The singularity on interpolation by rational spline functions

R.H. Wang
Inst. of Appl. Math.
Dalian Univ. of Tech.
Dalian, CHINA

T. Torii
Dept. of Infor. Eng.
Nagoya Univ.
Nagoya, JAPAN

Let P_n be the collection of all polynomials of degree n, and R_{r}^{l} the collection of all rational functions with the form $p(x)/q(x)$, where $p \in P_r$, and $q \in P_l$.

Denote by T the following partition of the interval $[a, b]$:

$$T : \quad a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b.$$

If a real function $R(x)$ defined on $[a, b]$ satisfies

1° $R(x) \in R_{r}^{l}$, in each interval $[x_j, x_{j+1}]$;

2° $R(x) \in C^{s}[a, b]$,

then $R(x)$ is said to be a rational spline of type $-(r, l)^s$ with respect to the partition T.

In this paper, we shall discuss the rational splines of type $(2, 1)^1$ and type $(2, 1)^2$ with the forms

$$R(x) = p_{1j}(x) + \frac{(x - x_j)(x - x_{j+1})}{q_{1j}(x)}, \quad x_j \leq x \leq x_{j+1}, \quad j = 0, \cdots, n - 1,$$

(1)

where $p_{1j}(x)$ and $q_{1j}(x) \in P_1$.

Suppose that the interpolation conditions are

$$\left\{ \begin{array}{l}
R(x_j) = y_j, \\
R'(x_j) = y'_j,
\end{array} \right. \quad \left\{ \begin{array}{l}
R(x_{j+1}) = y_{j+1}, \\
R'(x_{j+1}) = y'_{j+1};
\end{array} \right. \quad (2)$$

$$\left\{ \begin{array}{l}
R(x_j) = y_j, \\
R(x_{j+1}) = y_{j+1},
\end{array} \right. \quad \left\{ \begin{array}{l}
R'(x_j) = [f(x_{j-1}, x_j) + f(x_j, x_{j+1})]/2, \\
R'(x_{j+1}) = [f(x_j, x_{j+1}) + f(x_{j+1}, x_{j+2})]/2;
\end{array} \right. \quad (3)$$

$$\left\{ \begin{array}{l}
R(x_j) = y_j, \\
R(x_{j+1}) = y_{j+1},
\end{array} \right. \quad \left\{ \begin{array}{l}
R'(x_j) = y'_j, \\
R''(x_j) = y''_j;
\end{array} \right. \quad (4)$$
respectively, where \(f(x_j, x_{j+1}) \) denotes the divided difference of the first degree, etc.

Denote by \(R_{1j}(x) \), \(R_{2j}(x) \), and \(R_{3j}(x) \) the rational spline functions of satisfying the interpolation conditions (1)–(2), (1)–(3), and (1)–(4) respectively.

R.H. Wang and S.T. Wu ([1],[2]) have obtained the following rational piecewise functions which are satisfying the interpolation conditions (1)–(2), (1)–(3), and (1)–(4) respectively,

\[
R_{1j}(x) = y_j + f(x_j, x_{j+1})(x - x_j) \frac{(x - x_j)(x - x_{j+1})[y_j' - f(x_j, x_{j+1})][y_{j+1}' - f(x_j, x_{j+1})]}{(x - x_j)[y_j' - f(x_j, x_{j+1})] + (x - x_{j+1})[y_{j+1}' - f(x_j, x_{j+1})]},
\]

\[
R_{2j}(x) = y_j + f(x_j, x_{j+1})(x - x_j) + \frac{\{(x - x_j)(x - x_{j+1})[f(x_{j-1}, x_j) - f(x_j, x_{j+1})][f(x_{j+1}, x_{j+2}) - f(x_j, x_{j+1})]\}}{2[f(x_{j-1}, x_j) + f(x_{j+1}, x_{j+2}) - 2f(x_j, x_{j+1})]x}.
\]

\[
R_{3j}(x) = y_j + f(x_j, x_{j+1})(x - x_j) + \frac{2[y_j' - f(x_j, x_{j+1})]^2(x - x_j)(x_{j+1} - x)}{2[y_j' - f(x_j, x_{j+1})](x_{j+1} - x) + y_j'(x_j - x_{j+1})(x - x_j)}.
\]

Denote by \(R_i(x) \) \((i = 1, 2, 3) \) the rational spline functions:

\[
R_i(x) = \{R(x) \in (2, 1)^1 | R(x)|_{[x_j, x_{j+1}]} = R_{ij}(x), \ j = 0, \ldots, n - 1\}, \ i = 1, 2;
\]

\[
R_3(x) = \{R(x) \in (2, 1)^2 | R(x)|_{[x_j, x_{j+1}]} = R_{3j}(x), \ j = 0, \ldots, n - 1\}.
\]

It is not hard to prove the following lemmas:

[Lemma 1] \(R_1(x) \) has the singular point in the interval \([x_j, x_{j+1}]\), if and only if

\[
\text{sign}\{[y_j' - f(x_j, x_{j+1})] \cdot [y_{j+1}' - f(x_j, x_{j+1})]\} > 0.
\]

[Lemma 2] \(R_2(x) \) has the singular point in the interval \([x_j, x_{j+1}]\), if and only if

\[
\text{sign}\{[f(x_{j-1}, x_j) - f(x_j, x_{j+1})] \cdot [f(x_{j+1}, x_{j+2}) - f(x_j, x_{j+1})]\} > 0.
\]
In fact, by the formula of $R_1(x)$ on $[x_j, x_{j+1}]$ given in (5), the singularity of $R_1(x)$ on $[x_j, x_{j+1}]$ can appear only at point

$$x^* = \frac{[y_j' - f(x_j, x_{j+1})]x_j + [y_{j+1}' - f(x_j, x_{j+1})]x_{j+1}}{[y_j' - f(x_j, x_{j+1})] + [y_{j+1}' - f(x_j, x_{j+1})]} := \lambda x_j + (1 - \lambda)x_{j+1},$$

where $\lambda = \frac{[y_j' - f(x_j, x_{j+1})]}{[y_j' - f(x_j, x_{j+1})] + [y_{j+1}' - f(x_j, x_{j+1})]}$. So, it is easy to see that $x^* \in (x_j, x_{j+1})$ if and only if

$$\text{sign}[(y_j' - f(x_j, x_{j+1})) \cdot (y_{j+1}' - f(x_j, x_{j+1}))] > 0.$$

By the similar argument, we can prove Lemma 2.

It notes that if $y_j' - f(x_j, x_{j+1})$ or $y_{j+1}' - f(x_j, x_{j+1}) = 0$, then $R_1(x)$ will be a linear function in the interval $[x_j, x_{j+1}]$, so it should has no singular point.

By using the above Lemmas, we have

[Theorem 1] Let the interpolation function $y = f(x) \in C^3[a, b]$. If $R_i(x)$ $(i = 1, 2)$ exists the singular point in the interval $[x_j, x_{j+1}]$, then $y = f(x)$ has the inflection point in the open interval (x_j, x_{j+1}).

Proof Let $R_1(x)$ exist the singular point in $[x_j, x_{j+1}]$. By Lemma 1, without the loss of generality, suppose that the following inequalities hold

$$y_j' - f(x_j, x_{j+1}) > 0, \quad y_{j+1}' - f(x_j, x_{j+1}) > 0. \quad (10)$$

It follows Lagrange's mean value theorem, that there exists $\xi \in (x_j, x_{j+1})$, such that

$$f'(\xi) = f(x_j, x_{j+1}). \quad (11)$$

By (10) and (11), there exist η and ζ of satisfying

$$f'(x_j) - f(x_j, x_{j+1}) = f''(\eta)(x_j - \xi), \quad f'(x_{j+1}) - f(x_j, x_{j+1}) = f''(\zeta)(x_{j+1} - \xi)$$

respectively, where $x_j < \eta < \xi < \zeta < x_{j+1}$. Hence

$$f''(\eta) \cdot f''(\zeta) < 0,$$

and there exists at least one inflection point of $f(x)$ in (η, ζ). This completes the proof of this theorem for $R_1(x)$.

Similarly we can prove the theorem for the case of $R_2(x)$.
[Theorem 2] Let the interpolation function $y = f(x) \in C^2[a, b]$. If $R_3(x)$ exists the singular point in the interval $[x_j, x_{j+1}]$, then the original interpolation function $y = f(x)$ has the inflection point in the open interval (x_j, x_{j+1}).

In fact, because of the singular point of $R_3(x)$ may be only appearing at

$$\bar{x} = \frac{y''(x_{j+1} - x_j)x_j + 2(y'_j - f(x_j, x_{j+1}))(x_{j+1})}{y''(x_j - x_{j+1}) + 2(y'_j - f(x_j, x_{j+1}))}.$$

By the same argument shown in the proof of Lemma 1, we have

$$\text{sign}\{[y''(x_{j+1} - x_j)] \cdot [y'_j - f(x_j, x_{j+1})]\} > 0,$$

provided that $R_3(x)$ exists the singular point in $[x_j, x_{j+1}]$.

It follows Lagrange's mean value theorem, that there exists $\xi \in (x_j, x_{j+1})$, such that

$$f'(\xi) = f(x_j, x_{j+1}).$$

By Lagrange's mean value theorem once again, there is a point $\eta \in (x_j, \xi)$, such that

$$f'(x_j) - f'(\xi) = f''(\eta)(x_j - \xi).$$

So

$$\text{sign}\{f''(x_j) \cdot f''(\eta)\} < 0.$$

Hence, there exists at least one inflection point of $f(x)$ in (x_j, η).

This complete the proof of this theorem.

In addition, we may prove that although the interpolation function $f(x)$ has the inflection points in $[a, b]$, however, provided that we are taking all inflection points as the knots of the rational spline function, then the singularity can be avoided to appear. For example, let x_j be an inflection point of $f(x)$, x_{j+1} be not, and there is no another inflection point between x_j and x_{j+1}. Then the first derivative of $f(x)$ will be monotone in the interval $[x_j, x_{j+1}]$. So the inequality (8) will be not satisfied. By Lemma 1, hence, there is no singular point in (x_j, x_{j+1}).

Therefore, we have
Theorem 3] For any given interpolation function $f(x) \in C^2[a, b]$, we can construct a partition T of the interval $[a, b]$, such that the rational spline function $R_1(x)$, $R_2(x)$, and $R_3(x)$ based on the partition T have no singularity.

Acknowledgement
This work was supported by "International Information Science Foundation".

References