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Example of zero viscosity limit for two dimensional

nonstationary Navier-Stokes flows with boundary

T EAY M (Shin’ya MATSUI)

1. INTRODUCTION

Our purpose in this report is to give an example for a flow «” of the nonstationary,
incompressible Navier-Stokes equa.tioﬁs in 2 which is convergent to an Euler flow % as the
viscosity v tends to zero, where (2 is a bounded domain with smooth boundary.

Let (u”(t), p”(t)) be the unique global classical solution of the Navier-Stokes eduations

for the viscosity v (we omit a variable z €  for simplicity):
uy—vAv” + (v, V)u’ + Vp* = f¥,

(NS) . dive* =0 in Q x (0,7),

uvlbﬂ = 04 uy|t=0 = uza
where f”(t) and uj are outer forces and initial data which satisfy the compatibility condi-
tions ug|eq = 0 and divug = 0 (for existence, see [3]). If v — 0 in (NS) formally, we have
the Euler equations which has the unique global classical solution (u(t),5(t)) (see, [1]):

%+ (T, V)E+Ve=7F,
(EE) divi=0 in Q2 x(0,7),

u- n'&ﬂ = 07 i‘t:ﬂ = Uy,

where f(t), %o and n are outer forces, initial data and the unit outer normal to 99 respec-

tively with %, satisfying the compatibility conditions % - n|sq = 0 and div@, = 0.

To prove the convergent of our flow in the example we need

THEOREM 1. Assume

(1) uy — % asv— 0in L*(Q),

(2) f* = f asv—0in L}(0,T; L*(Q)).



Then the following three conditions are equivalent for t € [0,T)].

(a) ||w*(t) —u(t)||L2a) — 0 as v — 0 uniformly (pointwisely) in t,

v—0

11
(b) Tim»y / / u(r) - n x rot w’(r) dSdr = 0 uniformly (pointwisely) in t,
0 Jon A

t
(c) lim v/ / %(7) - n X rot w¥(r) dSdr = 0 uniformly (pointwisely) in t,
o Joa .

v—0

where dS denotes surface area of 0, rot u = §u; /02, — 8uy/dz; for vector fields u(z) =
(u1(2),u2(2)) in 2 = (21,22) and a x b = (a3b, —a1b) for a vector a = (a1,a2) and a scholar

b.

Remark. (1) Shirota also obtained Theorem 1 in somewhat different statements indepen-

dently of ours, which is not published.
(2) Kato[2] obtained other equivalent conditions to (a) for the flows in a bounded domain
of R™. One of them is

T ;
V/ || grad u"(‘r)”i,(r") dr - 0asv — 0,
o
where I, is the boundary strip of width cv with ¢ > 0 fixed.

2. ExAMPLE

In this section £ is the open unit disk {z = (21,2;) € R?;|z| = (2} + 23)'/? < 1}.
For simplicity we denote » = |z| and *(cosf,sin0) = z/|z|, where (-,-) is a transported
vector of (-,:). We note that the unit outer normal to 8Q is z/|z|. Furthermore we assume
7 =F=o. |

We employ the stationary solution %, defined by a rotating eddy, to the Euler equations
(see, [4]):

ey wEwE) = () [ ) b

cosf J r Jy
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For any function @y € C([0,1]) we have

(2-2a) dive=0 inQ,
(2.2b) u-n=0 on 09,
(2-2¢) ’ rotZ=wp in Q,
' — v cosf\ P2 oF B
(2.2d) (@, V)u=— (sinﬂ) 5= VF in Q,

where B(r) = [; pwo(p) dp and F(r) = — [, 7°(s)/s* ds which is well defined in [0,1],

since

_ s l— 1 _
(23) P < [ 7 dp- [ 50) dp < 3% 1Ece

Thus, (%, ) is the solution of (EE) for f =0, if T is in (2.1) and V5 = —VF.

We construct a non—stationary solution of (NS) in the form:

cosf

(2.4 o we=() [ o

where w”(r,t) is unknown. We note that u”(z,t) in (2.4) satisfies the same identities as
(2.2a)~(2.2d).

To construct u”(t), we reduce (NS) to an equation of

(2.5) p"(rt) = /o pw”(p,t) dp
instead of w¥ = rot u”. By (2.2d) we have

) —vAv’ + (v, V)u¥ + Vp*

—sinf 1 v v v , v vy _
_( COSO );(wt —‘V¢,,+r¢,)+V(F +p)_0$

where F¥ = — [7(¢")*(s,t)/s® ds which is well defined because of (2.3), if w’ €
L>(0,T; L*(2)). Since a vector field {(—sin 8, cos 8)&(7) is solenoidal for a radially sym-

metric function &(r), that is,

—sinf

) ) =0t 0and (27) 36)-m =0 n 0

div{(_’ino

cos@



105

then the equation of ¢” is
%‘W’f, + E’S’: =0 for (f»t) € QT = (Oa 1) X (O,T)v
(E) Prlr=0 =10, ¢"|,=1 =0 forte(0,T),

Plo=vb= [ pi(p)dp forre(01),
0

here wj = rot uy is given data, T is any but fixed positive number and a subscript of ¢*

denotes partial differential with respect to its variable.
Thus let ¢¥(t) be a solution of (E). Then (u”,p") is a solution of (NS) for f* = 0 and
ufy = ¥(—sin b, cos0)p} /r, if u¥(t) is defined by (2.4) and p¥(¢) is a solution of

Ap’ = —-AF” inQ,
Vp” :n=—-VF’-n on 9.

For existence of a solution to (E) we have

THEOREM 2 (EXISTENCE OF THE FLOW).  Assume

v 1 14 * 1 4 T v
G5(r) = 70.(#8)(r), thatis, o) = [ pwi(p) dp
for 3 € C**=([0,1]) with %(0) = 8,(93)(0) = 0 and 0 < a < 1. Then there exists an
unique solution ¢* € C*(Q) of (E), which satisfies
¢”(0,t) =0 for 0<t< oo,
v ﬂ v .
01 < Llletllzon in Q,

where Q = {(»,t);0<r <1, 0<t < oo and(r,t) # (1,0)} and d, denotes the differential

operator a-d;-.

Here C*1(Q) (resp. C?**%([0,1])) is the Banach space whose elements have second
derivatives in » and first derivatives in ¢ (resp. second derivatives in » ). Furthermore
second derivatives of the elements in C?*=([0, 1)) are Holder continuous with exponent «

in » € [0,1].
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Remark. In Theorem 2 we don’t require the compatibility condition ¢g(1) = 0. Thus
for the existence of a solution u¥(2) in (2.4) to (NS) we don’t need to assume u§|sq = 0.
Hence our solution u”(t) has the initial layer.

Finally our example is

THEOREM 3 (CONVERGENCE OF THE FLOW). Assume the same in Theorem 2 and
wo € C([0,1]) in (2.1). We put uy = *(—sinb,cos6)py/r and Iét u and w”(t) be in
(2.1) and (2.4) respectively. Finally we assume that ug — o in L’(Q) as v — 0 and
llwg|lz3(0,1) < C independent of the viscosity v. Then we obtain for any but fixed T > 0

|[w”(t) — %|zaa) = 0 as v — 0 uniformly in t € [0, T].

Remark. (1) Since we don’t require p§(1) = 0, we can take ug as the initial data of (NS).
(2) If we assume that the compatibility condition ¢§(1) = 0 in Theorem 2, then by argu-

ments likely to the below we can obtain
v —>% inC(K) asv—0

for any compact subset K C Q, even if [w§(r)| < v~* for 1 — 12 <r <1and € <1 fixed.
The proof is omitted in this report. '

The remaining part in this section is to prove Theorem 3.

We denote by y¥(r,t), the solution of

1
Ye—Ppr + ;'!l’f =0 for (’1t) € Qr,
(E,) : '¥’r|r=0 =0, '¢'lr=1 =0 forte (0, T),

Wiea=s5 = [ pilo) dp forre(0,1)
0
Then the uniqueness of the solution to (E) implies

LEMMA 1.  Let ¢”(t) be the solution of (E) in Theorem 2. Then we obtain

¢’ (r,t) = ¥(r,vt) in Q
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for a fixed v.
The following lemma plays the essential role in the proof of Theorem 3.
LEMMA 2. Let ¢”(t) be the solution in Theorem 2. Then

t
| / ¢¥(1,7) dr| < C(|wtllso + 1) exp C(llwE ooy T + 1)

for any t € [0,T], where C denotes several different positive constants independently of v

and T here and after.

Proof. Let #:(t) be in Lemma 1 and v be fixed. In (E’) we replace ¢t by vt. Then it
follows that

o (7, 02) }qb,(r,ut) —Y(m ) =0 in Q.

To integrate this equation in ¢ on (¢,t) for any but fixed € > 0, then f(r,t) = f: $(r,vr) dr

- satisfies 1
fn—;f' —fi=a, inQy= (Oal) X (C’T)’

f'r If:O = 0) flr:l = 0 for,t € (E,T),
fl!:c =0 for » € (0, 1),

where a,(7) = ¥(r,ve).
For x € C*(R) which satisfies 0 < x(r) <1, x = 1in [2/3,00) and x = 0 in
(—o0,1/3], we put z(t) = x* exp f(t) and Pz = z,, — z;. Then we have
Pz =(x2)"e! +4xx'fre! + X712l + 33 fore! — xPfee!
= (for = )+ ()" + X' F + X £}
2
=e! {%—f, +x’a, + ()" + 4xx'f- + X217}

Since absolute values of x?/r, x' and (x?)" are estimated by C for r € [0, 1], we obtain

1 1
Pz> Ce’{—; —px*f} = xPa] - 1- e px 2+ X2}
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for any p > 0.
Using the estimate |¢y(»,1t)| < (1/\/§)||w0||L3(0,1) for any (r,t) € Q in Theorem 2 and
taking u = 1/2, then

Pz > ~C([lw§llzao,) + 1) exp(Cllw} Iz, T)

= — MMz,

Putting y = z + 2M; exp(M; + »), then Py > 0 holds. Hence the maximum principle
implies y(t) does not take its maximum in Q7 = [0,1] x [¢,T] at (r,t) € (0,1) x (¢,T]. On
the other hand, at parabolic boundary of Q% , y(t) holds as follows: ‘

y|r:0 = zlr:o 4 2M]_€“l2 = 2M1€M2,
ylt:c = zlt:c + 2M13M:+, = 2M16M2+’,

Ylr=1 = z|p=1 + 2M1 M = 2 M MY

Hence at the all points (1,t) with ¢ <t < T, y(r,t) attains its maximum in Q%. Then we
conclude that
t
g_y' r=1 =/ ‘¢‘,(7,VT) dr + 2M16M’+1 > 0.
r [
Putting € — 0, then
t
/ ¥, (r,v7) dr > —2M,;M271,
(]

The estimate from above of f(r,t) with € = 0 can be established in a similar way by
making the substitution Z = x? exp(—f) and considering § = Z — 2M; exp(M; + 7). |

Hence by the identity in Lemma 1 the proof of our estimate is completed.

Finally we note that in this proof we use the method of the proof to Lemma 3 of
Section 3in [6]. O

Now we show Theorem 3. Since

i/ 1y 0 T v
rot«*lon = *(r )= = 5 [ 0" (6,1) dph=s
. r 0
= ?:(lat)’
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we have

)
@ x 1ot (on = ~¢1(1,0) [ #Blp) d.
0

Thus we obtain an identity

t | t ‘
v/ / %-n X rotu’(r) dSdr = —ZTV/ pwo(p) dp / ey (1,7) dr.
o Joa ° | °

Hence it is easy to show that (c) in Theorem 1 holds because of Lemma 2. This proves
Theorem 3 by Theorem 1.
For the proofs of Theorem 1 and Theorem 2, see [5].
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