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PCG methods applied to a system of nonlinear equations
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Abstract: In this paper, we consider a quasi-Newton
iteration for solving a nonlinear equation F(x)=Ax+g(x)=0

in Rn,where A is a symmetric positive definite matrix and
g is a bounded continuous function. We discusse PCG method
with various preconditioners to solve the linear equation
at each step of the iteration, estimate their condition
numbers, and compare their computing time for a numerical

example.
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1. Introduction
In recent papers[2,3,7], we have discussed convergence
of the Newton-like method
B(xk)(xk+l—xk)=~F(xk), k20 (1.1)

for solving the -equation F(x)=f(x)+g(x)=0 1in a Banach
space, where B(x) 1is a 1linear operator and f 1is
differentiable, while the differentiability of g is not
assumed.

In this paper, as a model probleﬁ, we restrict our
attention to a system of finite-difference equations

F(x)=Ax+g(x)=0, x€RD, ‘ (1.2)

in Rn, where A is an nxn symmetric positive definite block
tridiagonal M-matrix denoted by
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A, T, A
‘A= . « . =(aij))
Am—l Tm—l Am
\ AIIl Tm

where Ti,i=1,...,m are me'tridiagonal matrices and Aj’
j=2,...,m are mxm diagonal. Such an equation arises from
the discretizatlon of the nonlinear elliptic equation
- Ju Jdu
(p(x y)ax) ay(q(x y) ¥(x,y, U5 ay)

in Q=(0, 1)x(0 1) CR
subject to the boundary condition
u(x,y)=n(x,y) , on 39,

where p*Zp(x,y)zp*>O, q*Zq(x,y)Zq*>0, X,y€Q, and ¥ is a

continuous function whose partial derivatives wu’wu ’Wu do
- X v
not necessarily exist.
We use the Newton-like method (1.1) to solve the equation

(1.2). Updating matrices B(xk) are chosen as B(Xk)=A+¢(xk)
and ¢(xk) are defined as follows: ?(x0)=0, and for kal:

_ _ +_{1/a , a0 0, a»0
K Xk-1 571Xy qllee @ ‘{o , a=0, 1, a=0.

Put  $(x)=(9"(x )+ (x,))diag((g(x)-g(x_;);), with

Let |x and a_={

¢+(xk)=diag((xk-xk_l);)
and
1n t -
$ (X)) =(x=%y_9) g iZl(eJeﬁeleJ)(xk Xy 1)1
where ey stands for the i-th column of the nxn identity.Then
B(xk) are symmetric and satisfy the quasi-Newton equations
B(xk)(xk—xk_l)=F(xk)—F(xk_1), (1.3) .
so that {xk} converges to a solution of the equation (1.2),
if g(x) satlsfles a Lipschitz condition. (See[3].)
Here, we are interested in the preconditioned conJugate
gradient (PCG) method for solving the linear system
B(x, )y=(A+$(x)))y=-F(x,),
at each step of the quasi-Newton iteration. We shall choose
a preconditioner M based on the structure of A and fix it
for all k20. Let D=diag(aii), T=diag(Ti)(block diagonal)

and L and Lc be lower triangular matrices such that
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L+L%=A-D  and LC+L2=A—T.
Then the following matrices M are considered:

1. M=D, Jacobi (1.4)

2. M=T, Block Jacobi (1.5)

3. M=S_=(D+uL)D " (D+wL%)/((2-w)uw), = SSOR (1.8)

4. M=C_=(T+uL )T *(T+wLl)/((2-w)w), Block SSOR (1.7)

5. M=1I

6. M=A

7. M=H, An Incomplete Block Cholesky Factorization of A (1.8)

We first estimate the spectral condition number r(M_lB(xk))

=An/A1 with different M, where Al and An are the smallest
and largest eigenvalues of MnlB(xk), respectively. As is

well known, the PCG method converges rapidly if An/kl is
small. However,the total computing time throughout the
Newton-like iteration may increase, since solving linear
equations with coefficient matrix M may be necessary,which
needs considerable amount of work if n is large.Hence, the
total number of operations will be counted, and we shall
show that efficiency of PCG methods applied to nonlinear
equations depends not only on preconditioning matrix M but
also on the dimension n and a stopping constant &.Finally,
in section 4, the results are illustrated with a numerical
example.

2. Construction of Preconditioners
For the sake of simplicity, we denote ¢(xk), B(xk) and
-F(xk) by ¢, B and b, respectively, and consider the PCG

methods with the preconditioners M applied to the linear
system By=b, which are defined as follows[1]:
_ B _ R |
Choose Yo%y calculate rO—By0 b and qO—M rs and put
Pp="4,- For 220: ‘
aﬂ=(rﬂ,qg)/(pg,Bpg),
Y9+17Y9 %Py
Tg+17Tg* PPy
_am—1
A94+1°M "Touq>
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Bg=(rg+1,q&+l)/(r9”QQ’) ’

Pg+17799,1%BgPyg-
The following iterative methods for solving linear

equations Ax=b are well known:

=(I—D“1A)yg+n“1b

1. Jacobi ys1+1
2. Block Jacobi yg+l=(I—T_lA)yQ+T_1b
I P gt _
3. SSOR ya+l/2—wD { Lyg+1/2 L yg+b}+(l w)yg
I gt RN
Y9170 1LY g /07 L Vg DI+ (1-w)yg g 0

-1
4. Block SSOR yﬂ+l/2=wT {-L y£+1/2—Ltyg+b}+(1—m)yﬂ
Ygep=oT H{-L yar1/27l oY gD+ (1- “Y9+1/2°

They can be rewritten in the form M(yg )= rg, where

Yo+l
rg—Ayﬂ -b and M 1is a symmetric p051t1ve definite matrix
defined in (1.4)-(1.7).

We are now interesed in constructing H, an incomplete
block Cholesky factorization of A. Being notivated by the
fact

_ -1 t
A—(Z+LC)2 (z+Lc),

where £ is the symmetric block diagonal matrix with mxm
blocks zi satisfying

-1 ,t

81 Tl’ 8 T Alzl 1A1 i=2,...,m
we construct the matrlx H as follows:

Put A1=T1, A T AlAl l i i=2,...,m
where Ai—l is a tridiagonal matrix (denoted by trid(A{%l
) y)whose tridiagonal elements are those of A}%l.

Decompose the matrices Ai and Ai:
B t a t .
Ai—Pi?i ’ Ai—QiQi ’ l—l, LY .m-
where Pi and Qi are lower bidiagonal.
Py
Wy, Py
- . _ t_
Put Wi'AiQi’ i=2,...,m, U=
Wm Pm
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t

and M=H=U"U. We can prove that all the Ai are positive M-

matrix so that Pi are nonsingular. Hence, H=UtU is a
symmetric positive definite matrix. Similarly, let
QP!
171

Py
Then Z 1is a nonsingular tridiagonal matrix and H can be
written as H=T+LCZ+ ZtLE.

Here Ai are computed by the following method(see[8]).Let
(b
a

1 22
2

a
n

N an bn )

Define two Sequences {ui},{vi} as follows:

- = 1 : ,
uO—O, ul—hl, u; = a; (ai—lui—2+bi—1ui—1) (i22) (2.1)
- - I -
vm+1—0, Vm—hz, vyi= ai+1(bi+1vi+1+ai+2Vi+2) (ism-1) (2.2)
where hl’hZ’al and am+1 may be chosen arbitrarily, but may

not be zero. Then Ai=trid(ﬁil)=(rij) is given by

/ N
41V1 %1V
U1V9
T, .= -1
ij alhlv0
. un—an
L U-1Vn UYn'n ]
Let ‘ ,
b, .| la; .| - b, | - la; .|
i-1 i-1 i i+1
= a. 1 B=max a ] = -, B= s
a=max l ai lai x=max | ai I ‘ max Iai

Then we have the following theoremywhich improves the
estimates for bounds of Iuil and Ivil in [4].
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Theorem 1. Let To be diagonally dominant and |b1|>|a2|,
Ib_I>la_]. Then
m m

(i) Tal exists and the sequence {ui} and {Vi} satisfy
|u1|<|u21<...<lum|, Ivol>lvll> e >|vm|.

(ii)There exist positive constants s,o, s,o for which

IuiISsti_1+dt;_l, i=1,2,...,m (2.3)
|vi|s;ET'1+;E§‘i, i=0,1,2,...,m (2:4)

where tl and t2 are the roots of t24at—3=0, tl and t2 are

the roots of tz—;t—§=0, which‘satisfy

—1<t2<0<1<t1, -1<t2<0<1<t1.
(iii)(2.3) and (2.4) hold with equal-sign, if b=b1=...=bm,
a=a,...=a_. Furthermore, lui|=|Vm—i+l| if |h1|= |h2|.

Corollary 2. Suppose that the conditions of Theorem 1 hold
and T0 is symmetric. Then we have

Irijlzltij+ll, for isj (2.5)
Itij|2|tij_1|, ’for jsi (2.8)
and Ib. |
b, |r
1T 3 Rm _ 1
SEEAL Parm L 1] (2.7)
where
r=mln{ (Ibil—lai*'ll)/lall’(|bil—|ail)/|ai+ll }Zl
and
R=max { (lbjl+la; D /la;l, (b l+la;/71a; ;1 21,

3. Estimates of Spectral Condition Number
and Number of Operations
Let P be an nxn matrix, Al(P) and An(P) be the smallest
and largest eigenvalues of P,respectively.In this section,
we estimate  the spectral condition number x(M_lB)=
=An(M-1B)/Al(M_1B) with different preconditioners M.
We first consider the two cases M=I and M=A.
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positive constant « such that

H¢Hm5ah2<4(p*+q*)sin2%n, then as h+0, we have

4(p,+a,)sin"Z(1-h)-eh?
x(B)2 ra— Zy 3 3> (3.1)
4(p +q )sin §h + oh
and _
-1 4(p*+q,)sin2%h+ah2 (P,+a,);2, .,
x(A""B)S 5y 5 2 5 (3.2)
4(p,+q,)sin Sh-ch (p,*+q, )" -«
Next, we consider the cases where M=D, M=T, M=Sw, and
M=Cw. Let
-1, t ((L rLtia)x X)
_ ((LD "L"+A)x,X) . c [ ’
6,= min (Dx, x) ’ 65= Min—p—y ’
x»0 ’ X%0 '

_ 1

and

1

¥o51- min(é,, 1/2)

Then we have the following corollary.
Corollary 4. Under the conditions of Theorem 3, as h » 0,

we have
- (p,+q,)
(1) x(0'B)z — 22—~ x(B) » =
(p +q)
. 2y
-1 2q*+4p*51n Eh
(ii) x(T "B)a - . 2y x(B)» o
2q +4p sin E(l—h)
2
1 Fi(w)(p,+a,) )
(iii) 1c(Sm B)z P x(B) =» o if w<f1,
4(p +q)
1 Fz(w)(2q*+4p*sin2%h)2
(iv) r(Cw B)z P x(B) » o if w<f2,
~ 16(p +q )
where
m261+(l—w), 0<ws1 u262+(1—w), 0<ws1
Fl(W)= Fz(”)={
w61+(1-w), lSW<Tl. w62+(1—w), 1Sw<f2.
Furthermore,
-1 (p*+q*)? -1
A (D TA)S 6, S +2,(D TA), (3.3)
1 1 L K 2 "
(p +q +p_+q )
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-1 (a*) -1
A(TTA)S 6, & At + A (TTA)
(2q*+4p*31n §h)
and
. *
.Fl(fl), if 6156
min Fl(m)= (3.4)
O<w${1

*
F1(1/261), if 6126
Fz({z), if 6,56
min Fz(w)=
O<mS~r2

*

Fo(1/26,), 1f 6,26,

2

where 6%=1/2+1/(2v2).
Remark 5. Axelsson and Barker gave an upper bound for

m(S;lA) in [1]. Their results are stated as follows:

-1, t_ 1
((LD "L D)x,x)
Dx,x) -
Let H= max , 6=max :
»0 (Ax,Xx) XﬁO (AX X)
and Go)= 1+L(2- w% 4(4w)]u+mc
Then, 62-1/4, X (S, lays, A (S 1z G( , and (7 1A)SG (w).
Furthermore,
min G(W):G(w*):J(l/2+6)).l +1/2%8 \/(1/2+6))C(A) +1/2,
O<w<2

where w —ZJp/(JH +2 —+ S).
They further proved that &6 is bounded (s8£0) if
Iip~1/2p"1/2 s and |Ip"1/2L%71/2) < %
By using their results, we obtain
-1 2 2
x(Sw B)SG(w)(Al(Sw)+ah )/(Al(sm)-ah G(w)),

(3.5)

. -1 - 2 -1 -1 2 -1
since )c(Sm B)S(An(sw A)+ah An(sw ))/(Al(sm A)-ch An(sw ))
and An(s;l)=1/A1(Sw). Hence under the assumptions (3.5)
x(S;iB) is 0(¥x(A)), and observing (3.1) and (3.2) we see

that x(A) and x(B) have the same order, so that x(S;iB) is
0(vx(B)),1i.e., 0(vn).

The lower bound for x(S;lB) in (iii) of Corollary 4,

together with (3.1),implies that m(S;lB) is at least
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O(m(B))=O(n)=O(h—2), if Wy Furthermore we remark that

¢;<w” if (3.5) holds and hs2™®. In fact, under the

assumptions (3.5), we have 615 % +A1(D_1A) so that
1

fl$4/(3—4Al(D— A)). On the other hand

w*>2An(A"1D)/(An(A'1D)+J§)=2/(1+A1(D"1A)J§)

1 2n 4

and A, (D"1A)<8sin®Zh. Hence if h<2™4, then Al(D‘lA)<o.146

and {1<1.656<w*.

If the results are applied to the preconditioning Block
SSOR, then corresponding estimates can be obtained by
replacing D and L by T and Lc’ respectively. For example,

we have K(C;lA)SG(w),where » and 6 in G(w) are replaced by

-1, t 1
_ (Tx,x) _ (LT "L~ 7 TIx,x)
H= max TKfA—T’ d=max ( ) :
xwo ‘A% X X%0 AX, X

Remark 6. Now we count the number of multiplication for
solving the 1linear equations My=b in PCG method with
different preconditioners. The results are as follows:
1.M=D n k20,  220; ‘
2.M=T 5n k=0, 2=0,

3n otherwise;
3.M=Sw n k20, 220

4'M=Cm 13n-2m k=0, 92=0

11n-2m, otherwise;

5.M=1I 0 k20, Q20
6 .M=A (2m+1)n+n(n-1)/2+m(7n+5)/6 k=0, 9=0
(2m+1)n, otherwise

7 .M=H 19n k=0, 9=0,
6n, otherwise

4. A Numerical Example
Example 1. Consider the Dirichlet problem
-au -lul=-2(x(x-1)+y(y-1))~|xy(x-1)(y-1)-0.025],
' X,y €(0,1)
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u(0,t)=u(t,0)=u(l,t)=u(t,1)=-0.025, t€[0,1].
This problem has a solution u(x,y)=xy(x-1)(y-1)-0.025.
We
boint' difference formula,and obtain a system of nonlinear

first discretize the problem by the standard five-

algebraic equations.Next,we solve the system by the quasi-
(1.1) (1.3) combined with the PCG
method, with preconditioners given in section 2. We choose

Newton iteration and

the initial values (xo)i=20(—1)1, 1Sisn and employ the

7

stopping criteria HrnH251O— , °

IF (%, ) 1o/ IIF (x) | 810°

Total computing time are shown in Table 1, together with

the number of iterations in Table 2, where

v X B o

i

square mesh size
interior mesh number (h=1/(yn +1))

Table 1. Total Computing Time (sec.)

: number of the iterations for the quasi-Newton method
:iterative number of PCG method at the i-th iteration

n ‘D T S1 Cw* I A H
9 0.17 0.20 0.22 0.23 0.23 0.13 0.18 0.23
49 1.43 1.80 . 1.65 1.53 1.70 1.37 1.33 1.70
225 10.38 11.23 9.05 7.53 7.88 8.93 11.62 8.20
961 88.25 89.48 64.75 44 .23 47T .22 76.53 149.85 51.43
3969 806.75 683.83 463.37 248.12 261.95 672.02 2226.67 347.83
Table 2. Number of Iterations(k[ﬂl,ﬂz, ..,ﬁk])
N D T S, Sun
9 3[3,3,3 1] 3[4,4,4] 3[4,4,3] 3[4,4,3]
49 4[(9,9,8,8] 4(12,9,8,8] 419,6,5,5] 4[8,6,5,4]
225 3[25,18,18] 3[24,17,15] 3[15,10,8] 3[12,8,7]
961 3[51,37,37] 3[46,33,28] 3[27,17,14] 3[17,12,10]
3969 3[104,74,73] 3[90,55,54] 3[50,28,27] 3[{24,16,13]
Cw*. I A H
3[4,3,3] 3[3,3,3] 4[1,2,1,2] 3[6,5,4]
4[7,5,4,4] 419,9,9,9] 411,2,2,2] 4[9,7,6,5}
3[11,6,6] 3[18,19,19] 3[1,2,2] 3[14,9,7]
3[15,9,8] 3[38,39,39] 3[2,2,2] 3[22,13,11]
3[21,12,11] 3[75,77,78] 3[2,2,2] 3[38,22,18]

10
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Now, we change the value & for the stopping criterion

225

HF(xk)Hm/HF(XO)Hmss to solve equation (1.2) in R““°. Total

computing time are shown in Table 3,together with the
number of iterations in Table 4. '

Table 3. Total Computing Time (sec.)

e D T Sl Sw* Cm* I A H
5.0x1077 » » » * «  13.65
1.0x107° » » * * * » 13.65 »
2.5><1()_6 * 14.30 11.32 » * 11.80 13.65 10.08
5.O><10“6 10.40 11.25 9.056 7.52 9.73 8.87 11.63 8.23
7.5X10_6 10.40 11.30 9.05 7.53 7.87 8.87 11.62 8.28

Table 4. Number of Iterations (k[ﬂl,nz,...ﬂk])

s D T S1 Sw*
5.0x107 " * * . .
1.0x1076 * * . .
2.5><10-_6 * 4({24,17,15,15] 4[15,10,8,8] *
5.0x107° 3[25,18,18]  3[24,17,15]  3[15,10,8]  3[12,8,7]
7.5X10_6 3[25,18,18] 3[24,17,15] 3[15,10,8] 3[12,8,7]

Cos I A H
* * 411,2,2,2] *
* * 4[1,2,2,2] *
* 4(18,19,19,19] 4[1,2,2,2] 4[14,9,7,7]
4[11,6,6,5] 3[18,19,19] 3[1,2,2] 3[14,9,7]

3[11,86,86] 3(18,19,19] 3[1,2,2] 3[14,9,7]

# Jteration diverged. w* are chosen based on Remark 5,where 6=0.
According to Theorem 3, we give in Table 5 upper and lower bounds

for x(A;lB) and x(B), respectively.

Table 5. Upper and Lower Bounds for x(A—lB) and x(B)

9 49 225 961 3969
x(A_lB)S 1.1127 1.1082 1.1077 1.1068 1.1068
x(B)2 5.4826 23.9917 98.0526 394.3027 1579.3050

11
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Remark 7. From Table 2,Theorem 3 and Corollary 4, we see that
convergence speed of PCG method with preconditioner M=A or

M=Cw* is faster than the others and we roughly conclude that

x(B)2xc(D 'B)2xc(T 1B 2xc(s]'B) (B 1B) 2 (S LB) 2x(C 1B 2 (ATB) .

However,from Remark 6 and Table 1,we observe that if stopping
constant € is not so small, then

T(A™'B)2T(D71B)2T(T 1 B)2T(B) 2T (8] 'B) 2T (H 1B)2T(C1B)2T(S  B)

for larger n, ‘where T(P—lB) stands for computing time for
solving (1.2) by the iteration (1.1) with the preconditioner
P. On the other hand, if = begome smaller, then we observe
from Tables 3 and 4 that the iteration with M=A is superior
to the others.

Computations were carried out on the Apollo DOMAIN 3000 at
Department of Mathematics, Ehime University.
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