon = (0,1) \times (\epsilon, T),$$

$$f_{r|_{r=0}} = 0, f|_{r=1} = 0 \quad \text{for } t \in (\epsilon, T),$$

$$f|_{t=\epsilon} = 0 \quad \text{for } r \in (0,1),$$

where $a_{\epsilon}(r) = \psi(r, \nu \epsilon)$.

For $\chi \in C^{\infty}(\mathbb{R})$ which satisfies $0 \leq \chi(r) \leq 1$, $\chi = 1$ in $[2/3, \infty)$ and $\chi = 0$ in $(-\infty, 1/3]$, we put $z(t) = \chi^2 \exp f(t)$ and $Pz = z_{rr} - z_t$. Then we have

$$Pz = (\chi^{2})''e^{f} + 4\chi\chi'f_{\tau}e^{f} + \chi^{2}f_{\tau}^{2}e^{f} + \chi^{2}f_{\tau\tau}e^{f} - \chi^{2}f_{t}e^{f}$$

$$= e^{f} \{\chi^{2}(f_{\tau\tau} - f_{t}) + (\chi^{2})'' + 4\chi\chi'f_{\tau} + \chi^{2}f_{\tau}^{2}\}$$

$$= e^{f} \{\frac{\chi^{2}}{\tau}f_{\tau} + \chi^{2}a_{\epsilon} + (\chi^{2})'' + 4\chi\chi'f_{\tau} + \chi^{2}f_{\tau}^{2}\}.$$

Since absolute values of χ^2/r , χ' and $(\chi^2)''$ are estimated by C for $r \in [0,1]$, we obtain

$$Pz \geq Ce^{f}\{-\frac{1}{\mu} - \mu\chi^{2}f_{\tau}^{2} - \chi^{2}|a_{\epsilon}| - 1 - \frac{1}{\mu} - \mu\chi^{2}f_{\tau}^{2} + \chi^{2}f_{\tau}^{2}\}$$

for any $\mu > 0$.

Using the estimate $|\psi(r,\nu t)| \leq (1/\sqrt{3})||\omega_0||_{L^2(0,1)}$ for any $(r,t) \in Q$ in Theorem 2 and taking $\mu = 1/2$, then

$$Pz \ge -C(||\omega_0^{\nu}||_{L^2(0,1)} + 1) \exp(C||\omega_0^{\nu}||_{L^2(0,1)}T)$$

 $\equiv -M_1e^{M_2}.$

Putting $y=z+2M_1\exp(M_2+r)$, then Py>0 holds. Hence the maximum principle implies y(t) does not take its maximum in $Q_T^{\epsilon}\equiv [0,1]\times [\epsilon,T]$ at $(r,t)\in (0,1)\times (\epsilon,T]$. On the other hand, at parabolic boundary of Q_T^{ϵ} , y(t) holds as follows:

$$y|_{r=0} = z|_{r=0} + 2M_1e^{M_2} = 2M_1e^{M_2},$$

 $y|_{t=e} = z|_{t=e} + 2M_1e^{M_2+r} = 2M_1e^{M_2+r},$
 $y|_{r=1} = z|_{r=1} + 2M_1e^{M_2+1} = 2M_1e^{M_2+1},$

Hence at the all points (1,t) with $\varepsilon \leq t \leq T$, y(r,t) attains its maximum in Q_T^{ϵ} . Then we conclude that

$$\frac{\partial y}{\partial r}|_{r=1} = \int_0^t \psi_r(r, \nu au) \ d au + 2M_1 e^{M_2+1} \geq 0.$$

Putting $\varepsilon \to 0$, then

$$\int_0^t \psi_\tau(r,\nu\tau) \ d\tau \geq -2M_1 e^{M_2+1}.$$

The estimate from above of f(r,t) with $\varepsilon=0$ can be established in a similar way by making the substitution $\widehat{z}=\chi^2\exp(-f)$ and considering $\widehat{y}=\widehat{z}-2M_1\exp(M_2+r)$.

Hence by the identity in Lemma 1 the proof of our estimate is completed.

Finally we note that in this proof we use the method of the proof to Lemma 3 of Section 3 in [6].

Now we show Theorem 3. Since

$$\begin{aligned} \operatorname{rot} u^{\nu}|_{\partial\Omega} &= \omega^{\nu}(r,t)|_{r=1} = \frac{\partial}{\partial r} \int_{0}^{r} \rho \omega^{\nu}(\rho,t) \ d\rho|_{r=1} \\ &= \varphi^{\nu}_{\bullet}(1,t), \end{aligned}$$

we have

$$\overline{u}\cdot n imes \mathrm{rot}\; u^
u(t)|_{\partial\Omega} = -arphi_{_{m{ au}}}^
u(1,t)\int_0^1
ho\overline{\omega}_0(
ho)\;d
ho.$$

Thus we obtain an identity

$$u \int_0^t \int_{\partial\Omega} \overline{u} \cdot n imes \mathrm{rot}\, u^
u(au) \; dS d au = -2\pi
u \int_0^1
ho \overline{\omega}_0(
ho) \; d
ho \cdot \int_0^t arphi_{ au}^
u(1, au) \; d au.$$

Hence it is easy to show that (c) in Theorem 1 holds because of Lemma 2. This proves

Theorem 3 by Theorem 1.

For the proofs of Theorem 1 and Theorem 2, see [5].

REFERENCES

- [1] Kato, T.: On classical solution for the two-dimensional non-stationary Euler equation, Arch. Rat. Mech. Anal. 25 (1967), 188-200.
- [2] Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, in "Seminar on nonlinear partial differential equation, ed. by S. S. Chern," Springer, 1982, pp. 85-98.
- [3] Kato, T. and Fujiwara, H.: On the nonstationary Navier-Stokes system, Rend. Semi. Math. Univ. Padova 32 (1962), 243-260.
- [4] Majida, A.: Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure and Appl. Math. 39 (1986), 187-220.
- [5] Matsui, S.: Example of zero viscosity limit for two dimensional nonstationary Navier-Stokes flows with boundary. to appear.
- [6] Oleinik, O. A. and Kruzhkov, S. N.: Quasi-linear second order parabolic equations with many independent variables, Russian Math. Surv. 16 (1961), 106-146.